Influence of dietary retrograded starch on the metabolism of neutral steroids and bile acids in rats

BY MIRIAM J. F. VERBEEK^{1,2}, EMILE A. M. DE DECKERE^{1*}, LILIAN B. M. TIJBURG¹, JOHAN M. M. VAN AMELSVOORT¹ AND ANTON C. BEYNEN^{2,3}

¹ Unilever Research Laboratorium, PO Box 114, 3130 AC Vlaardingen, The Netherlands

² Department of Human Nutrition, Wageningen Agricultural University, PO Box 8129, 6700 EV Wageningen, The Netherlands

³ Department of Laboratory Animal Science, Utrecht University, PO Box 80.166, 3508 TD Utrecht, The Netherlands

(Received 17 March 1994 – Revised 16 February 1995 – Accepted 12 April 1995)

Diets enriched in retrograded amylose (RS₃) have been shown to lower serum cholesterol concentrations in rats. The possibility was tested that this hypocholesterolaemic effect of RS₃ is caused by an increase in excretion of neutral steroids and/or bile acids. Six groups of ten rats were fed on purified diets containing either 12 or 140 g RS₃/kg solid ingredients with and without added cholesterol (5 g/kg). Low-RS, diets, with and without added cholesterol, to which the bile-acid-binding resin cholestyramine (20 g/kg) was added, were used as reference. The high-RS, diets v. the low-RS, diets tended to reduce the increase in the total serum cholesterol concentration during the course of the experiment (P = 0.067), decreased serum triacylglycerol concentrations, raised total neutral steroids and total bile acids in caecal contents and faecal excretion of total bile acids, but lowered faecal excretion of neutral steroids. In addition, the serum concentration of total 3α -bile acids was markedly raised by the high-RS₃ diets. The high-RS, diets raised the faecal excretion of lithocholic and muricholic acids, but lowered that of hyodeoxycholic acid, and increased the caecal amounts of lithocholic, ursodeoxycholic, β -muricholic and *w*-muricholic acids. Apart from the stimulation of faecal bile acids excretion, the effects of cholestyramine on bile acid metabolism differed at various points from those of RS₃. Cholesterol feeding had predictable effects on cholesterol metabolism and led to greater elevating effects of RS, on the faecal and caecal amounts of muricholic acids. The results suggest that the serum-cholesterol-lowering effect of high-RS₃ diets may be explained by an increased influx of neutral steroids and bile acids into the caecum, and increased faecal excretion of bile acids, and/or by an altered intestinal bile acid profile.

Resistant starch: Serum cholesterol: Bile acids

The expression dietary resistant starch (RS) refers to the fraction of starch that is not absorbed in the small intestine. Three types of RS can be distinguished: physically inaccessible starch (RS₁), resistant starch granules (RS₂) and retrograded amylose (RS₃) (Englyst *et al.* 1992). RS₃ is formed during the cooling of gelatinized, high-amylose starch and consists of small aggregates of hydrogen-bonded amylose. In the rat, both RS₂ and RS₃ were found to be resistant to digestion in the small intestine. RS₃ might be fermented by the caecal and colonic flora to a lesser extent than RS₂ (Schulz *et al.* 1993).

Previous studies in rats demonstrated that feeding of RS_3 instead of digestible starch lowered serum cholesterol concentrations (De Deckere *et al.* 1992, 1993). There is evidence that the hypocholesterolaemic effect of dietary RS_3 may also occur in humans (Behall *et al.* 1989). The metabolic basis for the cholesterol-lowering activity of RS_3 is unknown. Analogously to the way dietary soluble fibres affect cholesterol metabolism (Beynen &

M. J. F. VERBEEK AND OTHERS

West, 1989), RS_3 may increase faecal excretion of neutral steroids and/or bile acids, thereby causing a drain on the whole-body cholesterol pool which in turn may lead to a fall in the serum cholesterol concentration. In addition, if RS_3 interacts with specific neutral steroids and/or bile acids, the composition of caecal and faecal steroids may be altered. In an attempt to unravel the mechanism by which dietary RS_3 influences cholesterol metabolism, we studied the effect of RS_3 ingestion v. that of digestible starch on serum and liver cholesterol concentrations, and on the amounts of neutral steroids and bile acids in the caecal contents and faeces of rats. Diets with and without added cholesterol were fed. Diets with added cholesterol were fed because effects of various dietary components on serum cholesterol concentrations in rats are generally amplified by simultaneous cholesterol loading (Beynen & West, 1989). Two additional groups of rats were given either a cholesterol-free or a cholesterol-rich diet containing cholestyramine and served as reference groups, because cholestyramine affects cholesterol metabolism by raising faecal bile acid excretion (Beynen *et al.* 1988).

MATERIALS AND METHODS

The experimental protocol was approved by the Animal Experiments Committee of Unilever Research Laboratorium, Vlaardingen.

Animals, housing and diets

Sixty-five male, SPF Wistar rats (WU-strain) aged 9-10 weeks and weighing on average 275 g were purchased from Harlan/Cpb (Zeist, The Netherlands). They were housed individually, with free access to tap water, in cages with wire-mesh bottoms in an airconditioned room (22-24°; relative humidity approximately 55%) with a fixed day-night rhythm (light on from 07.00 to 19.00 hours). After arrival the rats were acclimatized for 1 week in which they had free access to food. Next, they were accustomed to a meal-feeding regimen with free access to food from 07.00 to 07.30 hours and from 19.00 to 19.30 hours for 2 weeks. In these weeks the rats were fed on a commercial, pelleted natural-ingredient diet (R/M1(E)SOC, Special Diets Services, Witham, Essex). At the beginning of the third week body weights and serum total cholesterol and triacylglycerol concentrations were determined. At the start of the fourth week (day 0 in the experiment) the animals were allocated to six dietary groups of ten rats each (randomized design) with similar means of body weight, serum total cholesterol and triacylglycerol concentrations (see Tables 2 and 4). The experimental, purified diets (Table 1) were either cholesterol-poor or contained 5 g cholesterol/kg solid ingredients. Gelatinized starch was present in the form of starch preparations with either a low RS_a (20 g/kg total starch) or high RS_a content (230 g/kg total starch). Two diets, one with and the other without added cholesterol, contained 20 g cholestyramine/kg solid ingredients. Energy density of the experimental diets was 5.23 kJ/gon a wet basis and 15.11 kJ/g on the basis of solid ingredients.

Collection of samples

To determine cholesterol and triacylglycerol, tail blood samples were taken between 06.00 and 07.00 hours before the morning meal on both day -6 and day 21 of the experiment. Faeces of each rat were collected quantitatively during days 15–17. On days 21–24, between 09.00 and 10.00 hours, two or three rats of each dietary group were anaesthetized by exposure to diethyl ether in random order. Blood samples were obtained from the abdominal aorta for determination of serum 3α -bile acids. Caecums were removed and weighed. Caecal contents were collected, and weights and pH recorded. The livers were excised and stored at -20° until analysis. The rats were killed in small groups within 1 h in order to restrict the variation in the variables due to postprandial effects.

	Iabl	e I. Compositio	on of the exp	erimental diets	(g)	
Ingredients	High RS ₃	High RS ₃ + cholesterol	Low RS ₃	Low RS3 + cholesterol	Low RS ₃ +cholestyramine	Low RS ₃ + cholesterol + cholestyramine
Lard*	5-1	4.8	5.1	4.8	5.1	4.8
Starch. high RS. ⁺	40-4	40-4		Ì	ł	
Starch, low RS. [†]	ļ	ł	40-4	40.4	40-4	40-4
Cholesterol [‡]	1	0-33	I	0-33	ł	0-33
Ouestran§		İ	-	ł	2:9	2.9
Sucrose	1:2	1:2	1.2	1:2	1-28	1.2§
Constant components	144-46	144.46	144-46	144-46	144-46	144-46
RS ₃ , retrograded amylose. * Smilde B.V., Hecrenveen, The Neth † The starch with high RS ₃ content v approximately 400 g amylose (of which 2 a/d Zaan, The Netherlands) containing 3 45 min (Ultra-Set) or 70° for 5 min (Mer ‡ Merck, Darmstadt, Germany. Lard § Questran [®] (Bristol-Meyers, Woerden	erlands; the prepa vas a modified ma 30 g RS_3/kg start 250 g amylose start ritena) under stirri itena) under stirri , The Netherlands , The Netherlands	tration contained 6 aize starch (Ultra-s ch. The starch with which 20 g RS ₃)/k ing, cooled down ai or cholesterol.	00 mg cholester tet LT, Nationa low RS ₃ conten ig starch. The st t room tempera holestyramine, 4	ol/kg. I Starch and Chen I was a common n arches were gelatii ture and stored at 22 g sucrose and 1	nical Company, Zutp naize starch (Meritena nizcd with tap water (- 20° for 1-6 d. 34 g flavouring agents/	hen, The Netherlands) containing A, N.V. Honig's Artikelen, Koog starch-water, 1:3, w/v) at 95° for kg. This amount of Questran gave

1.3 g cholestyramine and 1.2 g sucrose in the diet.

Tonstant components consisted of (g): sunflower-seed oil (Union N.V., Merksem, Belgium), 0-2, casein (D.M.V., Veghel, The Netherlands) 14-6, mineral mixture 0-86, vitamin mixture 0-2, cellulose (Machery-Nagel GmbH, Dueren-Roelsdorg, Germany) 3-6, water 125. The compositions of the mineral and vitamin mixtures have been described earlier (De Deckere *et al.* 1993).

Chemical analyses

Resistant starch in the starch preparations used to prepare the diets was determined by the method of Berry (1986). Total cholesterol in serum was measured using a commercial test combination (CHOD-PAP, C-system, Boehringer, Mannheim, Germany). Total and free glycerol in serum were determined enzymically (GPO-PAP method, Roche Diagnostics, Basel, Switzerland and GPO-Trinder method, Sigma Chemical Co., St Louis, MO, USA). Serum triacylglycerol values were calculated as the difference between total and free glycerol concentrations. Total 3α -bile acids in serum were measured enzymically using a commercial test kit (Enzabile[®], Nycomed Pharma AS, Oslo, Norway). The livers were homogenized in distilled water and samples were extracted and analysed for total cholesterol as described by Abell *et al.* (1952).

For analysis of neutral steroids and bile acids, faeces and caecal contents were freezedried and homogenized. Neutral steroids were determined in individual samples, but for bile acids analyses faeces and caecal contents were sampled proportionally to the total dry weight collected per rat and the samples pooled for each dietary group, which resulted in a value per dietary group equivalent to the mean of the ten individual rat values for the excretion of faecal total bile acids (μ mol/d) and caecal total bile acids (μ mol) only. In a glass tube 0.15 μ mol 5 α -cholestane (internal standard for neutral steroids), 0.6 μ mol 7α , 12α , -dihydroxy-5 β -cholanic acid (internal standard for bile acids), 150 mg freeze-dried facces or caecal contents, 2 ml methanol, and 0.65 ml 5 M-NaOH were mixed and saponified for 2 h at 80°. Neutral steroids were extracted three times with 3 ml petroleum ether (boiling range, $60-80^{\circ}$), the extracts were centrifuged for 5 min at 3000 g, and the solvent was evaporated under a stream of N₂. The neutral steroids were converted into volatile trimethylsilyl ether derivatives by addition of 0.24 ml freshly prepared silylating agent (N,N-dimethylformamide-bis-silyl-trifluoracetamide, 2:1, by vol.) and heated at 80° for 1 h. After extraction of the neutral steroids the aqueous phase was acidified to pH 1 with HCl. Bile acids were extracted three times with 5 ml freshly distilled ether, and the extract was shaken and centrifuged for 5 min at 3000 g. A portion of the extract was dried under N_{2} , and the bile acids were methylated by addition of a mixture of 2,2-dimethoxypropanemethanol-12 m-HCl (1:1:0·1, by vol.). After standing overnight at room temperature the solvent was evaporated under N₂, and trimethylsilyl ether derivatives were formed by incubating with a mixture of pyridine-bis-silyl-trifluoracetamide-trimethylchlorosilane (1:1:0.2, by vol.) for 1 h at 80°. After derivatization the solvent was evaporated under N₂, and the residue dissolved in hexane. Portions $(1 \ \mu l)$ of the trimethylsilyl ether derivative solutions were injected into a gas chromatograph (Carlo Erba Model Mega 5160, Carlo Erba, Milan, Italy), which was equipped with a $25 \text{ m} \times 0.25 \text{ mm}$ (inner diameter) fused silica capillary column (Chrompack, Middelburg, The Netherlands) and a flame-ionization detector. Neutral steroids were analysed on a CP Sil 5 CB column, and bile acids on a CP Sil 19 CB. H, was used as a carrier gas at a flow rate of 1.8 ml/min. Temperature programming was used under the following conditions: neutral steroids, 200° for 0.3 min, 200 to 240° in 4 min, isothermal for 20 min, 240 to 285° in 2.25 min, followed by 20 min at 285°; bile acids, 200° for 3 min, 200 to 275° in 7.5 min, followed by 15 min at 275°, 275 to 290° in 1.5 min, and 13 min isothermally at 290°. Steroids were calculated from the peak areas relative to the peak area of the internal standards. Identification of the major neutral steroids and bile acids was accomplished by matching their retention times with those of known standards of high purity. Differences in detector response among the various steroids were corrected on the basis of the response factors calculated from a mixture of pure steroids with known molar composition.

Table 2. Body weight, feed intake and faeces production of rats fed on experimental diets containing resistant starch or cholestyramine*

				Fac	eces
	Body v	veight (g)	Feed	Production	Dry matter
	Initial	Final	(g/d)	(g/d)	(g/kg)
Dietary treatment					
High RS ₃	288	368	49 ·4	2.6	714
High RS_3 + cholesterol	287	367	48-9	2.9	668
Low RS ₃	289	360	50-4	1.6	811
Low RS_3 + cholesterol	288	379	50-6	1.7	826
Low RS_3 + cholestyramine	284	365	52-4	3.1	677
Low RS_3 + cholestyramine + cholesterol	284	357	52.9	2.8	783
Analysis of variance					
Pooled SEM	6.0	9.2	1.6	0.2	24
Effects (P values)					
RS ₃		0.866	0.339	< 0.001	< 0.001
Cholesterol	_	0.626	0.965	0.791	0.197
Cholestyramine		0.358	0.199	< 0.001	< 0.001
$RS_3 \times cholesterol$		0.264	0.820	0.614	0.202
Cholesterol × cholestyramine		0.141	0.949	0.365	0.059

(Mean values with their pooled standard error for ten rats per dietary group)

RS₃, retrograded amylose.

* For details of diets and procedures, see Table 1 and pp. 808-811.

Statistical analysis

Data, except those of bile acids in faeces and caecal contents, were examined by analysis of variance with diet as factor followed by evaluation using specific contrasts (Statistical Analysis System, SAS Institute Inc., 1987). The contrasts were high $RS_3 v$. low RS_3 , cholesterol v. no added cholesterol, cholestyramine v. no cholestyramine in the diet, and the interactions between RS_3 and cholesterol, and between cholesterol and cholestyramine. Pooled SEM, being root mean square errors divided by \sqrt{n} , are presented, except for neutral steroids.

Data for individual and total neutral steroids were transformed to their natural logarithms. Geometric means are presented, and pooled variation coefficient of the mean (CVM) is given as $\sqrt{(s_{ln}^2/10) \times 100\%}$, where s_{ln}^2 is the residual mean square in the logarithmic scale.

Analyses of total bile acids in faeces and caecal contents were performed only. Our experimental design, type of rats and analytical methods were very similar to those in experiments carried out previously (Beynen *et al.* 1984). Therefore, the number of degrees of freedom (10) and the variation coefficients for the excretion of bile acids were taken from these experiments. The mean variation coefficient was taken conservatively to be 0.30 for the faecal and caecal total bile acids. This procedure of estimating variation coefficients for pooled samples has been employed earlier by Lovati *et al.* (1990). For the groups without cholestyramine, approximate significance probability levels for the RS₃ and cholesterol effects were calculated by taking the square of the coefficient of variation (as a fraction) to be the residual mean square in the analysis of variance in the logarithmic scale and using the logarithms of the pooled sample values weighted by 10 (the number of rats contributing to the pool).

RESULTS

Body weight, feed intake and faeces production

Table 2 shows that body weight and feed intake were not affected by the dietary variables. Faeces production was significantly greater in the high- RS_3 groups and the cholestyramine groups than in the low- RS_3 groups. RS_3 and cholestyramine in the diet led to a reduced percentage of dry matter in the faeces.

Caecal characteristics

The weights of caecal tissue and contents were significantly higher in rats fed on the high- RS_3 diets than in rats fed on the low- RS_3 diets (Table 3). Cholestyramine in the diet also led to higher caecal weights. The high- RS_3 diets, in comparison with the low- RS_3 diets, reduced the percentage of dry matter in the caecal contents, whereas the cholestyramine-containing diets increased it. Caecal pH was lower in rats fed on the high- RS_3 diets than in rats fed on the low- RS_3 diets.

Serum cholesterol and triacylglycerols, and liver cholesterol

In the experimental period the serum total cholesterol and triacylgycerol concentrations increased with respect to the initial values (Table 4). Irrespective of the amount of cholesterol in the diet, high-RS₃ intake v. low-RS₃ intake tended to diminish the increase in the serum total cholesterol concentration. Cholesterol feeding did not significantly affect the serum total cholesterol concentration, and cholestyramine significantly raised the increase in the serum cholesterol concentration.

The high-RS₃ diets, in comparison with the low-RS₃ diets, led to significantly lower serum triacylglycerol concentrations (Table 4), whereas dietary cholesterol and cholestyramine did not significantly influence the concentrations.

Dietary RS_3 tended (P = 0.063) to reduce the relative liver weight (Table 4). Cholesterol feeding raised the liver weight, and cholestyramine consumption antagonized this effect. The amount of RS_3 in the diet did not affect the liver cholesterol concentration. The high-cholesterol diets led to twofold higher hepatic cholesterol levels than did the cholesterol-free diet. However, this increase in liver cholesterol was prevented by cholestyramine in the diet.

Faecal and caecal total neutral steroids and serum 3α -bile acids

The high-RS₃ diet, in comparison with the low-RS₃ diet, reduced both the excretion $(\mu \text{mol/d})$ and the concentration of total neutral steroids $(\mu \text{mol/g} \text{ dry faeces})$ in the faeces (Table 5). Dietary cholesterol and cholestyramine raised the faecal excretion of total neutral steroids, and a strong positive interaction between the effects of cholesterol and cholestyramine was found, but not between the effects of cholesterol and RS₃.

The high-RS₃ diet, in comparison with the low-RS₃ diet, increased the amount of total neutral steroids in the caecal contents, and decreased the concentration due to the increase in the contents (Table 5). Cholesterol and cholestyramine in the diet also raised the amount of total neutral steroids in the caecum, but only cholesterol raised the concentration.

The high- RS_3 diets v. the low- RS_3 diets raised the faecal excretion of the total bile acids, but did not affect the faecal concentration (Table 5). Both dietary cholesterol and cholestyramine increased the faecal excretion of bile acids. The high- RS_3 diet also led to an increase in the amount of the caecal total bile acids, but the concentration in the caecum was unchanged. Cholesterol and cholestyramine increased the total amounts and concentrations of bile acids in the caecum.

The serum total 3α -bile acids concentration was significantly raised by about 70% after feeding the high-RS₃ diets, in comparison with the low-RS₃ diets (Table 5). The addition

Table 3. Caecal characteristics of rats fed on experimental diets containing resistant starch or cholestyramine*

		Cae	cum	
	Tissue, wet wt (g)	Contents, wet wt (g)	Contents, dry matter (g/kg)	Contents, pH
Dietary treatment		· · · · · · · · · · · · · · · · · · ·		
High RS ₃	1.24	4.83	172.3	7.40
High RS_3 + cholesterol	1.27	5-18	169.2	6.91
Low RS ₃	0.62	1.73	220.1	7.95
Low $RS_3 + cholesterol$	0.63	1.82	222.7	7.99
Low RS ₄ +cholestyramine	0.72	2.39	242.9	7.70
Low RS_3° + cholestyramine + cholesterol	0.76	2.80	248.5	7.75
Analysis of variance				
Pooled SEM	0.02	0.28	6.3	0.15
Effects (P values)				
RS,	< 0.001	< 0.001	< 0.001	< 0.001
Cholesterol	0.502	0.234	0.742	0.302
Cholestyramine	0.023	0.002	< 0.001	0.117
$RS_3 \times cholesterol$	0.844	0.643	0.646	0.091
Cholesterol × cholestyramine	0.786	0.574	0.818	0.987

(Mean values with their pooled standard error for ten rats per dietary group)

RS₃, retrograded amylose.

* For details of diets and procedures, see Table 1 and pp. 808-811.

of cholestyramine to the diets reduced the concentration of the serum 3α -bile acids by about 30%, and dietary cholesterol did not influence it.

Profiles of faecal and caecal neutral steroids

The high-RS₃ diets v. the low-RS₃ diets altered the profile of the faecal neutral steroids: the amount of coprostanol dropped and that of β -cholestanol rose (Table 6). However, the latter was a minor component. The high-RS₃ diets tended to raise the faecal excretion of cholesterol. Cholesterol and cholestyramine raised the faecal excretion of the three neutral steroids.

The high-RS₃ diets v. the low-RS₃ diets decreased coprostanol and increased cholesterol in the caecal contents, whereas cholesterol and cholestyramine increased the neutral steroids (Table 6).

Profiles of faecal and caecal bile acids

The high-RS₃ diets, compared with the low-RS₃ diets, raised the faecal excretion of lithocholic acid, and that of α -, β - and ω -muricholic acids, but lowered the excretion of hyodeoxycholic acid (Table 7). Dietary cholesterol generally raised the faecal excretion of all bile acids. Apart from α -muricholic acid, the faecal excretion of bile acids was markedly enhanced by dietary cholestyramine.

The amounts of chenodeoxycholic, lithocholic, ursodeoxycholic, β -muricholic and ω -muricholic acid in the caecum were elevated by the high-RS₃ diets ν . the low-RS₃ diets (Table 7). Cholestyramine feeding lowered the caecal amounts of β - and ω -muricholic acids, but drastically raised those of the other bile acids. Depending on the composition of the diet, the feeding of cholesterol either raised or did not influence the caecal levels of the individual bile acids.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Centre	a total aholae	tarol	Carri	m trionulation		Live	Ŀ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		In Ioc			nice	III UIACYIBIYO		Dalativa	
Iterary treatment High RS ₃ High RS ₃ High RS ₃ 140 252 $+0.12$ 0.82 0.96 $+0.14$ 31.5 5.14 High RS ₃ Low RS ₃ cholesterol 2.40 2.52 $+0.12$ 0.82 0.96 $+0.14$ 31.5 5.14 Low RS ₃ cholesterol 2.47 2.71 $+0.24$ 0.83 1.25 $+0.42$ 31.5 5.14 Low RS ₃ cholesterol 2.36 2.81 $+0.24$ 0.88 1.47 $+0.62$ 32.5 0.74 0.53 Low RS ₃ cholesterol 2.36 2.81 $+0.45$ 0.88 1.47 $+0.62$ 32.5 10.24 Low RS ₃ cholesterol 2.39 2.97 $+0.52$ 0.79 3.25 5.64 Low RS ₃ cholesterol 2.39 2.97 $+0.52$ 0.79 3.25 5.64 Low RS ₃ cholesterol 2.30 0.70 3.25 0.70 5.42 Low RS ₃ 2.31		Initial (mmol/l)	Final (mmol/l)	Change (mmol/l)	Initial (mmol/l)	Final (mmol/l)	Change (mmol/l)	weight (g/kg body wt)	Cholesterol (µmol/g)
High \mathbb{R}_3 High \mathbb{R}_3 1:5+0:1431:55:14High \mathbb{R}_3 + cholesterol2:442:66+0:220:831:25+0:423:4010:53Low \mathbb{R}_3 Low \mathbb{R}_3 2:472:71+0:240:851:47+0:623:264:91Low \mathbb{R}_3 + cholesterol2:472:71+0:450:881:58+0.703:5210:24Low \mathbb{R}_3 + cholestrand2:362:81+0:450:881:58+0.703:5210:24Low \mathbb{R}_3 + cholestrand2:362:94+0:520:791:27+0:483:255:64Low \mathbb{R}_3 + cholestrand2:322:94+0:520:791:27+0:483:255:64Low \mathbb{R}_3 + cholestrand2:322:94+0:520:791:27+0:483:255:64Low \mathbb{R}_3 + cholestrand2:392:97+0:580:861:45+0:623:705:42Low \mathbb{R}_3 + cholestrand0:110:110:190:100:170:160:60:69Pooled \mathbb{R}_M 0:110:190:100:170:160:60:690:69Rifects (P values)0:1280:067-0:180:230:0630:705Rifects (P values)0:1090:1090:170:160:630:705Rifects (P values)0:180:1090:170:190:230:0630:705Rifesterol0:0890:0970:	ietary treatment								
High \mathbb{R}_3^4 -cholesterol2:442:66+0:220:831:25+0:423:4010:53Low \mathbb{R}_3^5 2:81+0:242:81+0:240:851:47+0:623:524:91Low \mathbb{R}_3^5 + cholesterol2:362:81+0.450:881:58+0.703:5210:24Low \mathbb{R}_3^5 + cholestyramine2:362:94+0.520.791:27+0.483:555:64Low \mathbb{R}_3^5 + cholestyramine2:392:97+0.580.791:27+0.483:255:64Low \mathbb{R}_3^5 + cholestyramine + cholestora2:392:97+0.580.791:27+0.493:255:64Low \mathbb{R}_3^5 + cholestyramine + cholestora2:392:97+0.580:861:45+0.793:255:64Low \mathbb{R}_3^5 + cholestyramine + cholestora2:422:392:97+0.580:703:7210:24Low \mathbb{R}_3^5 + cholestora0:110:110:090:170:160:60:69Pooled \mathbb{R} 0:180:0190:170:160:60:690:69 \mathbb{R}_3^5 Cholestoral0:1990:1090:170:160:630:03 \mathbb{R}_3^5 × cholesterol0:370:5270:3480:9280:0990:01 \mathbb{R}_3^5 × cholesterol0:7880:4300:7980:0990:010:01 \mathbb{R}_3^5 × cholesterol0:9280:9280:9210:9710:971	High RS ₃	2:40	2.52	+0.12	0-82	96-0	+0.14	31.5	5.14
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	High RS ₃ + cholesterol	2:44	2.66	+0-22	0-83	1.25	+0.42	34-0	10-53
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Low RS,	2-47	2.71	+0.24	0.85	1-47	+0.62	32.6	4-91
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Low RS ₃ +cholesterol	2.36	2.81	+0.45	0.88	1.58	+0.70	35.2	10-24
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Low RS ₃ + cholestyramine	2:42	2:94	+0.52	0-79	1.27	+0.48	32.5	5.64
allysis of variancePooled sEM 0.11 0.11 0.11 0.10 0.17 0.16 0.6 Pooled sEM 0.11 0.11 0.11 0.10 0.17 0.16 0.6 Pooled sEM 0.11 0.11 0.11 0.10 0.17 0.6 0.69 Effects (P values) 0.128 0.067 $ 0.019$ 0.023 0.063 0.705 RS ₃ $ 0.128$ 0.067 $ 0.181$ 0.242 0.001 0.001 Cholesterol $ 0.345$ 0.443 0.053 0.001 0.001 RS ₃ × cholesterol $ 0.737$ $ 0.848$ 0.928 0.033 0.073 Cholesterol x cholestyramine $ 0.778$ 0.430 $ 0.928$ 0.099 0.011	Low RS ₃ + cholestyramine + cholesterol	2-39	2-97	+0-58	0-86	1:45	+0-59	3-0	5.42
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	alysis of variance								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pooled SEM Effects (P values)	0-11	0-11	60-0	0.10	0.17	0-16	0.6	0-69
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	RS	-	0-128	0-067	ł	0-019	0-023	0-063	0-705
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Cholesteroi		0-319	0.109	1	0.181	0-242	0.001	0-001
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Cholestyramine		0-089	0-037		0-345	0-443	0-053	0-005
Cholesterol × cholestyramine - 0.778 0.430 - 0.848 0.928 0.089 0.001	$RS_3 \times cholesterol$		0-837	0-527	I	0-601	0-540	0-921	179-0
	Cholesterol x cholestyramine	-	0.778	0.430	I	0.848	0-928	0-089	0-001

starch or cholestyramine* (Mean values with their pooled standard errors for ten rats per dietary

Table 4. Serum and liver cholesterol and serum triacylglycerol concentrations of rats fed on the experimental diets containing resistant

RS_a, retrograded amylose. * For details of diets and procedures, see Table 1 and pp. 808–811.

814

M. J. F. VERBEEK AND OTHERS

https://doi.org/10.1079/BJN19950008 Published online by Cambridge University Press

for bile acids, except those of serum 3α -bile acids which are means (n 10), are single values determined in pooled samples and were also expressed g/g dry weight of pooled samples for comparison with the data of the neutral steroids. (The within-group variation of the dry weight values of the faeces and the caecal contents was not more than a factor of 2.)) Values for total faecal and caecal neutral steroids (including coprostanone) are geometric means (n 10) and their pooled coefficients of variation (CVM). Values

(μ Dietary treatment	(µmol/g dry faeces) 6.42 15.66			DIIC a	cius		acids	Comme
Dietary treatment	6.42 15.66	(lomµ)	(µmol/g dry contents)	(µmol/d)	(µmol/g dry faeces)	(/mol)	(µmol/g dry contents)	3α-bile acids (µmol/l)
	6.42 15.66							
	15.66	4-91	6.21	23-85	13.29	17-99	21·31	10-77
High RS', + cholesterol 29.17		17-13	20-55	50-34	26.61	33·25	38·72	10-64
Low RS, 14-26	Icili	3-26	8-96	17-01	13-55	8.33	21-99	6.27
Low RS ³ + cholesterol 38-43 2	28·13	15-56	39-50	37-20	27·06	18-46	45.78	6.16
Low RS [°] + cholestyramine 24.45	12-01	5-01	8-73	147-77	71-83	41.58	70-97	3.68
Low RS_3^3 + cholestyramine + cholesterol 156.30	71-10	27-25	40-05	178·22	80-69	46-76	67-47	4-65
Analysis of variance Pooled CVM (%)	8 [.] 3	11:3	9.6	1		I	I	I
Pooled sem	ļ		ŀ	1	1		I	1.08
Effects (P values)								
RS, 0.009 <	< 0.001	0-030	< 0.001	0.007	-	< 0.001		< 0.001
Cholesterol < 0.001 <	< 0.001	< 0.001	< 0.001	< 0.001	1	< 0-001†	1	0-783
Cholestyramine < 0.001 <	< 0.001	< 0.001	0-944				l	0-063
RS _a × cholesterol 0-907	0-993	0-173	0-103	0-859†		0-362†	I	0-989
Cholesterol × cholestyramine < 0.001 <	< 0.001	0-559	0-818	I			I	0.619

RESISTANT STARCH AND STEROID METABOLISM

RS₃, retrograded amylose. * For details of diets and procedures, see Table 1 and pp. 808–811. † Approximate *P* values.

		Faeces (µmol/d)			Caecum (µmol)	
	Coprostanol	Cholesterol	β-Cholestanol	Coprostanol	Cholesterol	<i>β</i>-Cholestanol
Dietary treatment						
High RS,	4-72	4-74	0-57	1.76	2.14	0-23
High RS, + cholesterol	3-07	20-02	0-57	1:42	11.84	0.41
Low RS,	8-95	4-06	0.28	1-82	1.10	0-07
Low RS, + cholesterol	21-56	14-96	0-42	5.68	7.52	0.32
Low RS, + cholestyramine	16-58	6.73	0.78	2.75	1.80	0.14
Low RS ₃ + cholestyramine + cholesterol	72.50	71-53	1.60	11-52	14-06	Q-26
Analysis of variance						
Pooled CVM (%)	25.5	12.8	10-4	27-2	13-6	40-6
Effects (P values)						
RS	< 0.001	0-087	< 0.001	0-011	< 0.001	0-098
Cholesterol	0.003	< 0.001	< 0.001	< 0-001	< 0.001	600-0
Cholestyramine	< 0.001	< 0.001	< 0.001	0-044	< 0.001	0.601
RS, × cholesterol	0.013	0.598	0-055	0-016	0.427	0.262
$Cholesterol \times cholestyramine$	0-248	< 0.001	0.142	0.588	0-621	0.305

Table 6. Profiles of faecal and caecal neutral steroids of rats fed on experimental diets containing resistant starch or cholestyramine*† (Geometric means with their pooled coefficients of variation (CVM) for ten rats per dietary group)

RS₃, retrograded amylose. * For details of diets and procedures, see Table 1 and pp. 808–811. † Coprostanone amounts were low and in a number of samples not detectable. For this reason their geometric means were not given.

ofiles of faecal and caecal bile acids of rats fed on experimental diets containing resistant starch or cholestyramine [*]	(Single values determined in pooled samples of ten rats per dietary group)
es of fa	
Profile	
Table 7.	

heidig ucaunchi	2								
accal bile acids (umol/d)									
High RS,	5-27	0-17	0-38	5-43	2.62	1-39	1-36	1-36	5.87
High RS, + cholesterol	9-51	0-71	0.27	90.6	6.57	2.19	5-37	6.89	9.76
Low RS,	4.52	0.16	0.30	3-56	5.05	1-09	0-31	0-35	1-67
Low RS [*] +cholesterol	8-24	0-38	0-59	7-24	16-43	1.82	0-33	0-48	1-60
Low RS, + cholestyramine	71-23	1.82	1-93	51-30	14.40	2.09	n.d.	1.86	3.15
Low RS ₃ + cholestyramine + cholesterol	81.06	1-45	2.80	65-06	20-81	2-27	n.d.	1-94	2.84
aecal bile acids (mol)									
High RS,	6.74	0-38	0.16	2.58	2.85	96-0	0.78	0-56	2.98
High RS, + cholesterol	5-92	1- 44	0-67	4·14	2.83	1·34	4.61	5.86	6-42
Low RS,	2.66	0.38	0 40	1·10	2.39	0-52	n.d.	0-35	0-88
Low RS ₃ +cholesterol	5.70	0-95	n.d.	2.20	6.15	0-74	n.d.	1-17	1-56
Low RS ₃ + cholestyramine	21.58	0-51	1:02	13-92	2.86	0.76	n.d.	0-24	0-68
Low RS _a + cholestyramine + cholesterol	23-05	n.d.	0-73	16-75	4.61	0-77	n.d.	0-31	0-54

hyodeoxycholic acid; UDC, ursoacoxycnone acres, see. * For details of diets and procedures, see Table 1 and pp. 808–811.

RESISTANT STARCH AND STEROID METABOLISM

DISCUSSION

Feeding of diets containing a great amount of RS_3 , in comparison with feeding of diets containing a low amount of RS_3 , tended to reduce the mean serum cholesterol concentration (reduction by 6%). The effect of RS_3 was more pronounced for the increase in the serum cholesterol concentration due to the switch from the non-purified diet to the purified diet. In two earlier experiments with eight rats per group the hypocholesterolaemic effects of comparable high- RS_3 diets were 8 and 15% (De Deckere *et al.* 1992, 1993). Thus, high- RS_3 diets consistently have a small lowering effect on the serum cholesterol concentration which in the present study just failed to reach statistical significance.

The experimental diets also increased the serum triacylglycerol concentration in comparison with the non-purified diet. The effect was significantly lower for the high-RS₃ diets than for the low-RS₃ diets which may be explained either by a lower energy intake due to RS₃ (De Deckere *et al.* 1995), or by the lower amount of digestible starch in the high-RS₃ diet. Diets high in digestible carbohydrates generally raise the serum triacylglycerol concentration in rats (Herman *et al.* 1991; Zhang & Beynen, 1993).

The objective of the present study was to investigate whether the hypocholesterolaemic effect of dietary RS_a, as found in previous studies (De Deckere et al. 1992, 1993), is associated with changes in neutral steroid and bile acid metabolism. RS₃ lowered the faecal excretion of total neutral steroids, but raised that of bile acids. A similar effect of uncooked amylomaize starch on bile acid secretion was found by Sacquet et al. (1983). RS₃ raised the total amount of both neutral steroids and bile acids in the caecum, which suggests that the amounts of neutral steroids and bile acids in the digesta in the terminal ileum were increased or that intestinal transit time was decreased (Iwata et al. 1992). However, total gastrointestinal transit time has been found to be the same for a high-amylose diet v. a cooked potato-starch diet (Lajvardi et al. 1993). Binding of bile acids by RS_3 in the small intestine might have occurred because starch has been shown to bind bile acids (Bianchini et al. 1989). Although the nature of the interaction between RS_3 and bile acids in the small intestine is unknown, the hypocholesterolaemic effect of RS₃ as found in previous studies (De Deckere et al. 1992, 1993) might be explained by stimulation of bile acid excretion as found in the present study, leading to an increase in hepatic bile acid synthesis which in turn causes a drain on the body pool of cholesterol, which is the precursor of bile acids. The result is a decrease in the serum cholesterol concentration. The mechanism proposed here is identical to that underlying the hypocholesterolaemic effect in man of the bile acidbinding resin cholestyramine by direct ionic binding of bile acids (Grundy, 1986). In the rat, however, it has been reported that cholestyramine increases faecal excretion of bile acids without affecting serum cholesterol (Beynen & West, 1989). In the present study the rise in the serum total cholesterol concentration induced by the purified diets was greater for the diets with cholestyramine than for the diets without cholestyramine. This may be caused by the reported dramatic increase in hepatic cholesterol synthesis in rats fed with cholestyramine (Spady et al. 1985). However, cholestyramine did prevent the rise in liver cholesterol seen after cholesterol feeding. Cholestyramine also produced an increase in the faecal excretion of neutral steroids which might be explained by interference with fat absorption, including cholesterol absorption, due to reduced formation of mixed micelles.

The total amount of neutral sterols in the caecal contents of the rats fed on the high-RS₃ diet was greater than that of the rats fed on the low-RS₃ diet, whereas the faecal excretion of total neutral steroids was the opposite. Conversion of neutral steroids into non-detectable compounds or uptake of neutral steroids in the caecum (Molina *et al.* 1990) might have been greater in the rats fed on the high-RS₃ diets than in the rats fed on the low-RS₃ diets.

The high-RS₃ diets led to an increase in the concentration of serum total 3α -bile acids, whereas cholestyramine lowered this concentration. Cholestyramine effectively binds bile acids in the intestinal lumen and thus depresses their reabsorption, leading to a decrease in the concentration of serum total 3α -bile acids. RS₃ might also bind bile acids in the gut, but this effect was associated with an increase in the concentration of serum 3α -bile acids. The different effect of cholestyramine and RS₃ on the serum 3α -bile acids concentration may be due either to the difference in the extent of bile acid excretion or to the different caecal and faecal bile acid profiles induced by these compounds. Unlike cholestyramine, RS₃ specifically raised the amounts of lithocholic and muricholic acids. Perhaps the altered profile of intestinal bile acids in rats fed on a diet rich in RS₃ affects the enterohepatic circulation in such a way that the serum pool is enlarged.

Feeding of the high-RS₃ diet v. the low-RS₃ diet lowered the pH of the caecal contents, which may be associated with the differences in the amounts of cholesterol and bile acids. RS₃ in the diet raised cholesterol and decreased coprostanol in the caecum indicating that bacterial oxidation of cholesterol was depressed. This may be related to the lower pH value (Andrieux *et al.* 1989). The RS₃-induced alterations in the profiles of bile acids are more difficult to interpret because, apart from changes in bacterial transformation, there may also be differences in binding of the various bile acids. In addition, the increase in fermentation by RS₃ leading to a lower pH may reduce the solubility of bile acids. In any event, it can be concluded that in rats given high-RS₃ diets there was an enhanced hepatic formation of muricholic acids, a depressed bacterial formation of hyodeoxycholic acid, and an increased bacterial formation of ω -muricholic acid. The RS₃-induced change in the profile of intestinal bile acids could affect the enterohepatic circulation of total bile acids, depending on differences in the efficiency of reabsorption of individual bile acids.

Cholesterol feeding *per se* had predictable effects (Beynen *et al.* 1984): it raised the liver cholesterol concentration and the faecal excretion of total neutral steroids and bile acids. The results also suggest interactions between the effects of dietary cholesterol and RS_3 concerning the caecal and faecal amounts of muricholic acids. In the presence of cholesterol the feeding of RS_3 raised the amounts of muricholic acids to a greater extent. This may relate to cholesterol-induced stimulation of hepatic muricholic acid synthesis and competition between bile acids for binding to RS_3 in the small intestine.

In conclusion, the lower serum cholesterol concentration seen in rats after feeding of diets enriched in RS_3 , in comparison with diets low in RS_3 , may be explained, at least in part, by enhanced faecal excretion of bile acids as a result of an increase in influx of bile acids from the small intestine into the caecum (which was also found for the neutral steroids), and/or by altering the intestinal bile acid profile, so that the enterohepatic circulation of total bile acids is changed.

We thank T. Kosmeijer (Wageningen Agricultural University) for analysis of neutral steroids, H. T. de Vries (Netherlands Institute for Dairy Research, Ede) for analysis of bile acids, W. G. L. van Nielen for cholesterol and triacylglycerol analysis, and A. Wiersma for statistical analysis. Animal care was supervised by F. H. Wijnen. This study was conducted within the framework of the European Resistant Starch (EURESTA) research group working within the European Flair Concerted Action No. 11.

REFERENCES

- Abell, L. L., Levy, B. B., Brodie, B. B. & Kendall, F. E. (1952). A simplified method for the estimation of total cholesterol in serum and demonstration of its specificity. *Journal of Biological Chemistry* 195, 357-366.
- Andrieux, C., Gadelle, D., Leprince, C. & Sacquet, E. (1989). Effects of some poorly digestible carbohydrates on bile acid bacterial transformations in the rat. British Journal of Nutrition 62, 103-119.

- Behall, K. M., Scholfield, D. J., Yuhaniak, I. & Canary, J. (1989). Diets containing high amylose vs amylopectin starch: effects on metabolic variables in human subjects. *American Journal of Clinical Nutrition* 49, 337-344.
- Berry, C. S. (1986). Resistant starch: formation and measurement of starch that survives exhaustive digestion with amylolytic enzymes during the determination of dietary fibre. *Journal of Cereal Science* 4, 301–314.
- Beynen, A. C., Boogaard, A., Van Laack, H. L. J. M. & Katan, M. B. (1984). Cholesterol metabolism in two strains of rats with high or low response of serum cholesterol to a cholesterol-rich diet. *Journal of Nutrition* 114, 1640–1651.
- Beynen, A. C., Lemmens, A. G., De Vries, H. & Van der Meer, R. (1988). Differential metabolic basis for the hypocholesterolemic effects of cholestyramine and pectin in rats. *Atherosclerosis* 73, 87–88.
- Beynen, A. C. & West, C. E. (1989). Mechanisms underlying nutritional effects on serum cholesterol concentration. In Coronaries and Cholesterol, pp. 89–114 [W. J. Cliff and G. I. Schoefl, editors]. London: Chapman and Hall Medical.
- Bianchini, F., Caderni, G., Dolara, P., Fantetti, L. & Kriebel, D. (1989). Effect of dietary fat, starch and cellulose on fecal bile acids in mice. *Journal of Nutrition* 119, 1617–1624.
- De Deckere, E. A. M., Kloots, W. J. & Van Amelsvoort, J. M. M. (1992). Effects of a diet with resistant starch in the rat. European Journal of Clinical Nutrition 46, Suppl. 2, S121-S122.
- De Deckere, E. A. M., Kloots, W. J. & Van Amelsvoort, J. M. M. (1993). Resistant starch decreases serum total cholesterol and triacylglycerol concentrations in rats. Journal of Nutrition 123, 2142–2151.
- De Deckere, E. A. M., Kloots, W. J. & van Amelsvoort, J. M. M. (1995). Both raw and retrograded starch decrease the serum triacylglycerol concentration and fat accretion in the rat. *British Journal of Nutrition* 73, 287–298.
- Englyst, H. N., Kingman, S. M. & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. *European Journal of Clinical Nutrition* 46, Suppl. 2, S33-S50.
- Grundy, S. M. (1986). Bile acid resins: mechanisms of action. In *Pharmacological Control of Hyperlipidaemia*, pp. 3-19 [R. Fears, editor]. Barcelona: J. R. Prous Science Publishers.
- Herman, S., Sediaoetama, A. D., Karyadi, D. & Beynen, A. C. (1991). Influence of background composition of the diet on the lipemic effect of fish oil vs. corn oil in rats. *Journal of Nutrition* 121, 622-630.
- Iwata, T., Ohya, K., Takehisa, F. Tsutsumi, K., Furukawa, Y. & Kimura, S. (1992). The effect of dietary safflower phospholipid on steroids in gastrointestinal tract of rats fed a hypercholesterolemic diet. *Journal of Nutritional Science and Vitaminology* 38, 615–622.
- Lajvardi, A., Mazarin, G. I., Gillespie, M. B., Satchithanandam, S. & Calvert, R. J. (1993). Starches of various digestibilities modify intestinal function in rats. *Journal of Nutrition* 123, 2059–2066.
- Lovati, M. R., West, C. E., Sirtori, C. R. & Beynen, A. C. (1990). Dietary animal proteins and cholesterol metabolism in rabbits. British Journal of Nutrition 64, 473-485.
- Molina, M. T., Ruiz-Gutierrez, V., Vazquez, C. M. & Bolufer, J. (1990). Caecal and colonic uptake of both linoleic acid and cholesterol in rats following intestinal resection. Lipids 25, 594-597.
- Sacquet, E., Leprince, E. & Riottot, M. (1983). Effect of amylomaize starch on cholesterol and bile acid metabolisms in germfree (axenic) and conventional (holoxenic) rats. *Reproduction Nutrition Développement* 23, 783-792.
- SAS Institute Inc. (1987). SAS/STAT Guide for Personal Computers, version 6. Cary, NC: SAS Institute Inc.
- Schulz, A. G. M., Van Amelsvoort, J. M. M. & Beynen, A. C. (1993). Dietary native resistant starch but not retrograded resistant starch raises magnesium and calcium absorption in rats. *Journal of Nutrition* 123, 1724–1731.
- Spady, D. K., Turley, S. D. & Dietschy, J. M. (1985). Rates of low density lipoprotein uptake and cholesterol synthesis are regulated independently in the liver. *Journal of Lipid Research* 26, 465–472.
- Zhang, X. & Beynen, A. C. (1993). Influence of dietary fish proteins on plasma and liver cholesterol concentrations in rats. British Journal of Nutrition 69, 767-777.