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1. Introduction. Let TB denote the class of all groups G with the following
property: whenever C and D are characteristic subgroups of G such that D ≤ C and C/D
is abelian, then each subgroup K of G such that D ≤ K ≤ C is normal in G. In other words
G belongs to the class TB if and only if every subgroup lying between a characteristic
subgroup and its derived subgroup is normal in G. The well known class of T-groups
(i.e. groups in which each subnormal subgroup is normal) is contained in TB.

The class TB was introduced by R. A. Bryce in [1] as a tool for the study of some
generalized Wielandt subgroups. Recall that the Wielandt subgroup w(G) of a group
G is the normalizer of all the subnormal subgroups of G. It is easy to see that in any
group G, w(G) is a T-group. For each m ≥ 2, Bryce defined the subgroup um(G) as the
normalizer of all the subnormal subgroups with defect at most m in G. He observed
that um(G) is still a T-group when m ≥ 3, while it is a TB-group if m = 2. Then he
studied finite soluble TB-groups, proving that their structure is quite restricted. From
the definition it follows immediately that soluble TB-groups are hypercyclic and hence
locally supersoluble by a theorem of Baer (see [16]). Moreover by [1, Theorem 4.7] and
[7, Lemma 4.1], if G is a soluble TB-group, then G′ is nilpotent of class at most 2. Thus
in particular G has derived length at most 3. This bound is really achieved, as Bryce
showed (see [1, p. 242–243]).

The aim of this paper is to continue the study of soluble TB-groups. Note
that for the study of infinite soluble TB-groups we follow the pattern established
by D. J. S. Robinson in [13] for the study of infinite soluble T-groups.

In Section 2 some elementary facts about soluble TB-groups are proved. In
Section 3 we consider periodic soluble TB-groups. In Theorem 3.3 we prove that
soluble p-groups of the class TB are metabelian and they are even nilpotent of class
at most 2 if p > 2. On the other hand a soluble 2-group of the class TB need not
be nilpotent and furthermore there is no bound for the nilpotency class of nilpotent
2-groups of the class TB (see Example 1 and Example 2). As an example of how to
work with p-groups of the class TB, in Proposition 3.7 we determine all 2-generator
non-abelian finite p-groups of the class TB.

The structure of generic periodic soluble TB-groups is described by Theorem 3.8.
In Theorem 3.9 finite soluble TB-groups are characterized as particular semidirect
products of finite nilpotent TB-groups.
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Non-periodic soluble TB-groups are studied in Section 4. In Proposition 4.1 we
show that non-periodic nilpotent TB-groups have class at most 2. Non-nilpotent non-
periodic soluble TB-groups are described in Theorems 4.2 and 4.4. We have two
different pictures according as the derived subgroup is periodic or not. In particular
from Theorem 4.2 it follows that a torsion-free soluble TB-group is nilpotent of class at
most 2. From Theorem 4.4 we deduce that a finitely generated soluble TB-group with
periodic derived subgroup is finite (see Theorem 4.5).

A complete classification of soluble TB-groups seems difficult to achieve, since
characteristic subgroups, and hence automorphisms, are involved. We show with many
examples that the results obtained actually give a realistic picture of the class of soluble
TB-groups.

For notation and terminology we refer mostly to [14, 15]. By a p-divisible group,
p a prime number, we mean a group in which every element has a pth root. A divisible
group is a p-divisible group for every prime p.

2. Some elementary properties of TB-groups. Recall that a power automorphism
of a group is an automorphism which fixes every subgroup (see [3]). Therefore a group
G belongs to TB if and only if it induces by conjugation power automorphisms on
each of its characteristic abelian sections. If A is an abelian group and PAutA denotes
the group of power automorphisms of A, then PAutA ≤ Z(AutA) (see [3]). It follows
that if G is a TB-group, then G′ centralizes every characteristic abelian section of
G. Moreover note that the class TB is closed for characteristic subgroups and factor
groups by characteristic subgroups.

We collect in the next lemma some known facts which will be repeatedly used
throughout the paper.

LEMMA 2.1. Let G be a group.
(i) If α ∈ AutG acts as a power automorphism on G/G′, then α acts as a power

automorphism on each factor of the lower central series of G. In particular, if α has form
x �→ xn on G/G′, then α has form x �→ xni

on γi(G)/γi+1(G), for each i.
(ii) If H is a normal nilpotent subgroup of G with class c and G/H is abelian, then

CG(H/H ′) is nilpotent with class at most c + 1.
(iii) If G is soluble and it centralizes its own derived series, then it is nilpotent with

class at most 2.
(iv) Let A be an abelian group and let α be a power automorphism of A. If A is non-

periodic, then α is either the identity or the inversion map. If A is a p-group of finite
exponent, there is a positive integer l such that aα = al for all a in A. If α is non-trivial
and has order prime to p, then α is fixed-point-free.

Proof. Point (i) is the content of Lemma 3 in [5]. To prove (ii) let H be a normal
nilpotent subgroup of the group G, with class c and such that G/H is abelian. Then by
a result of P. Hall [9] (or also by (i)) CG(H/H ′) ≥ H ≥ H ′ ≥ γ3(H) ≥ · · · ≥ γc(H) ≥ 1
is a central series of CG(H/H ′) and (ii) follows. For (iii) note that if a soluble group
G centralizes its own derived series, then it is nilpotent and γ3(G) = [G, G′] ≤ G′′ ≤
γ4(G) = 1 (see [7, Lemma 4.1]). Point (iv) is the content of [14, 13.4.3]. �

The next lemma is the analogue of [14, Lemma 2.3.2].

LEMMA 2.2. Let G be a TB-group and let S = CG(G(3)). Then
(i) the derived series of G terminates with G(3) and G(3) = γ3(G′);
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(ii) S is the unique maximal characteristic soluble subgroup of G; S′ is nilpotent with
class at most 2 and [S, G′′, G′] = 1.

Proof. Part (i) follows at once from the fact that the derived subgroup of a soluble
TB-group is nilpotent with class at most 2 ([1, Theorem 4.7], [7, Lemma 4.1]). For
the second part note that S′ stabilizes the series G ≥ G′ ≥ G′′ ≥ G(3) ≥ 1 and so it
is nilpotent by a theorem of P. Hall [9]. Therefore S is a soluble TB-group and S′

has class at most 2. Let H be a characteristic soluble subgroup of G. Then H ∈ TB,
H(3) = 1 and G′ stabilizes the derived series of H. Hence [H, G′, G′] ≤ H ′′. Thus, by
the Three Subgroups Lemma [14, 5.1.10], [H, G′′] ≤ H ′′, whence [H, G′′, G′] = 1 and
[H, G(3)] = 1. It follows that S is the unique maximal characteristic soluble subgroup
of G and [S, G′′, G′] = 1. �

From now on we shall consider only soluble TB-groups.

LEMMA 2.3. Let G be a soluble TB-group, and let L be the intersection of the terms
of the lower central series of G. Then L and G′′ are 2-divisible groups.

Proof. Each characteristic abelian section of G with exponent 2 is a central section
of G. Therefore L2 = L. Moreover L is nilpotent, since L ≤ G′, and thus it is 2-divisible
by Corollary 1 to Theorem 9.23 in [15, Part 2]. Now let A be a characteristic subgroup
of G. Then G acts on A/A′ by means of power automorphisms and A′/(A′)2 is a
central section of G. Consider x ∈ A/(A′)2, g, h ∈ G. Then there exist λ,µ ∈ � and
zi ∈ A′/(A′)2 , i = 1, 2, such that xg = xλz1 and xh = xµz2. Now if λ or µ is even, then
x ∈ A2A′/(A′)2, a characteristic abelian section of G, and so x[g,h] = x. Thus we may
assume λ,µ odd, and we have:

xgh = (xλz1)h = (xµz2)λz1 = xλµz2z1

and

xhg = (xµz2)g = (xλz1)µz2 = xλµz1z2 = xλµz2z1

whence x[g,h] = x. Hence G′ ≤ CG(A/(A′)2). Now if we choose A = G′ we get that G′ ≤
CG(G′/(G′′)2) and G′′ = [G′, G′] ≤ (G′′)2. Since G′′ is nilpotent, as above we conclude
that G′′ is 2-divisible. �

LEMMA 2.4. Let G be a soluble TB-group, and let K be a characteristic abelian
subgroup of G with finite exponent. If G/K is a non-periodic abelian group, then K ≤
Z(G).

Proof. Set H = CG(K). Then by [13, Section 4.1.3], H has finite index in G. Hence
H is a non-periodic nilpotent group such that H ′ ≤ K ≤ Z(H). Since K has finite
exponent, it follows that H/Z(H) has finite exponent and thus Z(H)/K is a non-
periodic central section of G. Then by Lemma 2.1 (iv), Z(H) ≤ Z(G) and so K ≤ Z(G)
as claimed. �

3. Periodic soluble TB-groups. In this section we describe the structure of
periodic soluble TB-groups. Extending a notation generally used for finite groups,
if G is a p-group we denote by Ωn(G), n ≥ 1, the subgroup of G generated by the
elements of order at most pn.
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LEMMA 3.1. Let G ∈ TB be a nilpotent p-group, for some prime p, of class at
most 2. Then G′ is an elementary abelian p-group.

Proof. Suppose that G′ has finite exponent and in order to obtain a contradiction
let us assume that G′ has exponent greater than p. Taking eventually the quotient over
(G′)p2

, we may assume directly that G′ has exponent p2. Then [gp, hp] = [g, h]p
2 = 1

for all g, h ∈ G and so Gp is abelian. Set H = GpG′ and C = CG(H). Clearly H is a
characteristic abelian subgroup of G. If C = G, then Gp ≤ Z(G) and hence G′ has
exponent at most p. So C < G. Then G acts non-trivially on H as a group of power
automorphisms: in particular if p = 2, then each element of G acts on H as a power
congruent to 1 modulo 4; thus [13, Section 4.1.3] implies that H has finite exponent
and G/C is a cyclic group. Therefore G = 〈x, C〉, where C′ has exponent at most p
and xp ∈ H ≤ Z(C). Then for each g, h ∈ G we can write g = xαc1, h = xβc2, for some
c1, c2 ∈ C, 1 ≤ α, β ≤ p and thus [g, h]p = [xαc1, xβc2]p = [xpα, c2][c1, c2, ]p[c1, xpβ ] =
1. Hence G′ has exponent at most p and we get the contradiction.

Now suppose that G′ has infinite exponent. For each n ≥ 1, set Hn/G′ = Ωn(G/G′).
Then Hn is a nilpotent p-group of the class TB with class at most 2 and Hpn

n ≤ Z(Hn).
Hence H ′

n has exponent at most pn, and thus by the previous paragraph H ′
n has exponent

at most p. It follows that G/Ω1(G′) is abelian and we get a contradiction. �

We extend now Lemma 4.4 in [1] to soluble p-groups with the derived subgroup
of finite exponent.

LEMMA 3.2. Let G ∈ TB be a soluble p-group for some prime p and let G′ have
finite exponent. Then G is nilpotent. Furthermore either G has class at most 2 and G′ has
exponent at most p, or p = 2, γ2(G)/γ3(G)2 has exponent 4 and there exists an element
x ∈ G which acts by conjugation on γ2(G)/γ3(G)2 as the inversion map.

Proof. First of all note that by [13, Section 4.1.3], each characteristic abelian section
with exponent p is a central section of G. Therefore we can refine the derived series of G
into a finite central series, and G is nilpotent. Set G := G/γ3(G)pγ4(G). Then G ∈ TB,
G′ = γ2(G)/γ3(G)pγ4(G) is abelian and γ3(G) has exponent at most p. Moreover by
Lemma 3.1, G′/γ3(G) has exponent at most p. Thus G′ has exponent at most p2. Now
if p > 2, for all g, h ∈ G we have

[gp, h] = [g, h]p[g, h, g](
p
2) = [g, h]p.

Then the first part of the proof of Lemma 3.1 still holds, proving that G′ has exponent
at most p. It follows that G′ ≤ Z(G) and γ3(G) = γ3(G)pγ4(G) = 1.

Therefore if γ3(G) 
= 1, then p = 2, G′ = γ2(G)/γ3(G)2 and it is a non-central
characteristic abelian subgroup of G with exponent 4. From the structure of the group
of power automorphisms it follows that there exists an element x ∈ G acting on G′ as
the inversion map. �

THEOREM 3.3. Let G ∈ TB be a soluble p-group for some prime p. Then G is
metabelian and either

(i) G is nilpotent of class at most 2 and G′ has finite exponent at most p, or
(ii) p = 2 and G = 〈x, C〉 where C = CG(G′), x2 ∈ Z(G) and x acts on G′ as the

inversion map. Moreover C′ ≤ Z(G) and Z(G) has exponent at most 2.
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Proof. Let p be greater than 2. If G′/G′′ has infinite exponent, then [13,
Section 4.1.3] yields that G′/G′′ is a central section of G. Hence by Lemma 2.1 (i),
G centralizes the series G′ ≥ G′′ ≥ 1 and so it is nilpotent with class at most 2, by
Lemma 2.1 (iii). But then Lemma 3.1 implies that G′ has exponent at most p and we
get a contradiction. Thus if G ∈ TB is a soluble p-group with p odd, then G′ has finite
exponent and (i) follows from Lemma 3.2.

Now let p = 2. Since G′ is nilpotent of class at most 2, Lemma 3.1 implies that
G′′ has exponent at most 2. On the other hand G′′ is a divisible group by Lemma 2.3.
Hence G′′ = 1 and G′ is abelian. Moreover if G is nilpotent of class at most 2, then
Lemma 3.1 implies (i) and we are done. So let us assume that G′ is not contained
in Z(G) and let us prove that (ii) holds. Note that since C is nilpotent of class at
most 2, C′ has exponent at most 2 by Lemma 3.1 and thus C′ ≤ Z(G). Furthermore
G′Z(G) is an abelian characteristic non-central subgroup of G and hence Z(G) has
exponent at most 2 provided there is an element of G acting on G′ as the inversion map.
Therefore we have only to show that G = 〈x, C〉, where x2 ∈ Z(G) and x acts on G′ as
the inversion map. If G′ has infinite exponent, then by [13, Section 4.1.3], |G : C| = 2
and thus G = 〈x, C〉, where x2 ∈ C and x acts on G′ as the inversion map. For each
c ∈ C we have [c, x2] = [c, x][c, x]x = [c, x][c, x]−1 = 1, whence x2 ∈ Z(G). If G′ has
finite exponent 2n (n ≥ 2), then by Lemma 3.2 G′/γ3(G)2 has exponent 4 and there
exists an element x ∈ G such that x acts by conjugation on G′/γ3(G)2 as the inversion
map. Set D := CG(G′/γ3(G)2). Then by [13, Section 4.1.3], |G : D| = 2. Each element
of D acts on G′, and so on D′, as a power congruent to 1(mod 4); hence D has class
at most 2 by Lemma 3.2. Then by Lemma 3.1 D′ has exponent at most 2 and thus the
proof of Lemma 2.3 (with D in the place of A) yields that G′ ≤ CG(D). Therefore, since
G′ 
≤ Z(G), we have D = C. Clearly x 
∈ C, G = 〈x, C〉 and x acts on G′ as a power
congruent to −1 modulo 4. We claim that x acts on G′ as the inversion map. This is
trivial if n = 2, so assume n > 2. Since x2 ∈ C, we have that x induces by conjugation
on G′ and on C/C′ power automorphisms of order 2. Hence x acts on G′/Ω1(G′) as the
inversion map and on C/Ω1(G′) (note that C′ ≤ Ω1(G′)) as a power −1 + β2t−1, where
β ≥ 0 and 2t is the exponent of C/Ω1(G′). Now C2 ≤ G′, since x acts on the central
section C/G′ as a power congruent to −1 modulo 4. Then C/Ω2(G′) has exponent at
most 2t−1 and so it follows that for each y ∈ C, (xy)2 ∈ 〈x2,Ω2(G′)〉 = T . Therefore
T is a characteristic subgroup of G, as it is generated by the characteristic subgroup
Ω2(G′) and by the squares of the elements outside C, and it is also abelian. This yields
that x2 has order at most 2, as x acts on T as a power automorphism which is the
inversion map on Ω2(G′). Thus since 〈x2〉 is a normal subgroup of G, x2 ∈ Z(G). Then
for each c ∈ C we have 1 = [c, x2] = [c, x][c, x]x, whence [c, x]x = [c, x]−1 and x acts as
the inversion map on [C, x]. From G′ = [C, x]C′ it follows that x acts as the inversion
map on G′, as wanted. �

We give now two examples which show that when p = 2 the result of Theorem 3.3
is best possible.

EXAMPLE 1. Let G = 〈x, A〉, where A is abelian, x2 ∈ A and ax = a−1 for each
a ∈ A. For each b ∈ A there is an automorphism ϕb of G such that xϕb = xb and
aϕb = a, a ∈ A. It follows that every characteristic proper subgroup of G is contained
in A and hence G acts on it as the inversion map. Thus G is a soluble TB-group. In
particular if A is a cyclic 2-group of order 2n we get a finite nilpotent 2-group with
class n. This shows that there is no bound for the nilpotency class of a finite 2-group of
the class TB. (Note that Example 5.5 in [1] shows that in general there is no bound for
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the nilpotency class of Sylow 2-subgroups of a finite soluble TB-group of composite
order.)

EXAMPLE 2. Let Q = 〈a, b | a4 = 1, b2 = a2, ab = a−1〉 be the quaternion group of
order 8 and let A be a quasicyclic 2-group. Let C be the central product of Q and A,
where Q′ and Ω1(A) are amalgamated. Thus C′ = 〈a2〉. Set G = 〈C, z〉, where z2 = a2,
z acts trivially on Q and as the inversion map on A. Clearly G is a non-nilpotent
soluble 2-group with infinite exponent, G′ = A, Z(G) = C′ and C = CG(G′). We prove
that G is a TB-group. Let K be a characteristic subgroup of G. If K is not contained
in C, then K contains an element acting on A as the inversion map. It follows that
G′ = A = [A, K ] ≤ K and so G′ ≤ [K, K ] = K ′. Hence K/K ′ is a central section of G.
So assume that K ≤ C. If K ≤ Z(C) = AC′, then K is abelian and G acts on it as the
inversion map. Hence suppose that K is not contained in Z(C). Then K contains an
element y = cx, where c ∈ Q is an element of order 4 and x ∈ A. Thus there exists an
automorphism ϕ ∈ AutQ such that [c, cϕ ] 
= 1. Let us extend ϕ to an automorphism
ϕ̄ ∈ AutG by defining qϕ̄ = qϕ for each q ∈ Q, xϕ̄ = x for each x ∈ A and zϕ̄ = z. Then
yϕ̄ = cϕx ∈ K and thus C′ ≤ K ′. Hence K/K ′ is a section of C/C′ and thus G acts on
K/K ′ as the inversion map.

Free groups of countable rank in the variety of nilpotent p-groups of class at most
2, exponent at most pn, n > 0, and derived subgroup of exponent at most p, are soluble
p-groups of the class TB, as the following proposition shows.

PROPOSITION 3.4. Let p be a prime and n a natural number. Every free group of
countable rank in the variety of nilpotent p-groups of class at most 2, exponent at most
pn and derived subgroup of exponent at most p is a TB-group.

Proof. Let G be a free group of countable rank in the variety of nilpotent p-groups
of class at most 2, exponent at most pn and derived subgroup of exponent at most
p. Then G/G′ is the direct product of cyclic groups of order pn and its characteristic
subgroups are the subgroups (G/G′)pk

, k = 0, . . . , n. Since by [12, Theorem 4] each
automorphism of G/G′ is induced by an automorphism of G, it follows that if K is
a characteristic subgroup of G not contained in G′, then either KG′ = G, and thus
K ′ = G′, or KG′ ≤ GpG′ ≤ Z(G). Therefore in any case K/K ′ is a central section of G
and G is a TB-group. �

We want now to describe finite p-groups of exponent p in the class TB, p > 2. Recall
that a finite non-abelian p-group G is called a special p-group if Z(G) = G′ = Φ(G),
where Φ(G) is the Frattini subgroup of G, and G′ is elementary abelian (see [10]).
Moreover a p-group G is called extra-special if it is a special p-group and G′ is cyclic.

LEMMA 3.5. Let G be a finite group of exponent p in the class TB, p > 2. Then
G is the direct product of an elementary abelian p-group A and of a special p-group H
belonging to TB.

Proof. Since p > 2, by Theorem 3.3 G′ ≤ Z(G). Let A be a complement of G′ in
Z(G) and let H ≥ G′ be such that H/G′ is a complement of Z(G)/G′ in G/G′. Then
G = HA. Since A ≤ Z(G), G′ = H ′ and H ∩ A ≤ G′ ∩ A = 1. Thus G is the direct
product of A and H; the equality H ′A = Z(G) = Z(H)A implies that H ′ = Z(H).

Note that for each subgroup K of H, we have that K/K ′ ≤ KZ(H)/K ′ ≤
KZ(G)/K ′ = KZ(G)/(KZ(G))′. Therefore to prove that H ∈ TB it is enough to show
that KZ(G) is a characteristic subgroup of G whenever K is a characteristic subgroup
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of H containing Z(H). So let K ≥ Z(H) be a characteristic subgroup of H. If σ is
an automorphism of G, then Aσ is a complement of G′ in Z(G); thus G is the direct
product of H and Aσ and there exists an automorphism τ ∈ AutG such that hτ = h
for each h ∈ H and aτ = aσ−1

for each a ∈ A. It follows that στ leaves invariant every
element of A and so it induces an automorphism on G/A, which acts on G/Z(G) as σ

does. Let σH be the automorphism of H induced by στ via the isomorphism H � G/A.
Then (KZ(G))σ = KσH Z(G) = KZ(G), and thus KZ(G) is a characteristic subgroup of
G as wanted. �

Finite special p-groups of exponent p belonging to the class TB can be constructed
in the following way. Let F be a finitely generated free group in the variety of nilpotent
groups of class at most 2 and exponent at most p. Note that F is a special p-group and
by Proposition 3.4 it is also a TB-group. Let K be a subgroup of F ′ such that F/K is a
special p-group (see [4] for a characterization of such subgroups K). By [12, Theorem 4]
every automorphism of F/K is induced by an automorphism of F . Therefore F/K ∈
TB if and only if C/C′K is a central section of F whenever C is a subgroup of F which
contains K and is normal in NHolF (K). For example it is easy to verify that if K is
the subgroup generated by a single commutator of any two free generators of F , then
F/K is not a TB-group, while if F is freely generated by the elements a, b, c, d and
K = 〈[a, b], [c, d]〉, then F/K ∈ TB.

The next proposition provides other examples of p-groups in the class TB.

PROPOSITION 3.6. (i) Direct products of finitely generated free groups in the variety of
nilpotent groups of class at most 2 and exponent p and of abelian groups are TB-groups.
(ii) Central products of extra-special p-groups of exponent p with cyclic centres are
TB-groups.

Proof. To prove (i) clearly we may assume that G = (
∏

i∈I Gi) × A where Gi is
a finitely generated free group in the variety of nilpotent groups of class at most 2
and exponent p for each i ∈ I and A is abelian. For each g ∈ G let gi denote the
ith component of g. We show that each characteristic subgroup C ≥ Z(G) of G is
of the form C = (

∏
i∈J Gi) × (

∏
i∈I\J Gi

′) × A for some subset J ⊆ I . Since Z(G) =
G′A = (

∏
i∈I Gi

′) × A, we may assume that C > Z(G). Then there exist an element
c ∈ C and an index k ∈ I such that ck 
∈ Gk

′. Write c = ckx where x ∈ (
∏

i 
=k Gi) × A.
Note that each automorphism ϕ ∈ Aut(Gi), i ∈ I , extends to an automorphism ϕ

of G such that Gϕ
i = Gi and ϕ|Gi

= ϕ, ((
∏

i 
=j Gi) × A)ϕ = (
∏

i 
=j Gi) × A and ϕ is the
identity map on it. In particular it follows that ck

ϕx ∈ C for each ϕ ∈ Aut(Gk) and
thus ck

−1ck
ϕ ∈ C for each ϕ ∈ Aut(Gk). Since Aut(Gk) acts on Gk/Z(Gk) as the general

linear group GL(nk, p), where pnk = |Gk/Z(Gk)| (see [6, Section 20, Chapter A]), we
have that Aut(Gk) acts transitively on the non-trivial elements of Gk/Z(Gk) and hence
we get that Gk ≤ C. Now let J be the subset of the indices j of I such that there exists
an element g ∈ C with gj 
∈ Gj

′. Then as before we have that Gj ≤ C for each j ∈ J.
Hence C = (

∏
i∈J Gi) × (

∏
i∈I\J Gi

′) × A as wanted. Then C/C′ is a central section of
G and so G is a TB-group.

(ii) Assume now that G is a central product of the extra-special p-groups Gi of
exponent p, i ∈ I . Note that each automorphism ϕ ∈ Aut(Gi), i ∈ I which acts trivially
on Gi

′, extends to an automorphism ϕ of G such that Gϕ
j = Gj for each j ∈ I , ϕ|Gi

= ϕ

and ϕ|Gj
is the identity map for j 
= i. Moreover the subgroup of the elements of Aut(Gi)

which act trivially on Gi
′ acts on Gi/Z(Gi) as the symplectic group Sp(2ni, p), where

p2ni = |Gi/Z(Gi)| (see [6, Theorem 20.8]), and so by [10, Satz 9.18] it acts transitively
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on the non-trivial elements of Gi/Z(Gi). Therefore the argument used in the proof of
(i) applies here to get the result claimed. �

Note that in particular by Proposition 3.6 the direct product of an extra-special p-
group of exponent p and an abelian p-group of infinite exponent is a nilpotent p-group
of the class TB with infinite exponent and nilpotency class 2 exactly.

As a further example of how one can work with finite p-groups of the class TB, in
the next proposition we determine all 2-generator non-abelian finite p-groups that are
TB-groups.

PROPOSITION 3.7. A 2-generator non-abelian finite p-group is a TB-group if and only
if it is of one of the following types:

(i) 〈a, b | apn = bpn = 1, [a, b]p = 1, [a, b, a] = [a, b, b] = 1〉, where n ≥ 1 and n 
=
1 if p = 2;

(ii) 〈a, b | apn = bpn = 1, [a, b] = apn−1〉, where n ≥ 1 and n 
= 1 if p = 2;
(iii) the quaternion group Q8;
(iv) the dihedral group 〈a, b | a2 = b2n = 1, ba = b−1〉, where n ≥ 2;
(v) the generalized quaternion group 〈a, b | b2n = 1, a2 = b2n−1

, ba = b−1〉, where
n ≥ 3;

(vi) 〈a, b | b2n = a4 = 1, ba = b−1〉, where n ≥ 3;
(vii) 〈a, b | b2n = a4 = 1, ba = b−1+2n−1〉, where n ≥ 3.

Proof. Let G be one of the groups in (i)–(vii). Then G is a 2-generator non-abelian
finite p-group. If G is as in (i) or (ii) one can see that G does not contain characteristic
proper subgroups properly containing Z(G). It follows that if A is a characteristic
proper subgroup of G not contained in Z(G), then AZ(G) = G, so that A′ = G′ and
A/A′ ≤ G/G′. Hence G is a TB-group. If G = Q8, then G is a T-group. If G is one
of the groups in (iv)–(vii), then G′ = 〈b2〉 and C = CG(G′) = 〈a2, b〉. One can see that
each characteristic proper subgroup of G is contained in C. Since G induces power
automorphisms on C, G is a TB-group.

Now let us assume that G is a 2-generator non-abelian finite p-group belonging to
TB. Suppose first that G has nilpotency class 2. Then G′ has exponent p by Lemma 3.1
and so Gp ≤ Z(G). Hence the Frattini subgroup Φ(G) = G′Gp is contained in Z(G).
Since G is 2-generated and non-abelian we have that Φ(G) = Z(G) and |G : Φ(G)| = p2.
We claim that if G is generated by two elements of different orders, then G is isomorphic
to the dihedral group of order 8. Assume that G = 〈a, b〉, where a, b ∈ G, |a| = pn, |b| =
pm and n > m. Since G has class 2, for each x, y ∈ G we have (xy)p = xpyp[x, y](

p
2). Then

Z(G) = Φ(G) = G′Gp = 〈ap, bp, G′〉 and so Z(G) has exponent pn−1 (note that n > 1).
Thus Ωn−1(G) ≥ 〈b, Z(G)〉 > Z(G). Now 〈b, Z(G)〉 is not a characteristic subgroup of G
since it is a normal abelian subgroup on which a does not act by conjugation as a power
automorphism. Therefore 〈b, Z(G)〉 < Ωn−1(G) = G. Since for p 
= 2 G is a regular
p-group and so Ωn−1(G) has exponent pn−1, we have p = 2. By the Burnside Basis
Theorem ([14, 5.3.2]) there exist a1, b1 ∈ G of order at most 2n−1 such that G = 〈a1, b1〉.
Then Z(G) = 〈a1

2, b1
2, G′〉 and the exponent of Z(G) is at most max{2, 2n−2}. Thus

2n−1 = max{2, 2n−2}, whence n = 2. Hence G is isomorphic to the dihedral group of
order 8.

Let us assume from now on that G is not isomorphic to the dihedral group of
order 8. G/G′ is a finite abelian group with 2 generators and so it is isomorphic to a
direct product of two cyclic groups of order pn1 and pn2 respectively, with n2 ≥ n1 ≥ 1.
Choose a, b ∈ G such that G/G′ = 〈aG′〉 × 〈bG′〉 and |aG′| = pn1 , |bG′| = pn2 . Then
since G′ ≤ Φ(G), G = 〈a, b〉 and from what we have seen above |a| = |b|. If 〈a〉 ∩ G′ =
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〈b〉 ∩ G′ = 1, then 〈a〉 ∩ 〈b〉 = 1 and pn1 = |aG′| = |a| = |b| = |bG′| = pn2 . Therefore G
has the presentation (i). If 〈a〉 ∩ G′ 
= 1 and 〈a〉 ∩ 〈b〉 = 1, then we can choose a and b
such that [a, b] = apn−1

from which it follows that n1 = n − 1 and n2 = n. Thus G has
the presentation (ii).

If 〈a〉 ∩ G′ 
= 1 and 〈a〉 ∩ 〈b〉 
= 1, then G′ = 〈a〉 ∩ 〈b〉 since G′ has order p, and
we can choose a and b such that apn−1 = [a, b] = bpn−1

. Thus G has the presentation
G = 〈a, b | apn = 1, apn−1 = bpn−1 = [a, b]〉. If p > 2 or n > 2, then every automorphism
of G is of type

σ (α, β, γ, δ, z1, z2) :
{

a �→ aαbβz1

b �→ aγ bδz2

where z1, z2 ∈ Z(G), α, β, γ, δ ∈ �p, αδ − βγ 
= 0, α(δ − 1) = β(γ + 1) and α + β =
γ + δ. The subgroup B = 〈ab−1, Z(G)〉 is an abelian characteristic subgroup of G and
b does not induce by conjugation on B a power automorphism. Hence p = 2, n = 2
and G is isomorphic to Q8.

Suppose now that G has nilpotency class greater than 2. Then by Theorem 3.3
G is a 2-group and G = 〈x, C〉 where C = CG(G′), x2 ∈ Z(G) and x acts on G′ as the
inversion map. Since G is 2-generated, we can find two elements a, b ∈ G such that
G = 〈a, b〉, a 
∈ C and b ∈ C. Then G′ = 〈[a, b]〉. Furthermore C = 〈a2, b, [a, b]〉 and
so it is abelian. Thus a induces a power automorphism on C and so ba = b−1+2t

where
|b| = 2n and t ≥ n − 1. Hence C = 〈a2, b〉. It follows that if C is not cyclic, then G is
one of the groups in (vi) and (vii). If C is cyclic, we can choose b such that C = 〈b〉.
Then G is either as in (iv)–(v) or it is a quasi-dihedral group with the presentation
G = 〈a, b | a2 = b2n = 1, ba = b−1+2n−1〉, n ≥ 3. In the latter case every automorphism
of G is of type

σ (α, β) :
{

a �→ abα

b �→ bβ

where α, β ∈ �, α is even and β is odd. Therefore H = 〈a, b2〉 is a characteristic
subgroup of G, H ′ = 〈b4〉 and H/H ′ is an elementary abelian non-central section
of G. A contradiction since G is a TB-group. �

For any group G, we denote by π (G) the set of all primes p such that G has an
element of order p. If G is nilpotent and p ∈ π (G), Gp denotes the subgroup of the
elements of order a power of p.

The following theorem extends to infinite periodic soluble TB-groups Lemma 4.10
in [1] and may be compared to Theorem 4.2.2 in [13].

THEOREM 3.8. Let G be a periodic soluble TB-group, let L be the intersection of the
terms of the lower central series of G and for p ∈ π (L) set C(p) = CG(Lp/L′

p).
(i) If p is an odd prime in the set π (L), then p 
∈ π (G/L), G′

p = Lp and G/C(p) is
a non-trivial cyclic group whose order divides p − 1. Moreover if Lp is non-abelian, then
it has exponent at most p2 and Lp

′ = Z(Lp) = Φ(Lp).
(ii) If p is an odd prime in π (G′) \ π (L), then G′

p ≤ Z(G).
(iii) If 2 ∈ π (L), then 2 also belongs to π (G/L), G/C(2) has order 2 and G acts on

L2 as the inversion map.
In particular G′′ = L′ and it is a product of elementary abelian p-groups for p 
= 2.
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Proof. (i) Let p be an odd prime in π (L). Let us show that if Op′ (G) = 1, then either
G is a nilpotent p-group or L = G′ = Op(G) = C(p) (for the definition of Op(G) and
Op′ (G) see [11]). Assume that G is not nilpotent. Then since G′ and C = CG(G′/G′′) are
nilpotent, they are p-groups and by [13, Section 4.1.3], G/C is a cyclic group of order
dividing pn(p − 1) for a suitable n ≥ 0. Thus G/Op(G) is a cyclic group of order dividing
p − 1. By Theorem 3.3, Op(G) is nilpotent of class at most 2. Hence by Lemma 2.1
(ii), CG(Op(G)/Op(G)′) is a nilpotent p-group, and so it is equal to Op(G). Then each
element of G \ Op(G) induces on Op(G)/Op(G)′ a power automorphism a �→ aw where
w is a p-adic integer, w 
≡ 1 mod p. It follows that if Op(G)/H is a central section of G,
then Op(G) = H. Therefore L = Op(G) = C(p) = G′.

To treat now the general case we prove first that LOp′ (G)/Op′(G) is the least
term of the lower central series of G/Op′ (G). If G/Op′ (G) is nilpotent, it is trivial.
If G/Op′ (G) is not nilpotent, then since G/Op′ (G) ∈ TB and Op′ (G/Op′(G)) = 1, the
previous discussion yields that G′Op′ (G)/Op′(G) is the least term of the lower central
series of G/Op′ (G). Moreover G′Op′ (G)/LOp′ (G) � GG′/G′ ∩ LOp′ (G) � GG′

pL/L, since
G′/L is nilpotent and (G′ ∩ LOp′ (G))/L is its p′-component. Thus G′Op′ (G)/LOp′ (G)
has a descending series which is central in G. Therefore G′Op′ (G) = LOp′ (G) and
Lp = G′

p � GLOp′ (G)/Op′(G). Now if p ∈ π (L), then G/Op′ (G) is not nilpotent and
p ∈ π (LOp′ (G)/Op′ (G)). Thus by the previous paragraph p 
∈ π (G/LOp′(G)) and hence
p 
∈ π (G/L). Note that C(p) = LOp′ (G) to conclude that G/C(p) is a cyclic group whose
order divides p − 1. Finally assume that Lp is non-abelian. Then by Lemma 3.2 Lp

′ has
exponent p and by what we have seen above there exists an element g ∈ G acting on
Lp/Lp

′ fixed-point-freely. Thus if n ≥ 1 is such that Ωn(Lp) is non-abelian, we have that
g acts on Ωn(Lp)/Ωn(Lp)′ as a power automorphism a �→ am, where m is an integer
greater than 1 and relatively prime to p. Then by Lemma 2.1 (i), g acts on Ωn(Lp)′ as a
power congruent to m2 modulo p. Since m2 is not congruent to m modulo p, it follows
that Ωn(Lp)′ = Z(Ωn(Lp)). This holds for each n ≥ 1 such that Ωn(Lp) is non-abelian
and so it implies that Z(Lp) = Lp

′. Hence Z(Lp) = Φ(Lp) and Lp has exponent at
most p2.

(ii) As a soluble periodic group, G/L is locally finite. Furthermore it is also
hypocentral and thus locally nilpotent. Therefore it is the direct product of its p-
components (G/L)p. If p is an odd prime in π (G′) \ π (L), then by Theorem 3.3, (G/L)p

is nilpotent of class at most 2, and so [G′
p, G] ≤ L ∩ G′

p = 1, that is G′
p ≤ Z(G).

(iii) By Lemma 2.3, L is a 2-divisible non-central nilpotent subgroup of G. If
2 ∈ π (L), then by [15, Theorem 9.23], L2 is a non-trivial abelian divisible group and so
it has infinite exponent. Thus by [13, Section 4.1.3], |G : C(2)| = 2 and each element of
G \ C(2) transforms every element of L2 into its inverse. Since L ≤ C(2), 2 ∈ π (G/L).

To prove the final statement note that since G′ is a periodic nilpotent group of
class at most 2, G′′ is the product of elementary abelian p-groups by Lemma 3.1. Then
(G′′)2 = 1 by Lemma 2.3. Hence from (i) it follows that G′′ = L′. �

At this point we can characterize finite soluble TB-groups as particular semidirect
products of finite nilpotent TB-groups.

Let L be a finite nilpotent TB-group of odd order whose non-abelian components
are special p-groups, and let H be a finite nilpotent TB-group whose order is relatively
prime to that of L. As in [5] denote by AutχL the group of all automorphisms of L
fixing all subgroups which lie between a characteristic subgroup of L and its derived
subgroup. Let θ : H → AutχL be a group homomorphism and denote by K the kernel
of θ and by Σ the subgroup of AutH of all automorphisms σ of H such that [H, σ ] ≤ K .
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Finally assume that whenever C and D are Σ-invariant subgroups of H such that
D � C and C/D is abelian, then each subgroup S of H such that D ≤ S ≤ C is normal
in H.

We form the semidirect product G(L, H, θ ) = L�θH.

THEOREM 3.9. The group G(L, H, θ ) defined above is a finite soluble TB-group.
Every finite soluble TB-group is isomorphic to some G(L, H, θ ).

Proof. Let G = G(L, H, θ ), L, H, θ , K and Σ be as defined above. Clearly G
is a finite soluble group. Let us show that G is a TB-group. We need to show that
for each characteristic subgroup C of G, G induces by conjugation on C/C′ power
automorphisms. To see this we may assume without loss of generality that C/C′

is a p-group. If p does not divide |L|, then C/C′ � GCL/C′L. Note that if ϕ is an
automorphism of H such that [H, ϕ] ≤ K , then ϕ extends to an automorphism ϕ

of G defined by setting (lh)ϕ = lhϕ for each l ∈ L, h ∈ H. Thus, since CL/C′L is a
characteristic section of G, it is H-isomorphic to an abelian Σ-invariant section of
H. Hence H induces by conjugation power automorphisms on this section and so on
C/C′. Assume now that p divides |L|. Then C/C′ � GC ∩ L/C′ ∩ L. By hypothesis G
induces by conjugation power automorphisms on the abelian characteristic sections of
L. Hence to conclude that G is a TB-group it is enough to prove that C ∩ L/C′ ∩ L is G-
isomorphic to a section of an abelian characteristic section of L. If C ∩ L is contained in
the centre of the p-component Lp of L there is nothing to prove. If [Lp, H] = 1, then each
automorphism α of Lp extends to an automorphism α of G by setting xα = xα for each
x ∈ Lp and yα = y for each y ∈ Lp′ ∪ H. Hence C ∩ L and C′ ∩ L are characteristic
subgroups of Lp and we are done. So let us assume that C ∩ L is not contained in
Z(Lp) and that there is an element h ∈ H acting non-trivially on Lp. Then Lp is non-
abelian and by Theorem 3.8 (i) Z(Lp) = Lp

′. By Lemma 2.1 (i) h acts as a power n
on C ∩ L/(C ∩ Lp

′)(C′ ∩ L) and as a power n2 on (C ∩ Lp
′)(C′ ∩ L)/(C′ ∩ L), where

n 
= 1 and (n, p) = 1. Hence C′ ∩ L ≥ C ∩ Lp
′ and thus C ∩ L/C′ ∩ L is G-isomorphic

to a section of Lp/Lp
′. This proves that G(L, H, θ ) is a TB-group.

Conversely let G be a finite soluble TB-group and let L be the nilpotent residual
of G. Then by [1, Lemma 4.10] (or by Theorem 3.8) (|L|, |G/L|) = 1 and thus by a
well known theorem associated with the names of Schur and Zassenhaus [14, 9.1.2],
G is a semidirect product of L with a group H � G/L. H and L are Hall subgroups
of G and so by [1, Lemma 4.10] they are TB-groups. Moreover by Theorem 3.8
non-abelian p-components of L are special p-groups. Each characteristic subgroup
of L is characteristic in G and therefore every element of H acts by conjugation on
L as an element of AutχL. It remains to show that if Σ is the subgroup of AutH
of all automorphisms ϕ of H such that [H, ϕ] ≤ CH(L), then H has the property
that whenever A and B are Σ-invariant subgroups of H such that B � A and A/B
is abelian, then each subgroup S of H such that B ≤ S ≤ A is normal in H. First of
all note that if we set C = CH(L/L′), then [G, AutG] ≤ C by [7, Lemma 4.1] and its
proof. Secondly CH(L/L′) = CH(L) by [8, Theorem 3.2] since (|H|, |L|) = 1. Thus it
follows that [H, ϕ] ≤ CH(L) for each automorphism ϕ induced on H by an automorph-
ism of G via the isomorphism H � G/L. Therefore for each Σ-invariant subgroup A
of H, AL is characteristic in G. It follows that H induces power automorphisms
on its Σ-invariant abelian sections and hence G is isomorphic to G(L, H, θ ) for
some θ . �

https://doi.org/10.1017/S001708950300137X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950300137X


452 CLARA FRANCHI

4. Non-periodic soluble TB-groups. In this section we consider non-periodic
soluble TB-groups. An important role is played by the subgroup C = CG(G′/G′′).
Note that by Lemma 2.1 (i), C centralizes the derived series of G and hence it is
nilpotent with class at most 3 and metabelian. Actually we shall see that C has class
at most 2.

We say that a soluble TB-group G is of type I if it is not nilpotent and C =
CG(G′/G′′) is non-periodic. We say that a soluble TB-group G is of type II if it is
non-nilpotent non-periodic, and C = CG(G′/G′′) is periodic.

We begin with a result about non-periodic nilpotent TB-groups.

PROPOSITION 4.1. A non-periodic nilpotent TB-group G has class at most 2. Moreover,
for each prime p, (G′)p is a p-divisible group.

Proof. Let G be a non-periodic nilpotent TB-group. To show that G has class at
most 2 there is no loss of generality in assuming γ4(G) = 1. Moreover, since nilpotent
groups of class at most 2 form a variety, we may also assume Op′ (G) = 1 for a suitable
prime p. Then Z(G) is either non-periodic or a p-group with infinite exponent. Thus
by Lemma 2.1 (iv), G acts by conjugation on Z(G)G′ as the identity, that is G′ ≤ Z(G).

To prove the second part, let G be a non-periodic nilpotent TB-group and let p be
a prime. Since G has class at most 2, (Gp)′ ≤ (G′)p2

and GpG′/(Gp)′ is an abelian non-
periodic characteristic section of G. Since GpG′/G′ is a central non-periodic section
of G, from Lemma 2.1 (iv) it follows that GpG′/(Gp)′ is a central section of G as well.
Hence for each x, y ∈ G we have [x, y]p = [xp, y] ∈ (Gp)′ ≤ (G′)p2

, and (G′)p = (G′)p2
as

claimed. �

The next result can be compared to Theorem 3.1.1 in [13].

THEOREM 4.2. Let G be a soluble TB-group of type I and let C = CG(G′/G′′). Then
G = 〈x, C〉, where x2 ∈ C and x acts on G′/G′′ as the inversion map. Moreover G′ = C2,
G′′ = (C′)2, C′ ≤ Z(G), and Z(G)/G′′ has exponent at most 2.

Proof. Let G be a soluble TB-group of type I and set D = CG(C/C′). Then by
Lemma 2.1 (ii), D is nilpotent, and since C/C′ is non-periodic, [13, Section 4.1.3]
implies that |G : D| = 2. Since G is not nilpotent and D is not periodic, there exists an
element of G acting on D/D′ as the inversion map. Thus D/G′ has exponent at most
2, G/G′ has exponent at most 4 and G′ is non-periodic. Then by [13, Section 4.1.3],
|G : C| = 2 and G = 〈x, C〉, where x2 ∈ C and x acts by conjugation on G′/G′′ as
the inversion map. Furthermore x acts as the inversion map on C/C′, since G is not
nilpotent. By Proposition 4.1, C′ ≤ Z(C) and then by Lemma 2.1 (i) x acts trivially on
C′. Thus C′ ≤ Z(G). The remaining facts follow easily. �

COROLLARY 4.3. Let G be a torsion-free soluble TB-group. Then G is nilpotent with
class at most 2, G′ is divisible and each characteristic abelian section of G is central in G.

Proof. Assume first that G is nilpotent. Then by Proposition 4.1 G′ is a central
subgroup of G and (G′)p is a p-divisible group for each prime p. Therefore, since G′

is abelian torsion-free, (G′)p = G′ for each prime p and G′ is divisible. Let H be a
characteristic subgroup of G. Then H/H ∩ G′ and H ∩ G′/H ′ are central sections of
G, and at least one of them is non-periodic. Thus, by Lemma 2.1 (iv), H/H ′ is a central
section of G.

It remains to prove that a torsion-free group cannot be a soluble TB-group of
type I. Suppose by contradiction that G is a torsion-free soluble TB-group of type I.
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Then by Theorem 4.2, G = 〈x, C〉 where C = CG(G′/G′′), C′ ≤ Z(G), x2 ∈ C and x
acts on C/C′ as the inversion map. Since C is nilpotent, by the previous part of the
proof, C′ is divisible. Moreover x4 ∈ C′. Thus the abelian group 〈x, C′〉 splits over C′,
and G contains a non-trivial element of order at most 4; a contradiction. �

Note that the group U(3, �) of all upper unitriangular matrices of degree 3 with
coefficients in � is a torsion-free soluble TB-group. A more sophisticated soluble TB-
group of type I which shows that Theorem 4.2 cannot be improved is constructed in
the next example.

EXAMPLE 3. Let V = �2 and let f : V × V → � be the bilinear form defined by
f ((x1, x2), (y1, y2)) = x2y1 − x1y2. Then V , � and f determine a nilpotent group N of
class two that consists of the set V × � with the operation

(v, a)(w, b) = (v + w, a + b + f (v,w))

v,w ∈ V , a, b ∈ � (see [2]). We have that N ′ = {(0, a) | a ∈ �} � � and N/N ′ � V .
In particular note that by [15, Theorem 9.23] N is a torsion-free divisible group. For
each automorphism π of V , we define an automorphism π of N by setting (v, a)π =
(vπ , a · detπ ), v ∈ V , a ∈ �, where detπ is the determinant of π . Then π acts as π on
N/N ′ � V and as multiplication by detπ on N ′.

Let σ ∈ AutV be multiplication by −1 in V ; then σ is an automorphism of N of
order two which acts trivially on N ′. Set H = N � 〈σ 〉 ≤ HolN. Let G = QH be the
direct product of the quaternion group Q of order 8 and H. Then G is a soluble group
with derived length 3, G′ = Q′N is non-periodic, G′′ = N ′, C := CG(G′/G′′) = QN and
C′ = Q′N ′. Moreover G′ = C2 and G′′ = (C′)2. We claim that G is a TB-group. Let
K be a characteristic subgroup of G. If K 
≤ QN, then K contains an element which
acts by conjugation on N as σ does. Hence K ≥ [K, N] ≥ N and K ′ ≥ [K, N] ≥ N.
Since G/N is a Dedekind group each subgroup lying between K and K ′ is normal in
G and we are done. On the other hand, if K ≤ Q′N ′ ≤ Z(G) we are done as well. So
let K ≤ QN but K 
≤ Q′N ′. Let qn, q ∈ Q, n ∈ N be an element of K . If q 
∈ Q′, then
there exists an automorphism ϕ ∈ AutQ such that [q, qϕ ] 
= 1. Hence, if Φ denotes
the automorphism of G which acts on Q as ϕ and on H as the identity map, we
have 1 
= [q, qϕ ] = [qn, qϕn] = [qn, (qn)Φ ] ∈ K ′, that is Q′ ≤ K ′. Similarly suppose that
n 
∈ N ′. Note that since σ commutes with π for each π ∈ AutV , we can define an
automorphism π̃ of H which extends π by setting

{
xπ̃ = xπ for each x ∈ N
σ π̃ = σ

Using this fact, it can be proved that for each element m ∈ N ′ there exists an
automorphism ψ of H depending on m, such that [n, nψ ] = m. Thus, if � denotes
the automorphism of G acting on Q as the identity map and as ψ on H, we have
m = [n, nψ ] = [qn, qnψ ] = [qn, (qn)� ] ∈ K ′, that is N ′ ≤ K ′. Therefore if K ≤ QN ′, then
it contains an element of type qn where q 
∈ Q′ and so Q′ ≤ K ′. Hence K/K ′ is a central
section of G. If K ≤ Q′N, then it contains an element of type qn where n 
∈ N ′ and so
N ′ ≤ K ′. Hence G acts on K/K ′ as the inversion map. If none of the previous occurs,
then K contains an element of type qn where q 
∈ Q′ and n 
∈ N ′ and thus Q′N ′ ≤ K ′

and G induces on K/K ′ the inversion map.
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Let us consider now soluble TB-groups of type II. A first observation is that in a
soluble TB-group G of type II the set of all elements of finite order is a subgroup. In
fact let P be the subgroup generated by the elements of finite order of G. Then C ≤ P
and P/C is periodic since G/C is abelian. Therefore P is periodic and it coincides with
the set of all elements of finite order.

We state now our main result about soluble TB-groups of type II, which can be
compared to [13, Theorem 4.3.1].

THEOREM 4.4. Let G be a soluble TB-group of type II. Then G′ is abelian. Moreover
if C = CG(G′) and P is the subgroup of all elements of finite order, then

(i) γ3(G) is the least term of the lower central series of G and it is an abelian divisible
group;

(ii) γ3(P) is the least term of the lower central series of P and it is an abelian divisible
group;

(iii) each characteristic nilpotent subgroup H ≥ γ3(G) has class at most 2;
(iv) G′ = γ3(G) × A, where A ≤ Z(G), γ3(G) = γ3(P) × D, where D ≤ Z(P) and

Z(C) = γ3(G) × B, where B ≤ Z2(G).

Proof. (i) Note that G/γ4(G) is a non-periodic nilpotent TB-group. Thus by
Proposition 4.1, γ3(G) = γ4(G) is the last term of the lower central series of G.
In order to prove that G′ is abelian and γ3(G) is an abelian divisible group, note
that since G′ is a periodic nilpotent group, it is enough to prove the result for the
p-components of G′ and of γ3(G). For p = 2 this follows from Lemma 2.3 and
Lemma 3.1. Let p 
= 2: if p 
∈ π (γ3(G)), then trivially G′

p is abelian. If p ∈ π (γ3(G)), then
1 
= γ3(G)p � γ3(G/Op′(G)) and so by Proposition 4.1, G/Op′ (G) is a non-nilpotent non-
periodic soluble TB-group with periodic derived subgroup. Thus Theorem 4.2 implies
that G/Op′ (G) is of type II. Therefore we may directly assume that Op′ (G) = 1. Then
G′ is a nilpotent p-group of the class TB and thus by Theorem 3.3, G′′ has exponent
at most p and (G′)p ≤ Z(G′). Hence applying Lemma 2.4 to the group G/(G′)p we
get that γ3(G) ≤ (G′)p. Thus γ3(G) is abelian. Then if γ3(G) = G′ we have that G′

is abelian and G′ = (G′)p. Thus G′ is divisible and we are done. So let us assume
that γ3(G) < G′. Clearly P is a characteristic subgroup of G. Hence P is a soluble
periodic TB-group and Op′ (P) = 1. Then C is a p-group and by what we have seen
in the proof of Theorem 3.8, either P is a p-group or P′ = Op(P) = CP(P′/P′′) is
the least term of the lower central series of P. Thus if P is not a p-group, then
γ3(P) ≤ γ3(G) ≤ G′ ≤ C ≤ Op(G) = P′ = γ3(P) and G′ = γ3(G). Therefore only the
case when P is a p-group remains. Since G/C is non-periodic, from [13, Section 4.1.3]
it follows that G′/G′′ has infinite exponent and P/C is a cyclic group with order
dividing p − 1. Hence P = C. Moreover since G′/G′′ is not a central section of G,
then by Lemma 2.1 (iii), G′/γ3(G), as a central section of G, has finite exponent. Thus
γ3(G) has infinite exponent and from [13, Section 4.1.3] it follows that each element
of G \ C acts by conjugation on G′/G′′ and on γ3(G) as λth powering, where λ is a
p-adic integer, λ ≡ 1 mod p. Therefore γ3(G)/(γ3(G))p is a central section of G. Hence
γ3(G) = (γ3(G))p and γ3(G) is divisible. Finally to prove that G′ is abelian, note that
since P is a p-group, Theorem 3.3 implies that P/Z(P) has exponent at most p. Thus
if S/Z(P) = Z(G/Z(P)), Lemma 2.4 implies that P ≤ S. Since G′ ≤ P, G/Z(P) is a
nilpotent group of class at most 2 and derived subgroup of exponent at most p. Thus
it follows that G/S has exponent at most p. Now since each element of G \ C acts by
conjugation on G′/G′′ as a power λ ≡ 1 mod p, by [13, Section 4.1.3] we have that G/C
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is isomorphic to a subgroup of the additive group of p-adic integers. Then G/S is cyclic
with order at most p, and thus G/Z(P) is abelian. Hence G′ ≤ Z(P) is abelian.

(iii) Let H be a characteristic nilpotent subgroup of G such that H ≥ γ3(G). If H is
non-periodic the result follows from Proposition 4.1. So let H be periodic and note that
in this case G/γ4(H) is non-periodic. If G/γ4(H) is nilpotent, then by Proposition 4.1,
we get γ3(H) ≤ γ3(G) ≤ γ4(H) and we are done. If G/γ4(H) is not nilpotent, then
Theorem 4.2 implies that it is a soluble TB-group of type II. In this case we can
therefore assume that γ4(H) = 1. Let p ∈ π (H). If p 
= 2, by Theorem 3.3, Hp has
class at most 2. If p = 2 we distinguish two cases: if 2 ∈ π (γ3(G)), then by (i) H2 has
infinite exponent and by Theorem 3.3 H2 has class at most 2. If 2 
∈ π (γ3(G)), then
H2 ∩ γ3(G) = 1 and so H2 ≤ Z2(G). Thus in any case Hp has class at most 2 and we
are done.

(ii) In order to prove that γ3(P) is the least term of the lower central series of
P consider G/γ4(P) and use Proposition 4.1 if it is nilpotent and (iii) otherwise. To
show that γ3(P) is an abelian divisible group, note that trivially γ3(P) ≤ γ3(G) and so
it is abelian by (i). Moreover P is a soluble periodic TB-group. Hence by Lemma 2.3,
(γ3(P))2 is divisible. On the other hand, by Theorem 3.8, for each odd prime p ∈
π (γ3(P)) we have p 
∈ π (P/γ3(P)). Since γ3(G) ≤ P, this yields that (γ3(P))p = (γ3(G))p

and so by (i), each p-component of γ3(P) is divisible. Hence γ3(P) is divisible.
(iv) Since G′ is abelian and γ3(G) is divisible we have that G′ = γ3(G) × A,

where [A, G] ≤ γ3(G) ∩ A = 1. Moreover G′ ≤ Z(C) and thus Z(C) = γ3(G) × B,
where trivially B ≤ Z2(G). Finally since γ3(P) is divisible, γ3(G) = γ3(P) × D, where
D ≤ Z2(P). Then each p-component Dp of D is divisible. It follows that Dp/(Dp ∩ Z(P))
is divisible. Then since Dp/(Dp ∩ Z(P)) is a central section of P, Lemma 2.1(iv) yields
that Dp ≤ Z(P). �

The next example exhibits a soluble TB-group G of type II in which γ3(G) < G′.

EXAMPLE 4. Let H = A � 〈x〉 where A is a quasicyclic p-group, p an odd prime,
and x is an element of infinite order such that ax = a1+p for each a ∈ A. Let E be
an extra-special p-group of order p3 and exponent p and let G = EH be the direct
product of E and H. Then G′ = E′A, CG(G′) = EA and γ3(G) = A is the least term of
the lower central series of G. As in the previous examples it is not hard to see that G is
a TB-group.

We conclude with a result about finitely generated soluble TB-groups. Recall
that a finitely generated soluble T-group is finite or abelian ([13, Theorem 3.3.1]). By
Corollary 4.3 a finitely generated soluble torsion-free group is a TB-group if and only
if it is abelian. In the general case we have that a finitely generated soluble TB-group
is abelian-by-finite.

THEOREM 4.5. Let G be a finitely generated soluble TB-group. Then G is supersoluble
and one of the following conditions holds.

(i) G is finite;
(ii) G is a non-periodic nilpotent group with class at most 2, G′ is finite and is the

product of elementary abelian p-groups;
(iii) G is a TB-group of type I, G′ is abelian and G/G′ is a finite group with exponent

at most 4.

Proof. Trivially, as a finitely generated locally supersoluble group G is supersoluble.
Therefore if C = CG(G′/G′′) is periodic, then it is finite and G/C is finite as well.
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Hence G is finite and (i) holds. So let C be non-periodic. If G is nilpotent, then by
Proposition 4.1 it has class at most 2 and since G is supersoluble G′ is finite and its
p-components are elementary abelian p-groups. Hence in this case, (ii) holds. If G is
not nilpotent, then it is of type I. Then by Theorem 4.2 G/G′ has exponent at most 4
and so it is finite. If T is the torsion subgroup of G′ then G′/T is a finitely generated
nilpotent torsion-free group and so Corollary 4.3 yields that it is abelian. Thus G′′ is
finite. Since C = CG(G′/G′′) is a nilpotent infinite group, Z(C) is infinite and G acts on
Z(C) as the inversion map. From G′′ ≤ Z(G) it follows that G′′ has exponent at most 2
and hence Lemma 2.3 implies G′′ = 1. �
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