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Effects of wall vibrations on channel flows
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The effect of surface vibrations on the pressure-gradient-driven flows in channels has
been studied. The analysis considered monochromatic waves and laminar flows. The
effectiveness of the vibrations was gauged by determining the pressure gradient correction
required to maintain the same flow rate as without vibrations. Waves propagating upstream
always increase pressure losses. Flow response to waves propagating downstream is more
complex and changes as a function of the flow Reynolds number. Such waves reduce losses
if the Reynolds number Re < ∼100, but these waves must be sufficiently fast to reduce
pressure losses for larger Re values. In general, the supercritical waves, i.e. waves faster
than the reference flow, reduce pressure losses with the magnitude of reduction increasing
monotonically with the wave phase speed and wavenumber. The need for an external
pressure gradient is eliminated if sufficiently short and fast waves are used. Generally, the
subcritical waves, i.e. waves with velocities similar to the reference flow, increase pressure
losses. This increase changes somewhat irregularly as a function of the wave phase speed
and wavenumber forming local maxima and minima. These waves can reduce pressure
losses only if the Reynolds number becomes large enough. It is shown that subcritical
waves with very small amplitudes but matching the natural flow frequencies produce
significant pressure losses.

Key words: control theory, drag reduction

1. Introduction

Fluid transportation through conduits relies on a pressure gradient to overcome frictional
resistance. Finding means for its reduction is economically significant as it translates
into considerable energy savings (Beiler et al. 2006; Spalart & McLean 2011). Classical
methods rely on creating a pressure difference between the inlet and outlet, but the
magnitude of this difference is limited by the available technology, which places an upper
limit on the system’s performance. This limitation led to a search for techniques that either
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reduce frictional resistance or provide a method to augment propulsion (Hoepffner &
Fukagata 2009). Surface vibrations offer potential which could be used to achieve either
of these goals.

Spatial flow modifications have been extensively explored in the search for the reduction
of frictional resistance. The existing strategies can be divided into three groups. Prevention
of the onset of the laminar–turbulent transition represents the first group, with the leading
question being if a modulated laminar flow is more stable than an unmodulated flow.
The second group involves flow relaminarization. Search for spatial modulations that can
directly reduce frictional drag represents the third group. Work in this area resulted in a
large body of literature devoted to modulating turbulent flows. Literature on modulations
of laminar flows, which are of interest here, is not well developed.

Several studies have demonstrated the ability to achieve drag reduction in smooth
channels when using modulations created by wall transpiration (Min et al. 2006; Mamori,
Iwamoto & Murata 2014; Gómez et al. 2016; Han & Huang 2020; Jiao & Floryan 2021a,b)
even attaining sustained sub-laminar levels of drag (Min et al. 2006; Jiao & Floryan
2021a,b). Bewley (2009) and Fukagata, Sugiyama & Kasagi (2009) provided a partial
answer regarding the net energetic benefit of transpiration applied to smooth surfaces, i.e.
they demonstrated that the net energy reduction could not be achieved as the energy cost
of transpiration consistently exceeds the energy gain due to drag reduction. Recent results
show that combining different forms of modulation, e.g. adding in-plane wall oscillations,
can save net energy (Floryan 2023). It is known that transpiration activates nonlinear drift,
which can be used for propulsion augmentation (Jiao & Floryan 2021a,b). Analysis of
flows bounded by non-smooth surfaces shows a reduction of frictional drag in laminar
(Mohammadi & Floryan 2013a,b; Yadav, Gepner & Szumbarski 2021; Moradi & Floryan
2013) and turbulent (Walsh 1983; Chen et al. 2016) flows if a proper surface topography is
used. Fukagata et al. (2009) raised the possibility that transpiration in a duct with varying
cross-sectional shapes may reduce net energy requirements, although this has yet to be
demonstrated.

A large volume of numerical and experimental works aiming at friction reduction in
turbulent flows involved modulations created by spanwise wall oscillations – see recent
reviews by Leschziner (2020) and Ricco, Skote & Leschziner (2021). Direct numerical
simulations showed that gross drag for various geometries and combinations of flow
parameters could be reduced by 30–40%, with up to 50% of this reduction driven by the
‘pumping’ action of travelling waves of the wall spanwise velocity (Quadrio & Ricco 2004;
Hurst, Yang & Chung 2014). The mechanisms responsible for drag reduction are based on
interference with near-wall turbulence, with different authors stressing different elements
of this interference (Gatti & Quadrio 2016). Subtraction of actuation power resulted in
net power savings of no more than 10% (Quadrio, Ricco & Viotti 2009; Gatti & Quadrio
2016). Obviously, the near-wall turbulence needs to be re-arranged by active or passive
action to reduce shear, but it remains to be determined how to achieve that practically and
efficiently.

Recent analyses of structured convection demonstrated its ability to reduce pressure
losses significantly in low-Reynolds-number flows. Heating modulations create separation
bubbles that limit the direct contact between the stream and the bounding wall, thereby
reducing wall shear. The variable-density-driven motion within the bubbles provides
additional propulsion (Hossain, Floryan & Floryan 2012; Floryan & Floryan 2015; Hossain
& Floryan 2016; Inasawa, Taneda & Floryan 2019). The modified temperature field may
induce a net buoyancy force which may either assist or oppose the pressure gradient
(Floryan, Wang & Bassom 2023a). Using heated grooves may amplify this effect if heating
and grooves patterns are placed correctly (Hossain & Floryan 2020). New effects which
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can be used to provide propulsion assistance include thermal drift (Abtahi & Floryan 2017;
Inasawa, Hara & Floryan 2021) and pattern interaction (Floryan & Inasawa 2021).

The literature on the effect of transverse wall motions is mainly focused on travelling
waves as they activate the peristaltic effect, whose essential features are well known
(Jaffrin & Shapiro 1971). The available literature deals mainly with biological systems
where analysis of the Stokes approximation for long and slow waves is relevant (Lauga
2016); see a recent review by Ali, Ullah & Rasool (2020). The first complete analysis
of fast waves was given very recently (Floryan, Faisal & Panday 2021) and extended
to propulsion augmentation (Haq & Floryan 2022) and resistance reduction (Floryan &
Zandi 2019; Floryan & Haq 2022). There is a lack of a systematic analysis of flows in a
channel with vibrating walls and identification of different flow regimes, especially from
the resistance reduction point of view.

Analysis of vibrations requires repeated solutions of an unsteady moving boundary
problem to assess the effects of different types of waves. This analysis concerns
sustained vibrations, which make Eulerian algorithms preferable (Floryan & Rasmussen
1989). Typical Eulerian methods use low-order spatial discretization schemes combined
with various boundary-tracking procedures. One group of these procedures requires
boundary reconstruction at each time step resulting in the smearing of its location and
thus is not suitable for this analysis. Another group requires numerical construction
of boundary-conforming grids, which is time-consuming and suffers from accuracy
problems. There are unique, high-accuracy grid generation methods (Floryan 1985, 1986;
Floryan & Zemach 1987, 1993), but their implementation is cumbersome. There are also
domain transformation methods that bypass grid generation but result in very complex
forms of equations (Cabal, Szumbarski & Floryan 2001, 2002). This analysis requires an
accurate algorithm that handles multiple geometries with little labour overhead. This led
to the selection of the spectrally accurate immersed boundary conditions (IBC) method,
whose details can be found in Szumbarski & Floryan (1999), Husain & Floryan (2008a,b,
2010) and Husain, Szumbarski & Floryan (2009).

This analysis concerns laminar pressure gradient-driven flows with Poiseuille flow
representing the reference configuration. The characteristic properties of this flow are the
parabolic velocity distribution and a linear stability limit at Re = 5772.22 (Orszag 1971).
Various routes to secondary states, as well as to turbulence, are summarized by Schmid
& Henningson (2001). Bypass routes to transition can be initiated by introducing spatial
flow modulations using wall transpiration (Floryan 1997), adding transverse ribs (Floryan
2005, 2007) and adding longitudinal grooves (Mohammadi & Floryan 2013a,b), among
others.

This study’s main objective is to characterize flow modifications induced by vibrations
in the pressure-gradient-driven laminar channel flow and assess their ability to affect
pressure losses. The secondary objective is to identify conditions which may lead to
a more intense mixing; this is manifested by increase of pressure losses. Section 2
describes the model problem used in the analysis. Section 3 explains the solution method.
Section 4 briefly summarizes the properties of the peristaltic effect. Vibration-induced
modifications of the velocity field are presented in § 5. Section 6 is devoted to a
discussion of pressure losses. In particular, §§ 6.1, 6.2 and 6.3 deal with small-, medium-
and large-Reynolds-number flow, respectively. Presentation in § 6.3 is divided into
a discussion of supercritical waves (§ 6.3.1), subcritical waves away from resonance
(§ 6.3.2), subcritical waves near resonance (§ 6.3.3) and the effect of critical layers
(§ 6.3.4). Section 7 provides a summary of the main results. Additional information is
provided in the appendices – Appendix A offers an analytic solution for long-wavelength
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Figure 1. Sketch of the flow configuration.

vibrations, Appendix B presents an analytic solution for small amplitude waves and
Appendix C explains the method of determining the natural flow frequencies.

2. Problem formulation

Consider the steady, two-dimensional flow of a fluid confined in a channel bounded by two
parallel walls extending to ±∞ in the X-direction. The plates are placed at a distance 2h
apart (see figure 1), the flow is driven in the positive X-direction by a pressure gradient
resulting in the velocity and pressure fields, and the flow rate of the form

v0(X, Y) = (1 − Y2, 0), p0(X, Y) = −2X/Re, Ψ0 = Y − Y3

3
+ 2

3
, Q0 = 4

3
,

(2.1a–d)

where v0 = (u0, v0) denotes the velocity vector scaled with the maximum of the
X-velocity umax; p0 stands for the pressure scaled with ρu2

max, where ρ stands for the
density; Ψ0 stands for the stream function; Q0 denotes the flow rate; the Reynolds number
is defined as Re = umaxh/ν, where ν stands for the kinematic viscosity; and h has been
used as the length scale. The flow is modified by imposing wall vibrations as travelling
waves with known amplitudes. The waves propagate along the channel axis while material
points at the wall move only in the transverse direction (they do not move along the channel
axis). The resulting time-dependent channel geometry is described as

YU(t,X) = 1, YL(t,X) = −1 + 1
2 A cos[α(X − ct)], (2.2a,b)

where subscripts U and L refer to the upper and lower walls.
Surface vibrations affect the flow field, which we shall represent as a sum of the

reference flow and the vibration-induced modifications, i.e.

u(t,X, Y) = Re u0(Y)+ u1(t,X, Y), v(t,X, Y) = v1(t,X, Y), (2.3a,b)

p(t,X, Y) = Re2p0(X)− BmodX + p1(t,X, Y), ψ(t,X, Y) = Reψ0(Y)+ ψ1(t,X, Y).
(2.3c,d)

In the above, (u, v), p, ψ denote the complete velocity, pressure and stream function,
respectively, and (u1, v1) and ψ1 denote the velocity and stream function modifications,
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respectively, Bmod stands for the pressure gradient correction associated with modifications
with negative Bmod signalling reduction of pressure losses, and p1 denotes the periodic part
of pressure field modifications. Substitution of (2.3) into the Navier–Stokes and continuity
equations leads to the field equations for the flow modifications of the form

∂u1

∂t
+ (Re u0 + u1)

∂u1

∂X
+ Re v1

du0

dY
+ v1

∂u1

∂Y
= Bmod − ∂p1

∂X
+ ∂2u1

∂X2 + ∂2u1

∂Y2 , (2.4a)

∂v1

∂t
+ (Re u0 + u1)

∂v1

∂X
+ v1

∂v1

∂Y
= −∂p1

∂Y
+ ∂2v1

∂X2 + ∂2v1

∂Y2 , (2.4b)

∂u1

∂X
+ ∂v1

∂Y
= 0, (2.4c)

subject to boundary conditions of the form

u1(t,X, 1) = 0, v1(t,X, 1) = 0, (2.4d)

u1(t,X, YL(t,X)) = −Re u0(YL(t,X)), v1(t,X, YL(t,X)) = 1
2 c αA sin[α(X − ct)],

(2.4e)

where (u1, v1) denote the components of the modification velocity vector in the
(X, Y)-directions scaled with Uv = ν/h as the velocity scale, p1 denotes pressure scaled
with ρU2

v as the pressure scale and t stands for time scaled with h/Uv as the time scale.
We are interested in determining if surface vibrations can reduce the pressure gradient
required to maintain the specified flow rate. Accordingly, we impose the mass flow rate
constraint of the form

Q = Q(t,X)|mean =
(∫ 1

YL(t,X)
u(t,X, Y) dY

)∣∣∣∣∣
mean

= 4
3

Re. (2.4f )

The subscript ‘mean’ refers to the average over one time period. Description of the flow
mechanics requires knowledge of surface forces acting on the fluid at the walls. We begin
with the lower wall and start with the determination of the stress vector σ L,

σ L = [σX,L σY,L] = [nX,L nY,L]

⎡⎢⎣ 2
∂u1

∂X
− p Re

du0

dY
+ ∂u1

∂Y
+ ∂v1

∂X

Re
du0

dY
+ ∂u1

∂Y
+ ∂v1

∂X
2
∂v1

∂Y
− p

⎤⎥⎦
Y=YL

,

(2.5)

where the normal unit vector nL pointing outwards is expressed as

nL = [ nX,L nY,L ] = NL

(
∂YL

∂X
, −1

)
, NL =

[
1 +

(
∂YL

∂X

)2
]−1/2

. (2.6)

The components of the stress vector are written as

σX,L = σXv,L + σXp,L = NL

[
2
∂YL

∂X
∂u1

∂X

∣∣∣∣
YL

−
(

Re
du0

dY
+ ∂u1

∂Y
+ ∂v1

∂X

)∣∣∣∣
YL

]
− NL

∂YL

∂X
p
∣∣∣∣
YL

,

(2.7a)

σY,L = σYv,L + σYp,L = NL

[
∂YL

∂X

(
Re

du0

dY
+ ∂u1

∂Y
+ ∂v1

∂X

)∣∣∣∣
YL

− 2
∂v1

∂Y

∣∣∣∣
YL

]
+ NL p|YL,

(2.7b)
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where (σXv,L, σYv,L) and (σXp,L, σYp,L) denote the viscous and pressure contributions,
respectively. The X- and Y-components of the total force (FX,L,FY,L) (per unit length
along the channel and unit width of the channel) are expressed as

FX,L = FXv,L + FXp,L = λ−1
∫ X0+λ

X0

[
2
∂YL

∂X
∂u1

∂X

∣∣∣∣
yL

−
(

Re
du0

dY
+ ∂u1

∂Y
+ ∂v1

∂X

)∣∣∣∣
YL

]
dX

− λ−1
∫ X0+λ

X0

∂YL

∂X
p|YL

dX, (2.8a)

FY,L = FYv,L + FYp,L = λ−1
∫ X0+λ

X0

[
∂YL

∂X

(
Re

du0

dY
+ ∂u1

∂Y
+ ∂v1

∂X

)∣∣∣∣
yL

− 2
∂v1

∂Y

∣∣∣∣
YL

]
dX

+ λ−1
∫ X0+λ

X0

p|YL
dX, (2.8b)

where X0 is a convenient reference point, FXp,L and FYp,L denote the pressure
contributions, while FXv,L and FYv,L stand for the viscous contributions. The X-pressure
force FXp,L1 created by the periodic pressure component is defined separately, i.e.

FXp,L1 = −λ−1
∫ X0+λ

X0

∂YL

∂X
p1|YL

dX, (2.8c)

as it is of interest in the discussion of flow mechanics. A similar process applied to the
upper wall yields

σX,U = σXv,U =
(

Re
du0

dY
+ ∂u1

∂Y

)∣∣∣∣
Y=1

, (2.9a)

σY,U = σYv,U + σYp,U = 2
∂v1

∂Y

∣∣∣∣
Y=1

− p|Y=1, (2.9b)

where (σXv,U, σYv,U) and σYp,U denote the viscous and pressure contributions,
respectively. The X- and Y-components of the total force (FX,U, FY,U) can be determined
as

FX,U = FXv,U = λ−1
∫ X0+λ

X0

[(
Re

du0

dY
+ ∂u1

∂Y

)∣∣∣∣
Y=1

]
dX, (2.10a)

FY,U = FYv,U + FYp,U = 2λ−1
∫ X0+λ

X0

∂v1

∂Y

∣∣∣∣
Y=1

dX − λ−1
∫ X0+λ

X0

p|Y=1 dX, (2.10b)

where FYp,U denotes the pressure contributions, while FXv,U and FYv,U stand for the
viscous contributions.

The vibration-induced change of surface forces is of primary interest. They are
expressed as

	FXv,U = FXv,U + 2Re, 	FXv,L = FXv,L + 2Re, 	FXp,L1 = FXp,L1. (2.11a)

The final force of interest is the force created by the mean pressure gradient FXp,m =
∂p/∂X|mean per unit length and unit width of the channel. Its change due to vibrations is
defined as

	FXpm = 2
(
∂p
∂X

∣∣∣∣
mean

− Re2 dp0

dX

)
= −2Bmod. (2.11b)

968 A8-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

50
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.506


Effects of wall vibrations on channel flows

3. Solution method

The analysis is simplified by introducing a frame of reference moving with the wave phase
speed using Galileo’s transformation of the form

y = Y, x = X − ct. (3.1)

Its use leads to a steady problem with the form

(Re u0 + u1 − c)
∂u1

∂x
+ Re v1

∂u0

∂y
+ v1

∂u1

∂y
= Bmod − ∂p1

∂x
+ ∂2u1

∂x2 + ∂2u1

∂y2 , (3.2a)

(Re u0 + u1 − c)
∂v1

∂x
+ v1

∂v1

∂y
= −∂p1

∂y
+ ∂2v1

∂x2 + ∂2v1

∂y2 , (3.2b)

∂u1

∂x
+ ∂v1

∂y
= 0, (3.2c)

y = 1 : u1 = 0, v1 = 0, (3.2d)

y = yL(x) : u1 = −Re u0, v1 = 1
2 cαA sin(αx), (3.2e)

Q =
{∫ 1

yL(x)
[Re u0( y)+ u1(x, y)] dy

}∣∣∣∣∣
mean

= 4
3

Re, (3.2f )

where locations of the boundaries are given as

yU(x) = 1, yL(x) = − 1 + 1
2 A cos(αx). (3.2g,h)

In the above, subscript ‘mean’ refers to averaging over one wavelength.
We shall now look at waves with arbitrary wavelengths, and their analysis requires

numerical methods. As the first step, we eliminate pressure using stream function
modifications ψ1, i.e. u1 = ∂ψ1/∂y, v1 = −∂ψ1/∂x, arriving at the flow problem of the
form

−∇2(∇2ψ1)+ (Re u0 − c)
∂

∂x
∇2ψ1 − Re

d2u0

dy2
∂ψ1

∂x
= −

(
∂ψ1

∂y
∂

∂x
− ∂ψ1

∂x
∂

∂y

)
∇2ψ1,

(3.3a)

y = 1 :
∂ψ1

∂y
= 0,

∂ψ1

∂x
= 0, (3.3b,c)

y = yL(x) :
∂ψ1

∂y
= −Re u0,

∂ψ1

∂x
= − 1

2
cαA sin(αx), (3.3d,e)

Q = [(Reψ0 + ψ1)|y=1 − (Reψ0 + ψ1)|y=yL(x)]|mean = 4
3

Re. (3.3f )

Condition (3.3e) can be written in a different form by noting that variations of the stream
function of the complete flow ψT = Reψ0 + ψ1 along the lower wall can be written as

dψT,L =
(
∂ψT

∂x
d x + ∂ψT

∂y
dy
)∣∣∣∣

yL(x)
= − 1

2
cαA sin(αx). (3.4)

Integration along this wall results in

ψT,L(x) = c[yL(x)− yL(x0)], (3.5)
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where the constant of integration was set by assuming that ψT,L(x0) = 0 with x0
representing an arbitrary point at this wall. At the upper wall,

ψT,U(x) = g, (3.6)

where g denotes a constant that needs to be determined from the flow rate constraint. Since
Q = ψT,U − ψT,L and its mean value is determined by (3.3f ), the final form of (3.6) can
be expressed as

g = −c yL(x0)− c + 4
3

Re. (3.7)

Boundary conditions (3.3c) and (3.3e) combined with the flow rate constraint (2.4f ) can
now be written as

y = 1 : ψ1 = −c[1 + yL(x0)], (3.8a)

y = yL(x) : ψ1 = c[1 − yL(x0)] − Reψ0. (3.8b)

The Chebyshev and Fourier expansions are used to provide a spectrally accurate
discretization of the field equations. Since waves are periodic, all unknowns can be
expressed as Fourier expansions of the form

q1(x, ŷ) =
m=+NM∑
m=−NM

q(m)1 (ŷ) eimαx, (3.9)

where q1 stands for any of the following quantities: ψ1, v1, u1, p1, v̂1v1, û1u1, û1v1, the
modal functions q(m)1 satisfy the reality conditions, i.e. q(m)1 are the complex conjugates
of q(−m)

1 , respectively. The modal functions q(m)1 (ŷ) were expressed as Chebyshev
expansions. The linear algebraic equations for the Chebyshev expansion coefficients were
constructed using the Galerkin projection method. Spectral methods are not suitable for
handling irregular geometries; this difficulty was overcome by implementing the immersed
boundaries concept (IBC). Here we follow the process described by Szumbarski & Floryan
(1999), Husain & Floryan (2008a,b, 2010) and Husain, Szumbarski & Floryan (2009). The
boundary conditions were replaced by constraints imposed using the tau concept (Canuto
et al. 1992). The condition for determination of the unknown pressure gradient correction
Bmod is formed by substituting Fourier expansions for all unknowns into the x-momentum
equation and extracting mode zero.

The overall algorithm is gridless and very flexible when a change of wave shape is of
interest – the algorithm can be adapted to analyses of multiple geometries with minimal
user involvement. Computations were carried out with a minimum of five digits accuracy
– this dictated selection of the number of Fourier modes and the number of Chebyshev
polynomials. The algorithm provides access to machine accuracy if required.

We have limited the following discussion to waves with amplitudes A < 0.05 – although
subjective, this limit is dictated by our interests in the potential use of piezoelectric
actuators for creating such waves. In the next section, we begin a discussion with a
summary of the peristaltic effect and focus on vibration acting along one wall only.

4. Peristaltic pumping

We eliminate flow (Re = 0). Vibrations produce a distributed propulsive force which
pumps fluid in the wave direction with the flow rate Q dependence on the wavenumber and
phase speed illustrated in figure 2(a). Flow rate remains nearly independent of α for long
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Figure 2. Variations of the flow rate Q/A2 as a function of α and c. In panel (a), solid and dashed lines
represent the positive and negative Q, the red line represents conditions resulting in Q = 0 and the grey colour
identifies the state when Q is positive. Horizontal cuts through the plot displayed in panel (a) for c = 500, 1000
are shown in panel (b), and vertical cuts for α = 0.5, 2, 5, 10 are shown in panel (c).

waves and increases proportionally to α2 for short waves (figure 2b). It increases nearly
proportionally to c in the range of c considered in this analysis (figure 2c). The structure
of solution for fast waves is given analytically by Floryan, Haq & Bassom (2023b). In the
next section, we focus on the pressure gradient-driven flow and investigate modifications
caused by simple sinusoidal vibrations.

5. Vibration-induced velocity field modifications

We consider the same vibrations as in § 4. Instantaneous vector lines of velocity
modifications u1 = u − Re u0 illustrate the topology of the velocity field. The results
displayed in figure 3 for the small (α = 0.1), medium (α = 1.5) and large (α = 10)
wavenumbers suggest that variations in Re marginally change flow topologies. Long
wavelength vibrations (figure 3a,d,g,j) produce modification with a sloshing pattern where
the forward movement occurs around the wave troughs and the backward movement near
the crests. The analytic description of the velocity field (see Appendix A for details) has
the form

u = Re

1 − 1
4 A cos(αx)

(1 − η2)− c
3A cos(αx)

8
[
1 − 1

4 A cos(αx)
](1 − η2)+ 0(α), ṽ0 = 0(α),

(5.1)

where η = ( y − 1)[1 − 1
4 A cos(αx)]−1 + 1. The first term on the right-hand side

represents the (passive) ‘groove effect’, i.e. flow modulations produced by stationary
grooves, and the second term describes the ‘wave effect’, which periodically changes
direction, creating sloshing. Reynolds number plays a role in setting up the ‘groove
effect’, while the sloshing effect is Re-independent. The short wavelength vibrations
(figure 3c, f,i,l) produce a boundary layer near the vibrating wall and an unmodulated
uniform flow above it. We shall refer to this flow pattern as the moving-wall regime,
with a detailed explanation of the origin of this term given later in this discussion. Flow
topologies at intermediate values of α (figure 3b,e,h,k) represent a hybrid between the
sloshing and the moving-wall structures.

Profiles of u1 provide additional information about the structure of the velocity field.
The long wavelength vibrations create modifications of appreciable size over the entire
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Figure 3. Topologies of the vibration-modified flow field (u1) for groove amplitude A = 0.0025.

width of the channel. The resulting periodic changes of direction lead to the sloshing
effect (see figure 4a,d,g,j). The short-wave vibrations create modifications consisting of a
boundary layer near the vibrating wall containing the intense streamwise modulations and
an unmodulated stream above this boundary layer. The resulting flow pattern is referred
to as the moving-wall pattern (see figure 4 c, f,i,l). In the in-between zone, the flow
morphs continuously from the small-α to the large-α forms. These states are illustrated
in figure 4(b,e,h,k). Overall, velocity distributions change marginally with Re, and their
profiles are hardly affected by changes in c. Their magnitudes are, however, roughly
proportional to c. It is interesting to note that flow modifications have a generic form
regardless of the purpose of vibrations, being pumping (Floryan et al. 2021), propulsion
(Haq & Floryan 2022) or resistance reduction (Floryan & Haq 2022).

The flow modifications induced by short waves demonstrate the mechanism of reduction
of pressure losses. Vibrations tend to pump the fluid to the right within the boundary
layer, with the edge of the boundary layer acting as a wall moving to the right with
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Figure 4. The distributions of the u-velocity modification (u1) at x/λ = 0, 0.25, 0.5, 0.75 for groove
amplitude A = 0.0025.

an apparent velocity Uap. Since the flow rate cannot be affected by vibrations, the flow
system generates a positive pressure gradient producing flow to the left. The velocity
modification u1 is x-independent outside the boundary layer and, thus, must have a form
of Couette–Poiseuille flow with zero flow rate. The edge of the boundary layer acts as a
wall moving to the right (Couette part) and the pressure gradient correction is responsible
for the Poiseuille component directed to the left. Parabola with coefficients determined by
imposing the no-slip condition at the upper plate and the flow rate constraint, i.e.

u1( y = 1) = 0,
∫ 1

−1
u1 dy = 0, (5.2a,b)

approximates the velocity field outside the boundary layer. The third condition involves
either the use of pressure gradient correction (Bmod) determined numerically, and this
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Figure 5. Distributions of u(0)1 for (a) α = 10, (b) α = 1.5 and (c) α = 0.1. All results are for Re = 100,
c/Re = 10, A = 0.005. The blue dashed line indicates the Couette–Poiseuille velocity profile. The green line
in panel (b) is for c/Re = 100 with other conditions remaining unchanged.

leads to the velocity distribution of the form

u1( y) = −Bmod

6
(3y2 − 2y − 1), (5.3)

or matching the analytic u1 with the numerical u1 at a point well outside the boundary
layer. Results displayed in figure 5 demonstrate an excellent agreement between the
numerically determined u1 and the fitted Couette–Poiseuille flow. The same argument
applies to any α as the flow system must generate an x-independent backward flow
component to maintain the prescribed flow rate, and this component requires a proper
pressure gradient. The matching of the complete flow with the Couette–Poiseuille flow
is perfect for α = 10 (figure 5a) and it is reasonably good for α = 1.5 (figure 5b). The
total flow remains qualitatively similar to the Couette–Poiseuille flow even for α = 0.1
(figure 5c) – this is surprising as the spatial modulations extend across the whole channel
for small α so the mode zero of u1 is not expected to be well approximated by the
Couette–Poiseuille flow.

The apparent wall velocity Uap is determined by extending (5.3) to the lower wall.
Results displayed in figure 6 demonstrate that Uap is proportional to A2, it increases
proportionally to α2 for large enough α, and is proportional to c for large c values. The
concept of apparent wall velocity works reasonably well even for very small α where the
boundary layer does not exist, as illustrated in figure 5(c).

Data displayed in figures 4(b,e,h,k) and 5(b) demonstrate that an increase of c does not
eliminate sloshing – the amplitude of sloshing increases with c while the amplitude of u(0)1
increases implying a more significant pressure gradient correction.

The last question we wish to address in this section is to explain how the effects of wall
actuation are transferred into the flow interior. This question is addressed using the small
(A → 0) wave amplitude solution – details of this solution are presented in Appendix B.
It suffices to state that waves produce periodic modulations at level 0(A), which combine
at level 0(A2) producing an aperiodic component that determines the pressure gradient
correction. The following system describes the 0(A2) aperiodic part of flow modifications:

D2ũ(0)2 − B2 = ṽ
(1)
1 Dũ(−1)

1 + ṽ
(−1)
1 Dũ(1)1 , (5.4a)

ũ(0)2 (1) = 0, ũ(0)2 (−1) = −1
4 (Dũ(1)1 + Dũ(−1)

1 )− 1
8 Re, ψ

(0)
2 (1)− ψ

(0)
2 (−1) = −1

8 Re,
(5.4b)
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Figure 6. Variation of the apparent lower wall velocity Uap/A2 (a) as a function of α for c = 500, 1000 and
(b) as a function of c for α = 0.1, 1.5, 10.

where B2 stands for the pressure gradient correction. Notation is explained in Appendix B.
This solution shows that there are two mechanisms associated with momentum transfer.
The first one, which is indirect, involves vibrations creating flow field modification which
combine to form Reynolds stresses (right-hand side of (5.4a)). The second mechanism
involves a direct momentum transfer as the second boundary condition in (5.4b) acts as a
slip condition creating movement in the vicinity of the wall.

6. Pressure losses

Flow through a conduit is driven by a pressure gradient whose magnitude is dictated by the
need to overcome the friction between the fluid and the bounding walls. As discussed in
the previous section, the required pressure gradient can be reduced because vibrations
provide a part of the driving force through the peristaltic effect. Modifications of the
velocity field change the wall shear stresses, so a detailed flow field analysis is required
to quantify pressure losses. The flow system is characterized by natural frequencies which
could be excited by vibrations – the potential resonance may interfere with the peristaltic
effect and affect the wall shear. The natural frequencies are characterized by the complex
amplification rate C = Cr + iCi which is dictated by a solution of the Orr–Sommerfeld
equation discussed in Appendix C. Here, Cr denotes the phase speed and Ci stands for the
amplification rate. The natural frequencies are attenuated for Re < 5772.22 (Orszag 1971)
with the attenuation rate increasing with a reduction of Re. This process is illustrated in
figure 9 for the least attenuated wave with δ = 1, where δ stands for the wavenumber
of natural waves (see Appendix C); it is obvious that one must take α = δ to compare
both types of waves. The attenuation rapidly increases for Re < 100, which suggests
that the near resonance effects are negligible. The smallest Re leading to the actual
resonance is Re = 5772.22, which occurs only for vibration waves with α = 1.02 and
c/Re = 0.2639 (Orszag 1971), and it produces flow modifications symmetric around the
channel centreline. Vibration-induced flow modifications are non-symmetric as only one
wall vibrates, so the difference in symmetries must affect the outcome of the resonance.
The range of waves capable of activating resonance increases as Re increases above
5772.22, while waves outside this range are in near resonance. The following discussion is
divided into the small-Re flows (Re < 100) where the resonance effects are negligible, the
intermediate-Re flows (100 < Re < 5000) where the near resonance effects are expected
to play a role and the large-Re flows (Re ≥ 5000)where the actual resonance may occur.
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6.1. Small-Re flows (Re ≤ 100)
We begin our discussion with the low-Re flows where resonance is negligible. The pressure
gradient correction B for the long wavelength vibrations can be determined analytically
(see Appendix A for details), i.e.

Bmod = Re2 dp0

d x
− dp̃−1

dξ

∣∣∣∣
mean

= 2Re

[
−1 +

(
1 + A2

32

)(
1 − A2

16

)−5/2]
− 9

32
cA2

(
1 − A2

16

)−5/2

.

(6.1)

The first term on the right-hand side represents the (passive) ‘groove effect’ and is always
positive, i.e. grooves always increase pressure losses. The second term on the right-hand
side describes the ‘wave effect’, which is negative for the downstream propagating waves
(c > 0) and favourable for the upstream propagating waves (c < 0). Reynolds number
plays a role in setting up the ‘groove effect’, which is proportional to Re, while the ‘wave
effect’ is Re-independent but proportional to c. The overall reduction of pressure losses
is achieved using sufficiently fast waves propagating in the downstream direction so that
the ‘wave effect’ overcomes the ‘groove effect’. The wave speed c1 required to bring the
pressure gradient correction to zero is

c1 = 64Re
9A2

[
1 + A2

32
−
(

1 − A2

16

)5/2]
, (6.2)

and the wave speed c2 required to bring the overall pressure gradient to zero is

c2 = 64Re
9A2

(
1 + A2

32

)
. (6.3)

The above results demonstrate that increasing wave amplitude reduces the required wave
speed. Waves faster than c2 require using an opposite pressure gradient to prevent the fluid
from accelerating. Faster flows require faster waves to reduce pressure losses, as both c1
and c2 increase with Re.

Variations of the normalized pressure gradient Bnorm = Bmod/2Re A2 are illustrated in
figure 8. The factor 2Re represents the pressure gradient of the reference flow, so the ratio
Bmod/2Re expresses pressure gradient correction as a fraction of the reference pressure
gradient. The factor A2 is added to account for variations in the wave amplitude as Bmod
is proportional to A2 for small amplitudes being of interest in this analysis. The right axes
display c in absolute scale defined in § 2. The left axes show c/Re – since the maximum
velocity of the reference flow is Re, the ratio c/Re measures the wave speed in terms of
the maximum reference velocity. We shall refer to waves with speeds larger than Re as
supercritical waves, while the slower waves will be referred to as subcritical. Velocity
modifications created by subcritical waves are characterized by critical layers where the
wave speed equals flow velocity.

The distinction between the supercritical and subcritical waves is irrelevant for small
Re. Results for Re = 1 demonstrate that nearly all downstream propagating waves reduce
pressure losses (see figure 8a). In contrast, the upstream propagating waves increase
pressure losses. The results shown in figure 8(b) demonstrate that an increase of Re
requires faster waves to reduce pressure losses, and the minimum required wave speed
depends on the wavenumber. Use of waves with c/Re > 2.3 guarantees a reduction of
pressure losses regardless of the wavenumber. In this zone, the magnitude of reduction
increases with c and α in a regular manner showing that fast, short-wavelength waves
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Figure 8. Variations of the pressure gradient correction Bnorm = Bmod/2 Re A2 as a function of α and c for
Re = 1, 100 (panels a,b, respectively). Solid and dashed lines represent the negative and positive values,
respectively. Grey colour identifies conditions resulting in a reduction of pressure losses. The red line identifies
conditions that do not affect pressure losses. Zones between the blue lines represent the range of natural flow
frequencies.

are most effective in reducing losses. The zone with 1 < c/Re < 2.3 can be viewed
as a transition zone where processes dominating flow response to subcritical waves are
replaced by processes associated with supercritical waves. This distinction becomes more
prominent for larger Re, as is shown later in this presentation.

We can gain insight into the flow response by investigating variations of Bmod along
specific cuts through the parameter space. Figure 9(a) shows that the pressure gradient
correction is nearly independent of α for long waves but begins to increase proportionally
to α2 for α > 1. It is possible to reduce pressure losses down to zero if short enough
waves are used, and an opposite pressure gradient may have to be used to prevent flow
acceleration. Dependence of Bmod on c is complex for slow waves but shows an increase
proportional to c for fast enough waves (see figure 9b). The minimum c required for the
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identifies conditions requiring the opposite pressure gradient to slow the fluid. The light grey colour identifies
conditions leading to a minimum of 50% pressure gradient reduction. (c) Variations of the modifications of the
x-components of forces 	Fxv,L/A2 (blue line), 	Fxv,U/A2 (green line) and 	Fxp,L1/A2 (red line) as functions
of α for Re = 100, c = 1000(c/Re = 10). The solid (dashed) lines correspond to positive (negative) values.
The black dashed line illustrates the additional x-pressure force 	Fxpm/A2 = −2Bmod/A2 generated by the
pressure gradient correction.

initiation of the regular, c-proportional growth of Bmod varies widely with α and Re. It
is possible to eliminate pressure losses if fast enough waves are used. Analysis of results
displayed in figure 9(a,b) shows that the effectiveness of a specific wave decreases with
an increase of Re, i.e. the pressure gradient correction represents a smaller fraction of the
reference pressure gradient. This reduction happens because the wave penetration into the
flow decreases as Re increases. The reduction can be compensated through an increase in
wave velocity.

Analysis of an interplay of different forces acting on the fluid provides further insight
into the flow response. Here we select the upper end of figure 8(b) where Bmod varies with c
and α in a very regular manner. Figure 9(c) illustrates typical variations of	Fxv,L,	Fxv,U
and 	Fxp,L1 (see (2.11) for definitions) as functions of α for c. The surface pressure force
Fxp,L1(= 	Fxp,L1) at the vibrating wall reaches a constant in the limit α → 0. There is
a range of α ending at α ≈ 0.5 where this force increases proportionally to α1/2 and this
rate increases to α2.5 when α > 1. Vibration-induced change of viscous force at the lower
wall 	Fxv,L assists with the fluid movement for α < 0.1 but opposes this movement for
larger α. Change of the viscous force at the upper wall 	Fxv,U assists fluid movement for
α < 0.1 and α > 0.9 but opposes this movement for α in between these limits. Changes
in the viscous and pressure forces at the vibrating wall are dominant for α > 1 – they
oppose each other with their magnitudes increasing proportionally to α2.5. The increase in
the magnitude of 	Fxp,L1 exceeds that of 	Fxv,L resulting in a reduction of the required
pressure gradient force Fxp,m – this reduction is proportional to α2. Change of the viscous
force at the upper wall 	Fxv,U also increases proportionally to α2 but it plays a marginal
role due to its relatively small magnitude.

To determine the energy cost of vibrations, we take a scalar product of the momentum
equation with a velocity vector and integrate it over a control volume consisting of a
channel section extending over one wavelength λ = 2π/α in the x-direction. The resulting
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expression has the form∫∫ [
u2 ∂u
∂x

+ uv
∂u
∂y

+ uv
∂v

∂x
+ v2 ∂v

∂y
− c

(
u
∂u
∂x

+ v
∂v

∂x

)]
dS

= −
∫∫ (

u
∂p
∂x

+ v
∂p
∂y

)
dS +

∫∫ (
u
∂2u
∂x2 + u

∂2u
∂y2 + v

∂2v

∂x2 + v
∂2v

∂y2

)
dS, (6.4)

where the integration domain S is defined as y ∈ [yL(x), 1], x ∈ [0, λ]. Integration by parts
and use of the x-periodicity property and continuity equation lead to

Pmpg = Pε + Pwv − Pwp , (6.5a)

where
Pmpg = (2Re + Bmod) Q (6.5b)

describes the power supplied by the mean pressure gradient. The three terms on the
right-hand side of (6.5a) are defined by

Pε = λ−1
∫∫ [(

∂u
∂x

)2

+
(
∂u
∂y

)2

+
(
∂v

∂x

)2

+
(
∂v

∂y

)2
]

dS, (6.6a)

Pwv = λ−1
∫ λ

0

(
v
∂v

∂x
dyL

d x
− v

dv
dy

)
y=yL(x)

d x, Pwp1 = λ−1
∫ λ

0
(vp1)y=yL(x) d x,

(6.6b,c)

with Pε standing for the rate of dissipation of energy, Pwv denoting the rate of work done
by viscous forces at the vibrating wall and Pwp1 standing for the work rate done by the
periodic pressure component at the vibrating wall.

The external power is required to overcome dissipation and viscous work at the lower
wall – this power can be reduced by pressure work at the lower wall. Changes produced by
vibrations are defined as

	Pmpg = Pmpg − Pmpg,0 = Bmod Q, 	Pε = Pε − Pε,0, (6.7a,b)

	Pwv = Pwv − Pwv,o = Pwv, 	Pwp1 = Pwp1 − Pwp,0 = Pwp1, (6.7c,d)

and are of the main interest. In the above, quantities with subscript 0 refer to the reference
flow (smooth channel) and are

Pmpg,0 = 2Re Q, Pε,0 = 8
3 Re2, Pwv,o = 0, Pwp,0 = 0. (6.8a–d)

Results displayed in figure 10 show that viscous work at the lower wall is generally
negligible, and the system response involves interplay between the mean-pressure-gradient
power, the pressure work at the lower wall and the dissipation. There are two distinct
energy fluxes in the (c, α)-plane. The first zone is characterized by a monotonic increase
in the magnitude of energy fluxes with an increase of c and α. This zone generally overlaps
with the supercritical waves. The dominant fluxes are the wall pressure work – most
of it is used for increasing dissipation, and leftovers are used to reduce pressure losses.
A reduction of pressure losses characterizes this zone. The second zone overlaps with
subcritical waves. Here variations of energy fluxes with c and α are somewhat irregular,
with the wall pressure work becoming negative, which means that fluid does the work.
The pressure losses increase as they provide the energy required to overcome wall pressure
work, with dissipation playing a minor role in the energy balance. This effect is not visible
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Figure 10. Variations (a,e) of change in power supplied by the mean pressure gradient	Pmpg, (b, f ) of the rate
work done by pressure at the lower wall Pwp1(= 	Pwp1), (c,g) of the rate of work done by the viscous forces
at the lower wall Pwv(= 	Pwv) and (d,h) of the increase in the dissipation 	Pε as functions of α and c/Re.
All results are for A = 0.005. Panels (a–d) display data for Re = 1 and panels (e–h) for Re = 100. The solid
(dashed) lines represent positive (negative) values. The red colour identifies zero isolines. Zones between the
blue lines represent the range of natural frequencies of the OS modes.

for Re = 1 (see figure 10a–d) but can be identified for Re = 100 (see figure 10e–h) –
its strength increases with Re as discussed later. The border between these two zones is
not well demarcated as the transition between both types of responses is gradual – this
transition occurs for 1 < c/Re < 2.

6.2. Intermediate-Re flows (100 < Re < 5000)
An increase in flow velocity allows for a near resonance between a particular class of
vibrations and the natural flow frequencies. The natural frequencies are determined by
adding small perturbations of the form

[u1, v1, p1](X, Y, t) = [û1, v̂1, p̂1] eiδ(X−Ct) + CC (6.9)

to the reference flow and solving the relevant equations. In (6.9), CC stands for the complex
conjugate, C = Cr + iCi with Cr being the phase speed and Ci being the amplification rate.
Here, Ci ≤ 0 identifies conditions when either resonance or near resonance may occur,
while Ci > 0 provides a measure of the ‘distance’ from the resonance where complex
responses are expected (such perturbations draw energy from the flow without involving
vibrations). Determination of C is explained in Appendix C. Creation of a resonance
requires the use of vibrations matching the natural flow frequencies, i.e. vibrations with
the wavenumber α = δ and the phase speed c = Cr. Variations of Cr and Ci as functions
of α and Re illustrated in figure 11 demonstrate that resonance is possible only for a limited
range of α and c which change with Re, i.e. the resonance may occur for α ∈ (∼0.8,∼ 1.1)
and c ∈ (∼0.2,∼ 0.3) when Re ≥ 5772.22. The use of vibrations either with large α or
with large c eliminates resonance.

Since a near resonance is possible in flows with 100 < Re < 5000, it is interesting to
determine how it can affect pressure losses. Variations of Bmod as a function of α and
c illustrated in figure 12 demonstrate that the border between the reduction and increase
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Figure 12. Variations of the pressure gradient correction Bnorm = Bmod/2 Re A2 as a function of α and c for
Re = 250, 500, 1000 (panels a–c, respectively). Solid and dashed lines represent the negative and positive
values. The red colour identifies zero isolines. Zones between the blue lines represent the range of natural
frequencies of the OS modes. Greyed zones identify conditions leading to a reduction of pressure losses. Red
stars identify conditions leading to a local maximum of Bnorm.

of pressure losses moves towards faster waves as Re increases and that there exists the
least effective wavenumber α (α ≈ 1.5) for reduction of these losses. We shall refer to
waves with Bmod = 0 as the transition waves and their phase speed as the transition phase
speed ctr. Here, Bmod decreases with α and c in a regular manner for sufficiently fast
and sufficiently short waves, i.e. fast short waves remain the most effective for reducing
pressure losses. The border between the reduction and increase of pressure losses (red line
in figure 12) is well above c/Re = 1 separating subcritical and supercritical waves – all
subcritical and some supercritical waves increase losses. The range of natural frequencies
presented in the same figure (blue lines in figure 12) does not show a good correlation with
ctr.

Waves propagating upstream (c < 0) always increase pressure losses; the magnitude
of these losses increases for faster waves. Slow waves propagating downstream also
increase losses, but only if their speed is not too large, i.e. c < ctr. Variations of the
magnitude of these losses are not, however, monotonic with c. There are subcritical
waves that produce a local maximum of pressure losses (see red stars in figure 12). In
general, the characteristics of such waves show a good correlation with the natural flow
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Figure 13. Variations of the pressure gradient correction Bnorm = Bmod/2 Re A2 (a) as a function of α and
(b) as a function of c (α = 0.5, red line; α = 1.5, blue line; α = 30, green line). Data for Re = 250, 500 in
panel (a) were multiplied by 100 and 10, respectively, for display purposes. (c) Variations of the modifications
of the x-components of forces acting on the fluid 	Fxv,L/A2 (blue line), 	Fxv,U/A2 (green line) and
	Fxp,L1/A2 (red line) as functions of α for Re = 1000 and c = 5000(c/Re = 5). The solid (dashed) lines
correspond to positive (negative) values. The black dashed line illustrates the additional x-pressure force
	FXpm/A2 = −2Bmod/A2 generated by the pressure gradient correction.

frequencies. However, conditions corresponding to the local maximum do not correspond
to waves that are most likely able to enter into resonance, as there is a mismatch between
the wavenumbers and the phase speeds. The waves capable of inducing resonance-like
responses are discussed later in this presentation.

Selective cuts through the (α, c)-plane provide details of variations of pressure losses.
Here, Bmod is nearly independent of α for long waves but begins to increase proportionally
to α2 for α > 1, as illustrated in figure 13(a). Reduction of losses down to zero is possible
if high-speed and extremely short waves are used – these waves are outside of interest
in this analysis. Dependence of Bmod on c is complex for slow waves, as illustrated in
figure 13(b) but becomes proportional to c for fast enough waves. The minimum c required
for the initiation of the regular, c-proportional growth of Bmod varies widely with α and
Re; in general, an increase of α reduces the required c. Analysis of results displayed in
figure 13(a,b) shows that the effectiveness of a specific wave decreases with a rise in Re,
similar to slow flows discussed in § 6.1. Increasing wave velocity compensates for the loss
of effectiveness.

The interplay between different forces acting on the fluid leading to a reduction of
pressure losses is illustrated in figure 13(c) for supercritical waves – subcritical waves
are discussed later in this presentation. We select the upper end of figure 12(c) where Bmod
varies with c and α in a very regular manner. The pressure force Fxp,L1(= 	Fxp,L1) at the
vibrating wall reaches a constant in the limit α → 0. Change of viscous force at the lower
wall 	Fxv,L assists with the fluid movement for α < 0.03 but opposes this movement for
larger α. Change of the viscous force at the upper wall 	Fxv,U assists fluid movement for
α < 0.03 and α > 1.2, and opposes this movement for the in-between values. Changes
in the viscous and pressure forces at the vibrating wall dominate for α > 3, where they
increase proportionally to α2.5. The 	Fxp,L1 is larger than 	Fxv,L which leads to a
reduction of the pressure gradient force Fxp,m – this reduction increases proportionally
to α2. Change of the viscous force at the upper wall	Fxv,U increases proportionally to α2

but it plays a marginal role due to its magnitude being significantly smaller than 	Fxp,L1
and 	Fxv,L.
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Figure 14. Variations (a) of change in power supplied by the mean pressure gradient 	Pmpg, (b) of the work
done by the periodic pressure component at the lower wall Pwp1(= 	Pwp1), (c) of the work done by the viscous
forces at the lower wall Pwv(= 	Pwv), (d) of the increase of the dissipation above the reference dissipation
	Pε as functions of α and c for Re = 1000 and A = 0.005. Solid (dashed) lines represent positive (negative)
values and the red colour identifies zero isolines. Zones between the blue lines represent the OS modes’ natural
frequencies. Red stars identify conditions leading to a maximum local increase of Bnorm.

The qualitative form of energy fluxes remains the same as for smaller Re, as
demonstrated by comparisons of figures 10 and 14. Supercritical waves deliver most of the
power. Most of it is consumed by the increased dissipation leaving only a small fraction
available for power reduction, which reduces the amount of energy that has to be supplied
by the mean pressure gradient. In contrast, the wall pressure work is negative for subcritical
waves, which means that these waves extract energy from the flow. As a result, a significant
increase in the pressure gradient is required to maintain the specified flow rate. Such waves
produce only a small increase in dissipation (see figure 14). The range of phase speeds
increasing pressure losses is much more extensive compared to small Re as it includes
supercritical waves. Waves leading maximizing losses are marked with a red star.

An unexpected increase in flow resistance caused by subcritical waves can be explained
by analysing forces acting on the fluid. Variations of the x-component of these forces
as functions of α are illustrated in figure 15 for c/Re = 0.1, 0.5, 2, 5, which covers
the range of c/Re with irregular variations of Bmod. The flow resistance in the reference
channel is only due to friction. The introduction of vibrations brings in pressure effects and
modifies frictional effects. Figure 15(a) illustrates forces for waves with c/Re = 0.1, which
are slower than waves producing a local maximum of losses (see figure 12c). Magnitudes
of these forces increase monotonically with α, with vibrations increasing friction at the
lower wall while reducing friction at the upper wall. Since lower friction is more significant
than upper friction, vibrations increase the overall friction. Pressure force opposes fluid
movement increasing the mean pressure gradient. An increase of wave speed to c/Re = 0.5
leads to non-monotonic variations of all forces with the transition from growth as a
function of α to reduction occurring for α between 1.5 and 2 (see figure 15b). These
conditions correspond to waves producing a local maximum of flow losses. Pressure force
at the lower wall opposes fluid movement, with its maximum occurring around α ≈ 1.9.
Viscous force at the lower wall is negligible for α <∼ 1.4, but then starts promoting fluid
movement reaching a maximum at α ≈ 2. Viscous force at the upper wall is negligible for
α <∼ 1.4 but then starts opposing fluid movement reaching a maximum at α ≈ 2. Overall,
viscous forces promote fluid movement for α >∼ 1.4. The negative surface pressure force
dominates, leading to a significant increase in the required pressure gradient, with its
maximum occurring at α ≈ 1.9. Further increase of wave velocity to c/Re = 2 brings
us into the zone of supercritical waves, with these waves increasing pressure losses for
α <∼ 3, but reducing these losses for larger α where variations of Bmod as a function of
α become very regular (see figure 12c). Different forces generally vary in a monotonic
manner with an increase of α, as illustrated in figure 15(c). Viscous forces oppose fluid
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c/Re = 0.1, 0.5, 2, 5 in panels (a–d), respectively. All results are for Re = 1000, A = 0.005.

α = 0.5 α = 1 α = 1.5 α = 2 α = 3 α = 5 α = 7

c/R = 0.1 −0.120 −0.299 −0.439 −0.548 −0.722 −0.968 −1.122
c/Re = 0.5 −0.171 −0.564 −1.358 −2.273 −1.488 −0.520 0.637
c/Re = 2 0.013 0.057 0.195 0.489 1.757 8.113 21.216
c/Re = 5 0.199 0.578 1.539 3.328 10.027 39.478 95.991

Table 1. Pressure force Fxp,L1 acting on the fluid at the lower wall (Re = 1000, A = 0.005).

movement at the lower wall but promote this movement at the upper wall, while pressure
forces promotes this movement. It overcomes friction for α > 2.4, resulting in a reduction
of the required pressure gradient. Waves with c/Re = 5 produce regular variations of Bmod
as a function of α, as illustrated in figure 12(c). Generally, viscous forces at the lower
wall oppose fluid movement but support this movement at the upper wall. Pressure forces
support this movement, reducing the required pressure gradient.

The same data organized by the type of physical quantity and displayed in figure 16 show
more vividly how these forces change as the wave speed increases. The magnitudes of all
forces increase as wave speed increases up to c/Re ≈ 0.5. The further increase reverses
this trend with the magnitudes of forces decreasing and, eventually, forces changing
their direction. A regular pattern is set when c/Re is large enough with force increasing
monotonically with c.

The numerical values of the pressure force Fxp,L1 in table 1 vividly illustrate that this
force is directed in the negative x-direction and its magnitude increases monotonically
with α for c/Re = 0.1. Phase shift, which is discussed later, begins to occur for faster
waves (c/Re = 0.5), resulting in the initial growth of the magnitude of the pressure force
followed by its decrease, but with this force being generally directed in the negative
x-direction except for very short waves, e.g. α = 7. Waves with c/Re ≥ 2 create pressure
force directed downstream, which increases monotonically with α.

The change in the qualitative character of variations of pressure force with wave speed
can be explained by analysing distributions of surface pressure displayed in figure 17(a–c)
and the x-projection of this pressure onto the wall displayed in figure 17(d–f ). The
force resulting from projection is known as the pressure interaction drag (Mohammadi
& Floryan 2012). In the case of ‘slow’ waves (c/Re = 0.1), the position of the ‘pressure
wave’ changes marginally as α increases with its peak located on the upstream side of the
wave crest (figure 17a). Projection of pressure onto the wall geometry produces x-pressure
force whose distribution changes marginally with α, as illustrated in figure 17(d), making
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Figure 17. Distributions (a–c) of the periodic pressure component p1 at the lower wall and (d–f ) of the
x-component of force generated by this pressure at the lower wall σxp,L1 for Re = 1000, A = 0.005.

the net pressure force Fxp,L1 directed upstream. The wave with c/Re = 0.5 leads to a phase
shift between the ‘pressure wave’ and the surface wave between α ≈ 2 and α ≈ 5 (see
figure 17b). Long waves have pressure maxima located approximately λ/4 downstream
from the wave trough but short waves have maxima situated at the wave trough. The
phase shift changes the projection of pressure onto the surface topography changing the
magnitude and direction of the local pressure force (see figure 17e) with the net force
Fxp,L1 directed upstream and achieving a maximum at α ≈ 2.0 – this force is responsible
for the local maximum of Bmod. The use of fast waves (c/Re = 5) fixes the position of the
‘pressure wave’ to the surface wave with the pressure maximum located at the wave trough
(figure 17c), and projection of this pressure onto surface geometry loses dependence on α
(see figure 17f ). It produces force directed downstream (see figure 17d).

6.3. Large-Re flows (Re ≥ 5000)
An increase of Re above 5000 brings in a new effect, i.e. resonance, which we shall discuss
later in § 6.3.3. We start the discussion by pointing out that variations of Bmod with c
and α are, in general, qualitatively similar to variations for smaller Re discussed in the
previous sections, i.e. fast short waves are the most effective for reducing pressure losses
(see figure 18). The minimum speed for waves to be considered ‘fast’ changes with Re as
waves with c > 200 are ‘fast’ when Re = 100, but waves must reach speed c > 12 000 to
become ‘fast’ when Re = 6000. There are notable differences as the range of supercritical
waves producing pressure losses increases. The magnitude of pressure losses caused by
subcritical waves increases substantially, but there are notable differences. Change with c
and α is complex – one can identify waves causing the most significant losses and waves
causing the smallest losses. There are two local maxima identified in figure 18 using red
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Figure 18. Variations of the pressure gradient correction Bnorm = Bmod/2 Re A2 as a function of α and c for
(a) Re = 5000 and (b) Re = 6000. Solid and dashed lines represent the negative and positive values. The red
colour identifies zero isolines. Zones between the blue lines represent the range of natural frequencies of the OS
modes. Enlargements of pink boxes are displayed in figure 21. Red stars identify conditions leading to a local
maximum of Bnorm. Enlargements of the light blue boxes are displayed in figure 21. Light blue star identifies
conditions resulting in the largest reduction of pressure losses by subcritical waves.

stars – the left maximum matches the natural flow frequencies, and the right maximum
is associated with a shift of the relative position of the ‘pressure wave’ and vibration
wave discussed in the previous section. There is also a local minimum of Bmod which
identifies waves producing the lowest increase of pressure losses and, at higher Re, such
waves decrease pressure losses. These local minima are marked in figure 18 using light
blue stars. The following section provides a discussion of supercritical waves.

6.3.1. Flow response to supercritical waves
Variations of pressure losses along selected cuts through the (α, c)-plane are displayed in
figure 19. Here, Bmod is nearly independent of α for long waves but begins to increase
proportionally to α2 for α > 1 (see figure 19a), similarly as for flows with smaller Re.
Dependence of Bmod on c is complex for slow waves, as illustrated in figure 19(b), but
becomes proportional to c for fast enough waves. The minimum c required for the initiation
of the regular, c-proportional growth of Bmod varies widely with α and Re; in general, an
increase of α reduces the required c. Results displayed in figure 19(a,b) demonstrate that
the effectiveness of a specific wave decreases with a rise of Re.

Variations of forces acting on the fluid are illustrated in figure 19(c) for conditions
corresponding to the upper end of figure 18(b) where Bmod varies with α and c in a
regular manner. The pressure force Fxp,L1(= 	Fxp,L1) reaches a constant in the limit
α → 0 and increases proportionally to α2.5 for large α. Change of viscous force at the
lower wall 	Fxv,L opposes fluid movement with this force decreasing to zero for α → 0
and increasing proportionally to α2.5 for large α. Change of the viscous force at the upper
wall	Fxv,U generally opposes fluid movement except for α >∼ 1.5, where it supports the
fluid movement; it increases proportionally to α2 for large α. Interplay between Fxp,L1 and
	Fxv,L determines the pressure gradient reduction at large α and leads to a reduction of
the pressure gradient force Fxp,m proportional to α2. An interplay between	Fxv,L,	Fxv,U
and 	Fxp,L1 for small α determines Fxp,m in this limit, with Fxp,m approaching a constant
with α → 0.
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Figure 20. Variations (a,e) of change in power supplied by the mean pressure gradient 	Pmpg,
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stars identify local conditions leading to a maximum increase of Bnorm. Blue stars identify conditions resulting
in the largest reduction of pressure losses by subcritical waves.

Energy fluxes illustrated in figure 20 are similar to those found for smaller Re. A regular
increase of	Pmpg,	Pwp1,	Pwv and	Pε with α and c is observed with the overall energy
fluxes being dominated by a balance between dissipation and wall pressure work. Most of
the work done by wall pressure increases dissipation, with a small fraction used to reduce
pressure losses. The more complex energy fluxes for subcritical waves are discussed in the
next section.
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Figure 21. Variations of the pressure gradient correction Bnorm = Bmod/2 Re A2 as a function of α and c/Re
for Re = 5000 and 6000 (panels a,b, respectively) in the ranges identified by light blue boxes in figure 18. Blue
lines represent the lower limit of natural flow frequencies.

6.3.2. Flow response to subcritical waves away from the resonance
Results in figure 18 demonstrate intricate changes in the flow response depending on the
wavenumber and the phase speed of subcritical waves. Local maxima of pressure losses
are identified using red stars and a local minimum is identified using a light blue star. The
mechanics of flow response at the upper maximum (upper red star) is the same as discussed
in the previous section, i.e. it involves phase change between the vibration wave and the
surface pressure. The following section shows that resonance effects are responsible for the
lower maximum (lower red star). It remains to explain processes leading to the formation
of a local minimum. The discussion is facilitated by replotting in figure 21 variations of
Bmod in the parameter range identified by light blue boxes in figure 18 – local loss minimum
at Re = 5000 and local reduction of pressure losses at Re = 6000 are visible.

The energy fluxes created by subcritical waves in figure 20 demonstrate that subcritical
waves generally lead to negative wall pressure work. The overall energy balance is
dominated by an interplay between the wall pressure work and the mean-pressure gradient,
with dissipation playing a minor role. The external pressure gradient must increase to
overcome the negative wall pressure work to maintain the prescribed flow rate.

Presentation of processes leading to a reduction of pressure losses for specific
combinations of α and c identified in figure 18 is facilitated by enlarging the light blue
boxes presented in that figure. These enlargements, displayed in figure 22, illustrate
intrinsic changes in energy transfers. When Re = 5000, the wall pressure work becomes
positive, i.e. the wall pressure forces inject energy into the flow, leading to a reduction
in the required pressure gradient increase. The level of dissipation changes marginally,
and viscous work at the vibrating wall is too small to make a difference. An increase
of Reynolds number to Re = 6000 amplifies this process with the wall pressure work
delivering enough energy to reduce the required mean pressure gradient below the
reference level.

The above discussion shows that energy is delivered to the flow by surface pressure
work with negligible viscous effect. This energy can be directed into increasing the flow
energy (positive pressure work) or extracting energy from the flow (negative work). Most
of the positive energy increases dissipation, but some of it may reduce mean pressure
gradient requirements. Wave properties determine if vibrations extract energy from the
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Figure 22. Variations of the work and power fluxes as functions of α and c/Re for the same parameter range
as in figure 21. (a,e) Variations of the change in power supplied by the mean pressure gradient 	Pmpg, (b, f )
the rate of work done by pressure at the lower wall Pwp1(= 	Pwp1), (c,g) the rate of work done by the viscous
forces at the lower wall Pwv(= 	Pwv) and (d,h) the increase in dissipation 	Pε . All results are for A = 0.005.
Panels (a–d) display data for Re = 5000 and panels (e–h) for Re = 6000. The solid (dashed) lines represent
positive (negative) values. The red colour identifies zero isolines. Blue stars identify conditions resulting in the
largest reduction of pressure losses caused by subcritical waves. Blue lines represent the lower limit of natural
flow frequencies.

flow or add it to the flow; if energy is added, these properties determine what fraction of
pressure work is used to reduce mean pressure gradient requirements. Interestingly, there
is a class of subharmonic waves capable of adding enough energy to the flow and directing
a sufficiently large part to reduce the pressure gradient below the reference level.

6.3.3. Flow response to subcritical waves near resonance
The dynamical properties of the reference flow are characterized by the presence of
natural frequencies whose properties are summarized in figure 11 (see also Appendix C).
The y-symmetry with respect to the channel axis characterizes the spatial distribution of
flow modifications associated with natural frequencies in the range of Re of interest in
this analysis. Vibrations applied at the lower wall produce modifications without such
symmetry. We selected two values of Re, i.e. 5000 and 6000, for the discussion. The first
value is well below the resonance but can create a near resonance, and the second one
admits the actual resonance. The waves of interest are identified in figure 18 using pink
boxes and variations of Bmod within these boxes are displayed in figure 23. Figure 24
displays variations of Bmod along cuts through parameter space at a constant c and then
at a constant α – these cuts are marked in figure 23 using pink crosses. The results show
the existence of a small ‘ball of influence’ in the (α, c)-plane with Bmod being negligible
outside this ‘ball’ and increasing exponentially when its centre is approached. The ‘ball’
becomes narrower and more extreme as Re increases from Re = 5000 to Re = 6000
(see figure 24a,b). These results demonstrate that waves with negligible amplitudes,
usually irrelevant to flow dynamics, produce significant pressure losses when matching the
near-resonance/resonance conditions. The magnitude of response is limited by a mismatch
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Figure 23. Variations of the pressure gradient correction Bnorm = Bmod/2 Re A2 as a function of α and c for
Re = 5000, 6000 (panels a,b, respectively) in the ranges identified by pink frames in figure 18. Variations
of Bnorm along pink crosses are displayed in figure 22. Blue lines represent the lower limit of natural flow
frequencies.

between symmetries of the y-symmetric modifications associated with natural frequencies
and the no-symmetry of vibration-produced modifications. Overlapping several such
curves results in an envelope, which provides means for rapid identification of waves
producing a significant flow response (see figure 24c,d).

The Reynolds number represents the third axis of the ‘ball of influence’, whose
properties are illustrated in figure 25. A narrow range of Re bounded from above and below
produces a resonance-type response. The lower bound is evident as the damping of natural
frequencies increases with the reduction of Re. The upper bound is less obvious, but it is
related to a decrease in natural frequencies and a decrease of wavenumbers characterizing
resonance when Re increases (see figure 11). Data displayed in figure 25(c) show that Bmod

increases proportionally to A2 even in resonance.
A shift in the most effective vibration wavenumber, as far as initiation of the

resonance-type response is concerned, while keeping its phase speed fixed, is illustrated
in figure 26. As α decreases from 1.08 to 1.03, Re producing a maximum Bmod increases
from ∼5900 to ∼6100. There is always a range of α and Re that initiates a resonance effect.
Significant flow response is achieved in this range using extremely small wave amplitudes.

Energy fluxes illustrated in figure 27 show that inserting a minimal amount of wall
pressure work creates a significant dissipation which requires a vast increase of pressure
gradient to maintain the prescribed flow rate, i.e. vibrations play the role of a catalyst that
facilitates energy transfer from the mean pressure gradient into dissipation. It may not be
possible to detect such vibrations in actual flows due to their extremely small amplitudes,
thus leaving reasons for the observed significant pressure losses unexplained.

6.3.4. Effects of critical layers
Critical layers are locations in the flow where the reference flow velocity is equal to the
wave velocity. Each subcritical wave forms two critical layers placed symmetrically on
both sides of the channel axis whose locations vary between y = −1 and y = 1 depending
on the wave phase speed. As noted in § 6.3.2, flow modifications may either extract
energy from the reference flow or add energy to this flow. This effect is similar to an
instability process where disturbances grow by extracting energy from the flow or decay
by returning it to the flow (Schmid & Henningson 2001). An increase of Re activates
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the viscous instability mechanism leading to the growth of Tollmien–Schlichting (TS)
waves. The essence of this mechanism is that critical layers change phase differences
between flow components, enabling energy transfer from the flow to disturbances – the
effectiveness of this process increases with Re, reaches a maximum, and then decreases.
The phase difference generates Reynolds stresses responsible for the energy transfer. There
is also an inviscid mechanism, i.e. inflection point instability, but this mechanism is not
active in the reference flow (Schmid & Henningson 2001). It remains to investigate if
vibrations-created flow modifications create Reynolds stresses whose variations can be
correlated with changes in the pressure gradient correction and, thus, to clarify if critical
layers play a significant role in the generation of pressure losses as suggested by Hoepffner
& Fukagata (2009).

Consider vibration-produced flow modifications induced by small amplitude waves. A
semi-analytic solution to this problem is given in Appendix B. Quantities of interest are ṽ1
and Dũ1 as they combine to produce Reynolds stresses. The global effect of these stresses
can be measured by integrating them across the channel, i.e.

Rs =
∫ 1

−1
(ṽ
(1)
1 Dũ(−1)

1 + ṽ
(−1)
1 Dũ(1)1 ) dy (6.10)

(see Appendix B for definitions). We select Re = 6000 for detailed calculation as critical
layers are more effective at larger Re and focus on waves producing local minima/maxima
of pressure losses. Figure 28 displays variations of Rs and the x-component of wall
pressure force Fxp,L1/A2 (see (2.11) for definition). The test conditions are centred at the
blue star in figure 18, which corresponds to the local minimum of pressure losses, and at
the upper red star, which corresponds to the local maximum. Cuts along fixed α displayed
in figure 28(a) illustrate the effects of varying wave velocity, which changes the position
of critical layers. Local maximum of Fxp,L1/A2 correlates well with the local minimum
of pressure losses (see solid blue line) and the local minimum correlates well with the
local maximum of pressure losses (see solid red line). There is no correlation between
variations of Rs and local extrema of pressure losses (see red and blue dashed lines),
which shows that critical layers do not play a decisive role in creating pressure losses.
Cuts along fixed c/Re displayed in figure 28(b) demonstrate a good correlation between
the local maxima/minima of pressure losses and the wall pressure force and no correlation
with variations of Rs. These cuts do not change the position of critical layers but change the
wave properties. It may be concluded that while phase change between flow components
occurs near critical layers, the overall dynamics of this part of the flow field does not
dictate variations in flow losses.

7. Conclusions

The effect of surface vibrations on the pressure-gradient-driven flows in channels has
been studied to evaluate their resistance mitigation capabilities. Vibrations in the form of
travelling waves with prescribed phase speed and amplitude were considered. A detailed
analysis has been carried out for laminar flows and monochromatic waves propagating
along one of the walls. The effectiveness of vibrations was gauged by determining the
pressure gradient correction required to maintain the same flow rate as in the channel
without vibrations. The analysis was limited to small wave amplitudes, and the flow
Reynolds numbers Re ≤ 6000 as laminar flows with larger Re are subject to various
instabilities.

The flow equations were solved in a reference system travelling with the wave.
Spatial discretization used Chebyshev expansions in the transverse direction and Fourier
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Figure 28. Variations of the Reynolds stress integral Rs (dashed lines) and the x-component of the wall
pressure force Fxp,L1 (solid lines) as functions of (a) c/Re and (b) α for A = 0.005. The remaining conditions
correspond to the upper red star (red lines) and blue star (blue lines) in figure 18(b). Vertical red and blue dotted
lines mark positions of c/Re and α associated with the blue star and the upper red star in figure 18(b).

expansions in the streamwise direction combined with the Galerkin projection method.
The irregularities of the flow domain were modelled using the immersed boundary
conditions (IBC) method. The overall algorithm provided spectral accuracy.

It is shown that waves affect the flow by activating the peristaltic effect. The flow
field has similar generic properties over a wide range of parameters. Long waves produce
modifications in the form of periodic sloshing penetrating the whole channel. Short waves
produce periodic modifications limited to a thin boundary layer adjacent to the vibrating
wall. The unmodulated outer flow perceives the edge of the boundary layer as a moving
wall. The transition between the sloshing and moving-wall regimes occurs for α = 0(1).

Waves propagating upstream always increase pressure losses, with the magnitude
of these losses increasing in a monotonic manner with the wave phase speed and
wavenumber. In contrast, the flow response to waves propagating downstream is complex
and depends on the flow Reynolds number Re. A loss reduction is possible only if these
waves are fast enough with the required minimum speed increasing with Re. Faster waves
can be categorized as supercritical, i.e. faster than the reference flow, and subcritical, i.e.
waves with velocities similar to the reference flow. In general, supercritical waves reduce
pressure losses. The magnitude of this reduction increases monotonically with the wave
phase speed and wavenumber but decreases with Re, i.e. wave effectiveness decreases
when Re increases. The need for an external pressure gradient is eliminated if sufficiently
short and fast waves are used. In general, all subcritical waves decrease pressure losses if
Re <∼ 100. They increase pressure losses for Re >∼ 100, but variations of these losses
as a function of the phase speed and wavenumber are irregular and non-monotonic and
change with Re. Conditions leading to local maxima and minima of losses at larger Re have
been identified. Waves capable of reducing the overall pressure losses have been found for
Re ∼ 6000. Subcritical waves can enter resonance/near-resonance with the natural flow
frequencies. It is shown that such waves can produce significant pressure losses even if
their amplitudes are negligible.

The energy flows are dominated by a balance between the pressure work at the vibrating
wall, the work done by the mean pressure gradient and the dissipation within the fluid
volume. When the wall pressure work adds energy to the flow, most of this energy flows
to the dissipation with a minor component available to reduce the mean pressure gradient.
The mean pressure gradient has to increase significantly when the wall pressure work
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extracts energy from the flow. The direction of the wall pressure work can be reversed by
changing wave properties.
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Appendix A. Long waves

We consider long (α → 0) sinusoidal waves propagating along the lower wall leading to
boundary conditions of the form

yU(x) = 1 : u = 0, v = 0, (A1a)

yL(x) = −1 + 1
2 A cos(αx) : u = 0, v = 1

2 cAα sin(αx), (A1b)

with A < 4. The solution domain is regularized using the transformation of the form

ξ = αx, η = ( y − 1)[1 − 1
4 A cos(αx)]−1 + 1, (A2)

which maps the original irregular domain into η ∈ −1, 1 and introduces a
wavelength-based scale in the x-direction leading to the field equations of the form

∂2u
∂η2 + [F1 − F2(u − c)− F3v]

∂u
∂η

+ F4
∂2u
∂ξ∂η

+ F5
∂2u
∂ξ2 − F6(u − c)

∂u
∂ξ

− F6
∂p
∂ξ

− F2
∂p
∂η

= 0,

(A3a)
∂2v

∂η2 + [F1 − F2(u − c)− F3v]
∂v

∂η
+ F4

∂2v

∂ξ∂η
+ F5

∂2v

∂ξ2 − F6(u − c)
∂v

∂ξ
− F3

∂p
∂η

= 0,

(A3b)

α
∂u
∂ξ

+ F7
∂u
∂η

+ F8
∂v

∂η
= 0, (A3c)

u(ξ, 1) = 0, v(ξ, 1) = 0, u(ξ,−1) = 0, v(ξ,−1) = 1
2 cAα sin(ξ),

(
G1

∫ 1

−1
u dη

)
mean

= 8
3

Re,

(A3d–h)
with coefficients specified below

F1 = ηxxG−1
3 = 1

4α
2[−1

2 G1A cos(ξ)+ 1
2 A2 sin2(ξ)](η − 1)+ O(α4), (A4a)

F2 = ηxG−1
3 = − 1

8αG1A sin(ξ)(η − 1)+ O(α3), F3 = ηyG−1
3 = 1

2 G1 − 1
8 G1(G2 − 4)+ O(α4),

(A4b,c)
F4 = 2αηxG−1

3 = −1
4α

2G1A sin(ξ)(η − 1)+ O(α4), F5 = α2G−1
3 = 1

4α
2G2

1 + O(α4),
(A4d,e)

F6 =α G−1
3 = 1

4α G2
1 + O(α3), F7 = ηx = −1

2αA(η− 1) sin(ξ)G−1
1 , F8 = ηy = 2G−1

1 ,

(A4f–h)
G1 = 2 − 1

2 A cos(ξ), G2 = 4 + 1
4α

2A2 sin2(ξ)(η − 1)2, G3 = η2
x + η2

y . (A4i–k)

The unknowns are represented as expansions of the form

(u, v) = (ũ0, ṽ0)+ α(ũ1, ṽ1)+ O(α2), p = α−1p̃−1 + p̃0 + O(α), (A5a,b)
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then (A5) is substituted into (A3), and terms of the same orders of magnitude are separated.
The resulting sequence of problems begins with the leading-order system being of the form

∂2ũ0

∂η2 − 1
2

G1ṽ0
∂ ũ0

∂η
− 1

4
G2

1
∂ p̃−1

∂ξ
+ 1

8
A sin(ξ)G1(η − 1)

∂ p̃−1

∂η
= 0, (A6a)

∂ p̃−1

∂η
= 0,

∂ṽ0

∂η
= 0, ũ0(ξ,±1) = ṽ0(ξ,±1) = 0,

(
G1

∫ η=1

η=−1
ũ0 dη

)
mean

= 8
3

Re.

(A6b–e)

Its solution can be readily determined, i.e.
dp̃−1

dξ
= −16Re G−3

1 + 6cAG−3
1 cos(ξ), ũ0 = 2Re(1 − η2)G−1

1 − 3
4

cA(1 − η2) cos(ξ)G−1
1 , ṽ0 = 0.

(A7a–c)
Integration of (A7a) results in an expression for pressure in the form of

p̃−1 = −
(

4 + A2

8

)
Re K(ξ)− 1

2
A Re sin(ξ)

(
1 − A2

8

)−2

G−2
1

[
8 − A2

8
− 3

2
A cos(ξ)

]

− c
4

{
−9

4
A2K(ξ)+ 1

2
A sin(ξ)

(
1 − A2

8

)−2

G−2
1

[
−3

4
A2 − 24 + 1

2
A
(

6 + 3
4

A2
)

cos(ξ)
]}
,

(A8)

where

K(ξ) =
(

1 − A2

16

)−5/2 {
arctan

[(
1 + A

4

)1/2(
1 − A

4

)−1/2

tan
(
ξ

2

)]
+ π

ξ + π

2π

}
.

(A9)

In the above, symbol . . . stands for the floor function, which has been added to remove
spurious discontinuities associated with the arctan function (Jeffrey & Rich 1994), and
pressure is normalized with condition p̃−1( 0) = 0. To extract the mean pressure gradient,
observe that dp̃−1/dξ in (4.6a) is an even function of ξ . It can be expressed as a cosine
Fourier expansion which can be integrated with respect to ξ term by term to arrive at

p̃−1 =
(

1 − A2

16

)−5/2 [
−2Re

(
1 + A2

32

)
+ 9

32
cA2

]
ξ

+ 1
2

A
(

1 − A2

16

)−5/2 [
−3Re + 3

2
c
(

1 + A2

8

)]
sin(ξ)+ · · · , (A10)

where the aperiodic term represents the mean pressure gradient dp̃−1/dξ |mean. The
pressure gradient correction can be expressed as

Bmod,a = Re2 dp0

d x
− dp̃−1

dξ

∣∣∣∣
mean

= 2Re

[
−1 +

(
1 + A2

32

)(
1 − A2

16

)−5/2]
− 9

32
cA2

(
1 − A2

16

)−5/2

. (A11)

The first term on the right-hand side describes the groove effect, which always increases
pressure losses, and the second term expresses the wave effect, which reduces losses if the
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Figure 29. (a) Variations of the pressure gradient correction Bmod determined numerically and (b) the
difference between the numerically and analytically determined pressure gradient correction |Bmod,n − Bmod,a|
as functions of α for A = 0.02.

wave propagates in the positive X-direction. The wave must be fast enough to overcome
the groove effect.

The next-order system has the form

∂2ũ1

∂η2 − 1
2

G1
∂

∂η
ṽ1 − 1

4
G2

1
∂ p̃0

∂ξ

= − 1
8

A sin(ξ) G1(η − 1)(ũ0 − c)
∂ ũ0

∂η
+ 1

4
G2

1(ũ0 − c)
∂ ũ0

∂ξ
, (A12a)

∂ṽ1

∂η
= 1

4
A(η − 1) sin(ξ)

∂ ũ0

∂η
− 1

2
G1
∂ ũ0

∂ξ
, (A12b)

ũ1(ξ, 1) = 0, ṽ1(ξ, 1) = 0, ũ1(ξ,−1) = 0,

ṽ1(ξ,−1) = cA sin(ξ),

(
G1

∫ η=1

η=−1
ũ1 dη

)
mean

= 0 (A12c–g)

and admits only purely periodic solutions.
Comparisons between the numerical (Bmod,n) and analytical (Bmod,a) pressure gradient

corrections displayed in figure 29 demonstrate that the analytical formula provides a good
approximation for α < 10−2.

Appendix B. Small amplitude vibrations

We start with the flow (3.2) written in terms of the complete flow quantities

(u − c)
∂u
∂x

+ v
∂u
∂y

= −∂p
∂x

+ ∂2u
∂x2 + ∂2u

∂y2 ,

(u − c)
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ ∂2v

∂x2 + ∂2v

∂y2 ,
∂u
∂x

+ ∂v

∂y
= 0, (B1a–c)

yU = 1 : u = v = 0, yL = − 1 + 1
2

A cos(αx) : u = 0, v = 1
2

cAα sin(αx),
(B1d–g)
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Effects of wall vibrations on channel flows

Q =
{∫ 1

yL

u dy

}∣∣∣∣∣
mean

= 4
3

Re. (B1h)

The unknowns are represented as expansions in terms of A, i.e.

(u, v, ψ) = [ũ0, ṽ0, ψ̃0](x, y)+ A [ũ1, ṽ1, ψ̃1](x, y)+ A2[ũ2, ṽ2, ψ̃2](x, y)+ O(A3),
(B2a)

p = [B0 + AB1 + A2B2 + O(A3)]x + p̃0(x, y)+ Ap̃1(x, y)+ A2p̃2(x, y)+ O(A3),
(B2b)

then (B2) is substituted into (B1), and terms of the same orders of magnitude are separated.
The three leading-order systems have the following form:

0(A0):
∂2ũ0

∂y2 + ∂2ũ0

∂x2 − (ũ0 − c)
∂ ũ0

∂x
− ṽ0

∂ ũ0

∂y
− B0 − ∂ p̃0

∂x
= 0, (B3a)

∂2ṽ0

∂y2 + ∂2ṽ0

∂x2 − (ũ0 − c)
∂ṽ0

∂x
− ṽ0

∂ṽ0

∂y
− ∂ p̃0

∂y
= 0, (B3b)

∂ ũ0

∂x
+ ∂ṽ0

∂y
= 0, (B3c)

0(A1):
∂2ũ1

∂y2 + ∂2ũ1

∂x2 − (ũ0 − c)
∂ ũ1

∂x
− ũ1

∂ ũ0

∂y
− ṽ0

∂ ũ1

∂y
− ṽ1

∂ ũ0

∂y
− B1 − ∂ p̃1

∂x
= 0,

(B4a)

∂2ṽ1

∂y2 + ∂2ṽ1

∂x2 − (ũ0 − c)
∂ṽ1

∂x
− ũ1

∂ṽ0

∂y
− ṽ0

∂ṽ1

∂y
− ṽ1

∂ṽ0

∂y
− ∂ p̃1

∂y
= 0, (B4b)

∂ ũ1

∂x
+ ∂ṽ1

∂y
= 0, (B4c)

0(A2):
∂2ũ2

∂y2 + ∂2ũ2

∂x2 − (ũ0 − c)
∂ ũ2

∂x
− ũ2

∂ ũ0

∂x
− ṽ0

∂ ũ2

∂y
− ṽ2

∂ ũ0

∂y
− B2 − ∂ p̃2

∂x
= ṽ1

∂ ũ1

∂y
+ ũ1

∂ ũ1

∂x
,

(B5a)

∂2ṽ2

∂y2 + ∂2ṽ2

∂x2 − (ũ0 − c)
∂ṽ2

∂x
− ũ2

∂ṽ0

∂x
− ṽ0

∂ṽ2

∂y
− ṽ2

∂ṽ0

∂y
− ∂ p̃2

∂y
= ṽ1

∂ṽ1

∂y
+ ũ1

∂ṽ1

∂x
,

(B5b)

∂ ũ2

∂x
+ ∂ṽ2

∂y
= 0. (B5c)

Boundary conditions at the upper wall have a simple form, i.e.

y = 1 : ũ0 = ũ1 = ũ2 = ṽ0 = ṽ1 = ṽ2 = 0. (B6)
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Boundary conditions at the lower wall are expressed using the boundary conditions
transfer procedure, i.e.

y = −1 : ũ0 = ṽ0 = 0, (B7a)

ũ1 = −1
2
∂ ũ0

∂y
cos(αx), ṽ1 = −1

2
∂ṽ0

∂y
cos(αx)+ 1

2
αc sin(αx), (B7b)

ũ2 = −1
2
∂ ũ1

∂y
cos(αx)− 1

8
∂2ũ0

∂y2 cos2(αx), ṽ2 = −1
2
∂ṽ1

∂y
cos(αx)− 1

8
∂2ṽ0

∂y2 cos2(αx),

(B7c)

The flow rate constraint is expressed using the stream function in the following form:

0(A0): (ψ̃0|y=1 − ψ̃0|y=−1)mean = 4
3

Re, (B8a)

0(A1) :

⎛⎝ψ̃1|y=1 − ψ̃1|y=−1 − 1
2
∂ψ̃0

∂y

∣∣∣∣∣
y=−1

cos(αx)

⎞⎠
mean

= 0, (B8b)

0(A2):

⎛⎝ψ̃2|y=1 − ψ̃2|y=−1 − 1
2
∂ψ̃1

∂y

∣∣∣∣∣
y=−1

cos(αx)− 1
8
∂2ψ̃0

∂y2

∣∣∣∣∣
y=−1

cos2(αx)

⎞⎠
mean

= 0.

(B8c)

Solution of (B3), (B6), (B7a) and (B8a) is

ũ0 = Re (1 − y2), ṽ0 = 0, p̃0 = 0, B0 = −2Re, (B9)

i.e. the flow is not affected by vibrations at the leading order of approximation. The
solution of system 0(A) can be represented as

[ũ1, ṽ1, p̃1, ψ̃1](x, y) = [ũ(1 )1 , ṽ
(1 )
1 , p̃(1 )1 , ψ̃

(1 )
1 ]( y) eiαx + [ũ(−1)

1 , ṽ
(−1)
1 , p̃(−1)

1 , ψ̃
(−1)
1 ]( y) e−iαx,

(B10)

where ũ(−1)
1 , ṽ

(−1)
1 , p̃(−1)

1 , ψ̃
(−1)
1 are complex conjugates of ũ(1)1 , ṽ

(1)
1 , p̃(1)1 , ψ̃

(1)
1 .

Substitution of (B10) into (B4), separation of Fourier modes, use of (B9), and elimination
of ũ(1)1 and p̃(1)1 result in the following problem to be solved numerically:

D4ψ̃
(1)
1 − [2α2 + iα(ũ0 − c)]D2ψ̃

(1)
1 + [α4 + iα3(ũ0 − c)− iαD2ũ0]ψ̃(1)1 = 0, (B11a)

ψ̃
(1)
1 (1) = 0, Dψ̃(1)1 (1) = 0, ψ̃

(1)
1 (−1) = 1

4 c, Dψ̃(1)1 (−1) = −1
4 Dũ0, (B11b)

where D = d/dy. The reader may note that (B11) represents an inhomogeneous boundary
value problem. Its solution is straightforward if the homogeneous problem does not have
a non-trivial solution. If this is not the case, the general solution consists of a sum of
homogeneous and particular solutions. Non-trivial solutions of the homogeneous problem
exist only for certain combinations of parameters (eigenvalue problem), the minimum
Reynolds number for the formation of such solutions is Re = 5772.22 (Orszag 1971), and
all of them are symmetric with respect to the channel centreline for Re ≤ 6000 which is
of interest in this analysis. If non-trivial homogeneous solutions exist, the inhomogeneous
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solution must be orthogonal to all of them. All inhomogeneous solutions are asymmetric
as only one wall is exposed to vibrations which means that solutions of (B11) exist for
arbitrary parameters present in this problem.

Solution of (B11) gives ψ̃(1)1 . The other relevant flow quantities can be determined a
posteriori as

ṽ
(1)
1 = −iαψ̃(1)1 , ũ(1)1 = i

α
Dṽ(1)1 , B1 = 0, p̃(1)1 = 1

α2 D3ṽ
(1)
1 −

[
1 + i

α
(ũ0 − c)

]
Dṽ(1)1 + i

α
Dũ0ṽ

(1)
1 .

(B12a–d)

Solution of system 0(A2) has the form

[ũ2, ṽ2, p̃2](x, y) =
n=2∑

n=−2

[ũ(n)2 , ṽ
(n)
2 , p̃(n)2 ]( y) einαx (B13)

of which only mode zero is on interest. Substitution of (B13) into (B5), (B6), (B7c) and
(B8c), and extraction of mode zero leads to the following system:

D2ũ(0)2 − Dũ0ṽ
(0)
2 − B2 = ṽ

(1)
1 Dũ(−1)

1 + ṽ
(−1)
1 Dũ(1)1 , (B14a)

D2ṽ
(0)
2 − Dp̃(0)2 = −iαũ(1)1 ṽ

(−1)
1 + iαũ(−1)

1 ṽ
(1)
1 + ṽ

(1)
1 Dṽ(−1)

1 + ṽ
(−1)
1 Dṽ(1)1 , (B14b)

Dṽ(0)2 = 0, (B14c)

y = 1 : ṽ
(0)
2 = 0, ũ(0)2 = 0, (B.15a)

y = −1 : ṽ
(0)
2 = −1

4 (Dṽ
(1)
1 + Dṽ(−1)

1 ), ũ(0)2 = −1
4(Dũ(1)1 + Dũ(−1)

1 )− 1
16 D2ũ0,

(B15b)

ψ
(0)
2 (1)− ψ

(0)
2 (−1) = − 1

16 Dũ0|y=−1. (B15c)

It can be shown that ṽ(0)2 = 0, which leads to a simplified system for the pressure gradient
correction:

D2ũ(0)2 − B2 = ṽ
(1)
1 Dũ(−1)

1 + ṽ
(−1)
1 Dũ(1)1 , (B16a)

ũ(0)2 (1) = 0, ũ(0)2 (−1) = −1
4
(Dũ(1)1 + Dũ(−1)

1 )+ 1
8

Re,
∫ 1

−1
ũ(0)2 dy = −1

8
Re,

(B16b)

with Bmod = −A2B2.
The above analysis shows the existence of two mechanisms of momentum transfer

into the fluid. The first one involves periodic modulations which combine at level
0(A2) creating Reynolds stresses (see right-hand side of (B16a)). The second mechanism
involves a direct transfer, described by the second condition in (B16b). This condition
mimics the slip boundary condition, where the fluid sees the vibrating wall as moving.

Appendix C. Small disturbances in Poiseuille flow

We consider the linear disturbances imposed on the plane Poiseuille flow. Velocity
distribution of the flow scaled with the half-channel width and the maximum velocity
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0 0.5 1.0

Cr /Re
–1.0

–0.8

–0.6

–0.4

–0.2

0

C
i /

Re ws = 0.758

ws = 0.749

Figure 30. Spectra of the Orr–Sommerfeld problem for Re = 6000 and α = 0.5 (red stars) and α = 1.5 (blue
circles). Arrows show the distance between the fastest and slowest waves for a given α.

has the form
U( y) = 1 − y2. (C1)

Small disturbances of the form

[u1, v1, p1](X, Y, t) = [û1, v̂1, p̂1](Y) eiδ(X−Ct) + CC (C2)

are added to the flow, and equations are linearized. In the above, CC stands for the complex
conjugate, and the complex amplification rate has the form C = Cr + iCi, where Cr stands
for the frequency and Ci denotes the amplification rate. Elimination of û1 and p̂1 lead to
the Orr–Sommerfeld (OS) problem of the form[

i
δRe

D4 +
(−2iδ

Re
+ U

)
D2 +

(
iδ3

Re
− D2U − δ2U

)]
v̂1 = C(D2 − δ2)v̂1,

v̂1( y = ±1) = Dv̂1( y = ±1) = 0,

⎫⎪⎬⎪⎭ (C3)

where D = d/dY . Equation (C3) represents an eigenvalue problem whose solution gives
spectrum C of natural flow frequencies for a specified Re and δ. The problem was
converted into a matrix eigenvalue problem by expressing the variable coefficients and
unknowns as Chebyshev expansions and constructing algebraic equations for the unknown
expansion coefficients using the Galerkin projection method. Boundary conditions were
implemented using the Tau procedure (Canuto et al. 1992). The spectrum was determined
using standard methods (Moler 2004), and the inverse iteration technique was used
to improve its accuracy when required (Moradi & Floryan 2014). Typical spectra are
displayed in figure 30. The distance ws between the fastest and the slowest disturbances is
marked in some figures in the main text (see, for example, figure 12).

It is known that these disturbances are attenuated for Re < 5772.22 (Orszag 1971), so
their long-term existence requires continuous energy input from external sources. When
Re > 5772.22, disturbances grow by extracting energy from the flow. These disturbances
are symmetric with respect to the channel axis.
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