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Respiratory isolation places an
enormous financial burden on hospi-
tals that care for a substantial number
of patients with tuberculosis (TB)
and, in particular, public hospitals,
which care for most of these patients
in the United States. 

Grady Memorial Hospital, a pub-
lic hospital in Atlanta, cares for approx-
imately 200 patients with active TB
each year. An expanded respiratory
isolation policy was implemented
recently that resulted in a dramatic
reduction in exposure episodes (from
4.4 to 0.6 episodes per month) and an
accompanying reduction in tuber-
culin skin-test conversion rates in
healthcare workers. The expanded
policy made respiratory isolation
mandatory for all patients with active
TB, with TB in the differential diag-
nosis, or with acid-fast bacilli (AFB)
sputum smears and cultures ordered,
as well as for all HIV-infected patients
with abnormal chest radiographs

until three sputum smears negative
for AFB were obtained. The expanded
respiratory isolation policy resulted in
appropriate isolation of more than 95%
of patients with TB on admission, but
also resulted in an eightfold overuse
of isolation rooms. Researchers at
Grady Memorial sought to modify
this policy to reduce unnecessary
admission to isolation by evaluating
the usefulness of clinical information
available to admitting physicians for
predicting active TB. Clinical find-
ings in 295 patients admitted to res-
piratory isolation during a 3-month
period were evaluated for their use-
fulness in determining which
patients had TB. Multivariate analy-
sis identified five predictive vari-
ables, including chest radiograph
with upper lobe infiltrate or cavity,
self-reported positive tuberculin skin
test, and self-reported isoniazid pre-
ventive therapy. Using these vari-
ables to develop a hypothetical policy
to determine which patients required
isolation would have decreased the
number of isolated non-TB patients

during the study period from 253 to
95, but it would have missed 8 of the
42 patients with TB. 

The authors note that the
strongest predictors of active TB
among all patients admitted to respira-
tory isolation was chest radiographic
findings of an upper lobe infiltrate or
pulmonary cavity. However, stratifying
by HIV serostatus eliminated this asso-
ciation for patients who were HIV
seropositive, findings consistent with
numerous other reports.

The authors conclude that the
low sensitivity of the hypothetical poli-
cy made it an unacceptable alternative
for their hospital. They suggest that
further work is needed to identify clin-
ical predictors that would decrease
overuse of isolation beds while main-
taining satisfactory sensitivity for
patients with TB.
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