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Abstract

We give the crossing number of the join product W4 + Dn, where W4 is the wheel on five vertices and
Dn consists of n isolated vertices. The proof is based on calculating the minimum number of crossings
between two different subgraphs from the set of subgraphs which do not cross the edges of the graph W4
and from the set of subgraphs which cross the edges of W4 exactly once.

2010 Mathematics subject classification: primary 05C10; secondary 05C38.

Keywords and phrases: graph, drawing, crossing number, join product, rotation.

1. Introduction

It is well known that computing the crossing number of a graph is an NP complete
problem. Nevertheless, research on the problem of reducing the number of crossings in
particular classes of graphs is of interest not only in graph theory, but also in computer
science. The exact value of the crossing number is known for only a few graphs and
families of graphs. We use the notation and definition of the crossing number cr(G) of
the graph G presented by Klešč in [10]. We also often use Kleitman’s result [9] on the
crossing numbers of the complete bipartite graphs Km,n, that is,

cr(Km,n) =

⌊m
2

⌋⌊m − 1
2

⌋⌊n
2

⌋⌊n − 1
2

⌋
for all m ≤ 6.

Using Kleitman’s result [9], the crossing numbers for the join of two paths, join of
two cycles and join of a path and a cycle were studied in [10]. The exact values of the
crossing numbers of G + Dn and G + Pn for all graphs G of order at most four are given
in [14]. Here Dn denotes the discrete graph with n vertices and Pn denotes the path on
n vertices. The crossing numbers of the graphs G + Dn are given for a few graphs G of
order five and six in [2, 3, 11–13, 15, 17–21]. In all these cases, the graph G is usually
connected and contains at least one cycle. The exact values of the crossing numbers
G + Pn and G + Cn, where Cn is the cycle with n vertices, have also been investigated
for some graphs G of order five and six in [6, 11, 12, 15, 16, 20, 22].
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The methods presented in the paper are based on combinatorial properties of cyclic
permutations. Somewhat similar ideas were used in [8, 17]. In [2, 3, 18, 19], the
properties of cyclic permutations are verified with the help of the software in [1].
In our opinion, the methods used in [11, 14, 15] do not suffice for establishing the
crossing number of the join product W4 + Dn.

2. Cyclic permutations and configurations

Let G be the connected graph of order five isomorphic with the wheel W4. We
consider the join product of G with the discrete graph Dn on n vertices. The graph
G + Dn consists of one copy of the graph G and of n vertices t1, t2, . . . , tn, where each
vertex ti, i = 1, 2, . . . , n, is adjacent to every vertex of G. Let T i, 1 ≤ i ≤ n, denote the
subgraph induced by the five edges incident with the vertex ti. This means that the
graph T 1 ∪ · · · ∪ T n is isomorphic with the complete bipartite graph K5,n and

G + Dn = G ∪ K5,n = G ∪
( n⋃

i=1

T i
)
.

We use the same notation and definitions for cyclic permutations and the
corresponding configurations for a good drawing D of the graph G + Dn as in [18].
Let D be a good drawing of the graph G + Dn. The rotation rotD(ti) of a vertex ti in the
drawing D is the cyclic permutation that records the (cyclic) counterclockwise order in
which the edges leave ti, as defined by Hernández-Vélez et al. [8]. We use the notation
(12345) if the counterclockwise order of the edges incident with the vertex ti is tiv1,
tiv2, tiv3, tiv4 and tiv5. We separate all subgraphs T i, i = 1, . . . , n, of the graph G + Dn

into three mutually disjoint subsets depending on how many times T i crosses the edges
of G in D. For i = 1, . . . ,n, let RD = {T i : crD(G,T i) = 0} and SD = {T i : crD(G,T i) = 1}.
Every other subgraph T i crosses the edges of G at least twice in D. Let F i denote the
subgraph G ∪ T i for T i ∈ RD ∪ SD, where i ∈ {1, . . . , n}. Thus, for a given subdrawing
of G in D, the subgraphs F i are exactly represented by rotD(ti).

According to the arguments in the proof of our main result, Theorem 3.2, to obtain
a drawing of G + Dn with the smallest number of crossings, the set RD ∪ SD must be
nonempty. Thus, we will only consider drawings of the graph G for which there is a
possibility of the existence of a subgraph T i ∈ RD ∪ SD. Since the graph G consists of
one dominating vertex of degree four and four vertices of degree three which form the
subgraph isomorphic with the cycle C4 (for brevity, we write C4(G)), we only need
to consider possibilities of crossings between subdrawings of C4(G) and four edges
incident with the dominating vertex. Of course, the edges of the cycle C4(G) can cross
in these subdrawings. Let us first consider a good subdrawing of G in which the edges
of C4(G) do not cross each other. In this case, we obtain three drawings of G as shown
in Figure 1(a), (b) and (c). If we consider a good subdrawing of G with one crossing
among the edges of the cycle C4(G), then the remaining edges of G do not cross the
edges of C4(G) in one case only, as shown in Figure 1(d) (and there is no possibility
of obtaining a subdrawing of G ∪ T j with T j ∈ RD ∪ SD). If the edges of C4(G) are

https://doi.org/10.1017/S0004972719001199 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972719001199


[3] Crossing number of the join of a wheel with a discrete graph 355

Figure 1. Seven possible drawings of the graph G.

crossed at least once by the remaining edges of G, then there are three possibilities, as
shown in Figure 1(e), (f) and (g). The vertex notation of the graph G will be justified
later.

First, let us assume a good drawing D of the graph G + Dn in which the edges of
G do not cross each other. In this case, without loss of generality, from the drawings
in Figure 1 we can choose the vertex notation of the graph G as shown in Figure 1(a).
Our aim is to list all possible rotations rotD(t j) which can appear in D if the edges of
T j cross the edges of G exactly once. Since there is only one subdrawing of F j \ {v5}

represented by the rotation (1234), there are four ways to obtain the subdrawing of
F j depending on which edge of G is crossed by the edge t jv5. We denote these four
possibilities by Ak, k = 1, . . . , 4. For our purposes, it does not matter which of the
regions is unbounded, so we can assume that the drawings are as shown in Figure 2.
In the rest of the paper, we represent a cyclic permutation by the permutation with
1 in the first position. Thus the configurations A1, A2, A3 and A4 are represented
by the cyclic permutations (12345), (12534), (15234) and (12354), respectively. In a
fixed drawing of the graph G + Dn, some configurations fromM = {A1,A2,A3,A4}

need not appear. So we denote byMD the set of all configurations for the drawing D
belonging toM.

We can extend the idea of the minimum number of crossings between two different
subgraphs T i and T j from the set RD onto the set SD. Let X, Y be configurations
from MD. We denote by crD(X,Y) the number of crossings in D between T i and
T j for different T i, T j ∈ SD such that F i, F j have configurations X, Y, respectively.
Let cr(X,Y) = min{crD(X,Y)} over all good drawings of the graph G + Dn with
X,Y ∈ MD. Our aim is to calculate cr(X,Y) for all pairs X,Y ∈ M. In particular,
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Figure 2. Drawings of four possible configurations fromM of the subgraph F j.

Table 1. The necessary number of crossings between T i and T j for the configurationsAk,Al.

— A1 A2 A3 A4

A1 4 2 3 3
A2 2 4 3 3
A3 3 3 4 2
A4 3 3 2 4

the configurations A1 and A2 are represented by the cyclic permutations (12345)
and (12534), respectively. Since the minimum number of interchanges of adjacent
elements of (12345) required to produce the cyclic permutation (12534) = (14352)
is two, any subgraph T j with the configuration A2 of F j crosses the edges of
T i with the configuration A1 of F i at least twice, that is, cr(A1,A2) ≥ 2. Details
have been worked out by Woodall [23]. The same reasoning gives cr(A1,A3) ≥ 3,
cr(A1,A4) ≥ 3, cr(A2,A3) ≥ 3, cr(A2,A4) ≥ 3 and cr(A3,A4) ≥ 2, Clearly, also
cr(Ai,Ai) ≥ 4 for any i = 1, 2, 3, 4. The resulting lower bounds for the number of
crossings of configurations fromM are summarised in the symmetric Table 1. (Here,
Ak andAl are configurations of the subgraphs F i and F j, where k, l ∈ {1, 2, 3, 4}.)

3. The crossing number of G + Dn

Recall that two vertices ti and t j of G + Dn are antipodal in a drawing of G + Dn if
the subgraphs T i and T j do not cross. A drawing is antipodal-free if it has no antipodal
vertices. Now we are able to prove the main result of the paper. We compute the
exact values of crossing numbers of the small graphs in this paper using the algorithm
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Figure 3. The good drawing of G + Dn with 4bn/2cb(n − 1)/2c + n + bn/2c crossings.

located on the website http://crossings.uos.de/. This algorithm can find the crossing
numbers of small undirected graphs. It uses integer linear programming, based on
Kuratowski subgraphs and solves it via branch-and-cut-and-price. The system also
generates verifiable formal proofs, as described in [4]. Unfortunately, the capacity of
this system is restricted.

Lemma 3.1. cr(G + D1) = 1 and cr(G + D2) = 3.

Theorem 3.2. If n ≥ 1, then cr(G + Dn) = 4bn/2cb(n − 1)/2c + n + bn/2c.

Proof. Figure 3 exhibits a drawing of G + Dn with 4bn/2cb(n − 1)/2c + n + bn/2c
crossings. Thus, cr(G + Dn) ≤ 4bn/2cb(n − 1)/2c + n + bn/2c. We prove the reverse
inequality by induction on n. By Lemma 3.1, the result is true for n = 1 and n = 2.
Now suppose that, for some n ≥ 3, there is a drawing D with

crD(G + Dn) < 4
⌊n
2

⌋⌊n − 1
2

⌋
+ n +

⌊n
2

⌋
(3.1)

and that
cr(G + Dm) ≥ 4

⌊m
2

⌋⌊m − 1
2

⌋
+ m +

⌊m
2

⌋
for any m < n. (3.2)

We claim that the drawing D must be antipodal-free. For a contradiction, suppose,
without loss of generality, that crD(T n−1,T n) = 0. Using the positive values in Table 1,
it is easy to verify that the subgraphs T n and T n−1 are not both from the set SD, and
if T n ∈ RD, then crD(G, T n−1) ≥ 3 from the possible subdrawings in Figure 1, that
is, crD(G, T n−1 ∪ T n) ≥ 3. Since cr(K5,3) = 4, any T k, for k = 1, 2, . . . , n − 2, crosses
the edges of the subgraph T n−1 ∪ T n at least four times. So the number of crossings
crD(G + Dn) of G + Dn in D is given by

crD(G + Dn−2) + crD(T n−1 ∪ T n) + crD(K5,n−2,T n−1 ∪ T n) + crD(G,T n−1 ∪ T n)

≥ 4
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ n − 2 +

⌊n − 2
2

⌋
+ 4(n − 2) + 3

= 4
⌊n
2

⌋⌊n − 1
2

⌋
+ n +

⌊n
2

⌋
.

This contradicts the assumption (3.1) and confirms that D is antipodal-free.
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If r = |RD| and s = |SD|, the assumption (3.2) together with the well-known fact
cr(K5,n) = 4bn/2cb(n − 1)/2c imply that, in D, if r = 0, then there are at least dn/2e + 1
subgraphs T i which cross the edges of G exactly once. More precisely,

crD(G) + crD(G,K5,n) ≤ crD(G) + 0r + 1s + 2(n − r − s) < n +

⌊n
2

⌋
,

that is,

s + 2(n − r − s) < n +

⌊n
2

⌋
. (3.3)

This readily forces 2r + s ≥ n − bn/2c + 1, and if r = 0, then s ≥ n − bn/2c + 1 =

dn/2e + 1.
Now, for T i ∈ RD ∪ SD, we consider the possible configurations of F i = G ∪ T i in

the drawing D in four cases.

Case 1. crD(G) = 0. We can choose the drawing with the vertex notation of G as
shown in Figure 1(a). Clearly the set RD is empty, that is, r = 0. Thus, we now have
two possibilities for the nonempty set of configurationsMD.

(a) {Ai,Ai+1} ⊆ MD for some i ∈ {1, 3}. Without loss of generality, fix T n−1, T n ∈ SD

such that Fn−1 and Fn have different configurations from {A1,A2}. Then we have
crD(T n−1 ∪ T n, T j) ≥ 6 for any T j ∈ SD with j , n − 1, n by summing the values in all
columns in the first two rows of Table 1. Moreover, crD(G ∪ T n−1 ∪ T n,T j) ≥ 2 + 2 = 4
trivially for any subgraph T j < SD. As crD(G ∪ T n−1 ∪ T n) ≥ 2 + 2, by fixing the graph
G ∪ T n−1 ∪ T n,

crD(G + Dn) = crD(K5,n−2) + crD(K5,n−2,G ∪ T n−1 ∪ T n) + crD(G ∪ T n−1 ∪ T n)

≥ 4
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 7(s − 2) + 4(n − s) + 2 + 2 = 4

⌊n − 2
2

⌋⌊n − 3
2

⌋
+ 4n + 3s − 10

≥ 4
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 4n + 3

(⌈n
2

⌉
+ 1

)
− 10 > 4

⌊n
2

⌋⌊n − 1
2

⌋
+ n +

⌊n
2

⌋
.

(b) {Ai,Ai+1} *MD for any i = 1, 3. Without loss of generality, we can assume that
T n ∈ SD with the configuration A j ∈ MD of the subgraph Fn for some j ∈ {1, . . . , 4}.
Then crD(T n, T k) ≥ 3 for any T k ∈ SD with k , n, by the remaining values in Table 1.
Hence, by fixing the subgraph G ∪ T n,

crD(G + Dn) = crD(K5,n−1) + crD(K5,n−1,G ∪ T n) + crD(G ∪ T n)

≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4(s − 1) + 3(n − s) + 1 = 4

⌊n − 1
2

⌋⌊n − 2
2

⌋
+ 3n + s − 3

≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 3n +

⌈n
2

⌉
+ 1 − 3 > 4

⌊n
2

⌋⌊n − 1
2

⌋
+ n +

⌊n
2

⌋
.

Case 2. crD(G) = 1. Without loss of generality, we can choose the vertex notation of
G as shown in Figure 1(b). In this case, the set RD is also empty. So we will consider
only the subgraphs T j whose edges cross the edges of G exactly once. Since the edge
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Figure 4. Drawings of two possible configurations from N of the subgraph F i.

t jv5 crosses either v3v4 or v1v4 in G, there are two possibilities, which we denote by B1
and B2. It does not matter which of the regions is unbounded, so we can assume that
the drawings are as shown in Figure 4.

Consequently, the configurations B1 and B2 are represented by the cyclic
permutations (14532) and (15432), respectively. In a fixed drawing of the graph
G + Dn, some configurations from N = {B1,B2} need not appear. Thus we denote by
ND the subset of N consisting of all configurations that exist in the drawing D. From
the properties of cyclic rotations, we can easily verify that cr(B1,B2) ≥ 3. (This idea
was also used to establish the values in Table 1.) Choosing T j ∈ SD to fix the graph
G ∪ T j, we find that

crD(G + Dn) ≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4(s − 1) + 3(n − s) + 1 + 1

= 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 3n + s − 2

≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 3n +

⌈n
2

⌉
+ 1 − 2 > 4

⌊n
2

⌋⌊n − 1
2

⌋
+ n +

⌊n
2

⌋
.

Case 3. crD(G) = 2. Without loss of generality, we can consider the drawing with
the vertex notation of the graph G as shown in Figure 1(c). In this case, there is no
possibility of obtaining a subdrawing of G ∪ T j for a T j ∈ SD, that is, the set SD must be
empty. This fact, with property (3.3), confirms that r ≥ 2. So we only need to consider
the subgraphs T j whose edges do not cross the edges of G. For a T j ∈ RD, it is easy
to verify that the subgraph F j = G ∪ T j is uniquely represented by rotD(t j) = (15432),
and crD(T j, T i) ≥ 4 for any T i ∈ RD with i , j provided that rotD(ti) = rotD(t j) (for
more details, see [23]). Moreover, it is not difficult to show over all possible drawings
that crD(G ∪ T j,T k) ≥ 4 for any subgraph T k < RD. By fixing the subgraph G ∪ T j,

crD(G + Dn) ≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4(r − 1) + 4(n − r) + 2

= 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4n − 2 > 4

⌊n
2

⌋⌊n − 1
2

⌋
+ n +

⌊n
2

⌋
.
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If we choose the vertex notation of the graph G as shown in Figure 1(e), then we
can apply the same process as for the drawing of G in Figure 1(b).

Case 4. crD(G) = 3. If we assume the vertex notation of the graph as shown in
Figure 1(f), then we can apply the same process as for the drawing of G in Figure 1(c).
Finally, without loss of generality, we can consider the vertex notation of the graph
G as shown in Figure 1(g). In this case, the set RD is again empty. Further, any
subgraph F j = G ∪ T j, for T j ∈ SD, is uniquely represented by rotD(t j) = (12543).
Since crD(T j, T i) ≥ 4 trivially for any T i ∈ SD with i , j provided that rotD(ti) =

rotD(t j), we can repeat the same idea as for the drawing of G in Figure 1(b).
We have shown, in all cases, that there is no good drawing D of the graph G + Dn

with fewer than 4bn/2cb(n − 1)/2c + n + bn/2c crossings. This completes the proof of
the theorem. �

Let Wn and Sn denote the wheel and the star on n + 1 vertices, respectively. In
general, the graph Sn + Cm is isomorphic with the graph Wm + Dn for all integers n ≥ 1
and m ≥ 3. In [13], the crossing numbers of the graphs Wm + Dn for n ≤ 5 and m ≥ 3
were established. Theorem 3.2 extends this result for the graphs W4 + Dn for any n ≥ 1.
The result in Theorem 3.2 has already been claimed in [7] (see [5]). The paper [7] does
not seem to be available in English and we have not been able to verify the results.
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[2] Š. Berežný and M. Staš, ‘On the crossing number of the join of five vertex graph G with the
discrete graph Dn’, Acta Electrotechnica Inform. 17(3) (2017), 27–32.
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