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Abstract For impulsive differential equations, we construct topological conjugacies between linear and
nonlinear perturbations of non-uniform exponential dichotomies. In the case of linear perturbations, the
topological conjugacies are constructed in a more or less explicit manner. In the nonlinear case, we obtain
an appropriate version of the Grobman–Hartman Theorem for impulsive equations, with a simple and
direct proof that involves no discretization of the dynamics.
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1. Introduction

We consider the linear impulsive differential equation

x′ = A(t)x, t �= τi, ∆x|t=τi
= Bix (1.1)

in X = R
p, and its perturbation

x′ = A(t)x + f(t, x), t �= τi, ∆x|t=τi
= Bix + gi(x). (1.2)

Essentially, impulsive differential equations correspond to a smooth evolution that at
certain times τi changes abruptly, as for example in a mechanical clock. There are many
applications of these equations to mechanical and natural phenomena involving abrupt
changes. We refer the reader to [14,22] for an extensive list of references.

Assuming that the dynamics defined by (1.1) admits a non-uniform exponential
dichotomy, for sufficiently small perturbations f and gi we show that there exist topo-
logical conjugacies between the dynamics defined by (1.1) and (1.2). This means that
if T (t, s) and R(t, s) are respectively the evolution operators of the two equations, then
there exist homeomorphisms ht : X → X for t ∈ R such that

ht ◦ T (t, s) = R(t, s) ◦ hs, t, s ∈ R.

We also show that the map (t, x) �→ ht(x) has at most discontinuities of the first kind in
the first variable at the times τi (this means that the limits when t → τ±

i exist, although
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they are different). In other words, this is an appropriate version of the Grobman–
Hartman Theorem for impulsive equations. Our proof is somewhat inspired by the work
of Chicone and Swanson [9] for (non-impulsive) autonomous equations obtained from
perturbing a uniform exponential dichotomy. We emphasize that the argument does not
involve any discretization of the dynamics. In addition, we also consider a certain class
of linear perturbations of (1.1) and we construct topological conjugacies between the
evolution operators of this equation and of its linear perturbations. Our proofs of these
results follow to some extent arguments in [4,6], which already consider the non-uniform
case, although only for non-impulsive differential equations. We refer the reader to [1,2]
for related results for impulsive differential equations in the case of uniform exponen-
tial dichotomies. We note that these works use quite different techniques from ours, most
notably in the case of the Grobman–Hartman Theorem. The arguments concerning linear
perturbations are related to the former work of Palmer in [19].

The problem of whether the linearization of the system along a given solution approx-
imates well to the solution itself goes back to Poincaré, and can be described as looking
for a change of variables that takes the system to a linear one. The original references
for the Grobman–Hartman Theorem are [10–13]. Using the ideas in Moser’s proof of the
structural stability of Anosov diffeomorphisms [16], the theorem was extended to Banach
spaces independently by Palis [17] and Pugh [21]. A version for non-autonomous differ-
ential equations was obtained by Palmer in [18]. Sternberg [24,25] showed that there are
algebraic obstructions preventing the existence of conjugacies with a prescribed higher
regularity (we refer the reader to [7,8,15,23] for related work).

The classical notion of (uniform) exponential dichotomy, essentially introduced by
Perron [20], plays a central role in a substantial part of the theory of dynamical systems.
On the other hand, this notion is too stringent for the dynamics and it is of interest
to look for more general types of hyperbolic behaviour. This is precisely the motivation
to introduce the notion of non-uniform exponential dichotomy in the case of impulsive
differential equations. Indeed, essentially any linear equation x′ = A(t)x in a finite-
dimensional space with non-zero Lyapunov exponents has a non-uniform exponential
dichotomy (see [5] for details). Our work is thus also a contribution to the theory of
non-uniform hyperbolicity (we refer the reader to [3] for a detailed exposition).

2. Exponential dichotomies

We consider the linear impulsive differential (1.1), for some m × m matrices A(t) and Bi

for each t ∈ R and i ∈ Z, and some jumping times

· · · < τ−2 < τ−1 < 0 < τ1 < τ2 < · · ·

satisfying limi→±∞ τi = ±∞,

p := sup
{

card{i ∈ Z : s � τi < t}
t − s

: t, s ∈ R, t > s

}
< ∞, (2.1)

and
inf
i∈Z

|det(Id +Bi)| > 0.
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We assume that t �→ A(t) has at most discontinuities of the first kind at the times τi. In
particular, these conditions ensure the existence and uniqueness of global left-continuous
solutions of (1.1) [22].

We write the solutions in the form x(t) = T (t, s)x(s) for t, s ∈ R, where T (t, s) is the
associated linear evolution operator (defined by the former identity). Clearly,

T (t, s)T (s, r) = T (t, r) and T (t, t) = Id

for every t, s, r ∈ R. We say that (1.1) admits a non-uniform exponential dichotomy if
there exist projections P (t) for t ∈ R satisfying

T (t, s)P (s) = P (t)T (t, s), t, s ∈ R, (2.2)

and there exist constants a, b, D > 0 and ε � 0 such that

‖T (t, s)P (s)‖ � De−a(t−s)+ε|s|, t � s, (2.3)

and

‖T (t, s)Q(s)‖ � De−b(s−t)+ε|s|, s � t, (2.4)

where Q(t) = Id−P (t) is the complementary projection of P (t). We then define the
stable and unstable subspaces at time t ∈ R respectively by

E(t) = P (t)(X) and F (t) = Q(t)(X).

The following is an example of non-uniform exponential dichotomy in the particular
case when P (t) = Id.

Example 2.1. Given ω, a, b > 0, we consider the impulsive equation

x′ = (−ω − at sin t)x, t �= τi, ∆x|t=τi = bx. (2.5)

We assume that
ω > a + p log(1 + b), (2.6)

where p is the lim sup in (2.1). The solutions of (2.5) are given by

x(t) = T (t, s)(1 + b)card{i∈N : τi�t}x(s),

where
T (t, s) = e−ωt+ωs+at cos t−as cos s−a sin t+a sin s.

Moreover, for each t � s � 0 we have

T (t, s) = e(−ω+a)(t−s)+at(cos t−1)−as(cos s−1)+a(sin s−sin t)

� De(−ω+a)(t−s)+2as,
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where D = e2a. Therefore, by (2.1), there exists C > 0 such that

|x(t)| � CDe(−ω+a)(t−s)+2asept log(1+b)|x(s)|
= CDe−(ω−a−p log(1+b))(t−s)e(2a+p log(1+b))s|x(s)|. (2.7)

By (2.6), this shows that (2.5) admits a non-uniform exponential dichotomy with P (t) =
Id for each t ∈ R. Moreover, if t = 2kπ and s = (2l − 1)π with k, l ∈ N, then

T (t, s) = e(−ω+a)(t−s)+2as.

This implies that in general (that is, for an arbitrary sequence τi) the exponent 2a +
p log(1+b) in (2.7) cannot be made smaller by taking the constants D and ω−a sufficiently
large.

3. Conjugacies under nonlinear perturbations

Now we consider the perturbed equation (1.2), where the functions f : R × X → X and
gi : X → X satisfy f(t, 0) = 0 for each t ∈ R, and gi(0) = 0 for each i ∈ Z. We assume
that f is piecewise continuous in t at most with discontinuities of the first kind at the
times τi, and that there exists a constant δ > 0 such that

‖f(t, x) − f(t, y)‖ � δe−2ε|t| min{1, ‖x − y‖} (3.1)

and

‖gi(x) − gi(y)‖ � δe−2ε|τi| min{1, ‖x − y‖} (3.2)

for each t ∈ R, i ∈ N and x, y ∈ X. Under these assumptions, provided that δ is
sufficiently small, (1.2) has global left-continuous solutions. We denote the corresponding
evolution operator by R(t, s) for t, s ∈ R.

We denote by X the space of functions η : R × X → X at most with discontinuities of
the first kind in the first variable at the times τi, such that

‖η‖ε := sup{eε|t|‖ηt‖∞ : t ∈ R} < +∞, (3.3)

where ηt = η(t, ·) and
‖ηt‖∞ = sup{‖ηt(x)‖ : x ∈ X}.

We note that X is a Banach space with the norm ‖·‖ε in (3.3).
Now we establish the existence of topological conjugacies between the solutions of (1.1)

and (1.2). Given ν > 0, we set

rν = sup
t∈R

∑
i∈Z

e−ν|τi−t|.

Theorem 3.1. Assume that (1.1) admits a non-uniform exponential dichotomy with
ε < min{a, b}. If δ in (3.1) and (3.2) is sufficiently small, then there exists a unique η ∈ X
such that

ht ◦ T (t, s) = R(t, s) ◦ hs, t, s ∈ R. (3.4)

Moreover, ht = Id +ηt is a homeomorphism for each t ∈ R.
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Proof. We separate the proof into several steps. Set

U(t, s) = P (t)T (t, s) and V (t, s) = Q(t)T (t, s),

with P (t) and Q(t) as in (2.3) and (2.4). We define an operator F in X by

F (η)(t, x) =
∫ t

−∞
U(t, u)f(u, T (u, t)x + η(u, T (u, t)x)) du

+
∑
τi<t

U(t, τ+
i )gi(T (τi, t)x + η(τi, T (τi, t)x))

−
∫ ∞

t

V (t, u)f(u, T (u, t)x + η(u, T (u, t)x)) du

−
∑
t�τi

V (t, τ+
i )gi(T (τi, t)x + η(τi, T (τi, t)x)). (3.5)

Lemma 3.2. The operator F is well defined and F (X ) ⊂ X .

Proof. By (2.3) and (2.4) we have∫ t

−∞
‖U(t, u)‖ · ‖f(u, T (u, t)x + η(u, T (u, t)x))‖ du

+
∑
τi<t

‖U(t, τ+
i )‖ · ‖gi(T (τi, t)x + η(τi, T (τi, t)x))‖

+
∫ ∞

t

‖V (t, u)‖ · ‖f(u, T (u, t)x + η(u, T (u, t)x))‖ du

+
∑
t�τi

‖V (t, τ+
i )‖ · ‖gi(T (τi, t)x + η(τi, T (τi, t)x))‖

� D

∫ t

−∞
e−a(t−u)+ε|u|‖f(u, T (u, t)x + η(u, T (u, t)x))‖ du

+ D
∑
τi<t

e−a(t−τi)+ε|τi|‖gi(T (τi, t)x + η(τi, T (τi, t)x))‖

+ D

∫ ∞

t

e−b(u−t)+ε|u|‖f(u, T (u, t)x + η(u, T (u, t)x))‖ du

+ D
∑
t�τi

e−b(τi−t)+ε|τi|‖gi(T (τi, t)x + η(τi, T (τi, t)x))‖,

and hence

eε|t| sup
x∈X

‖F (η)(t, x)‖

� Dδ

∫ t

−∞
e(−a+ε)(t−u)e2ε|u|e−2ε|u| du

+ Dδ
∑
τi<t

e(−a+ε)(t−τi)e2ε|τi|e−2ε|τi|

https://doi.org/10.1017/S0013091510000799 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091510000799


70 L. Barreira and C. Valls

+ Dδ

∫ ∞

t

e−(b−ε)(u−t)e2ε|u|e−2ε|u| du

+ Dδ
∑
t�τi

e−(b−ε)(τi−t)e2ε|τi|e−2ε|τi|

= Dδ

(
1

a − ε
+ ra−ε +

1
b − ε

+ rb−ε

)
< +∞.

This implies the desired statement. �

Lemma 3.3. Identity (3.4) holds if and only if F (η) = η.

Proof. We first assume that the identity (3.4) holds. Since ht = Id +ηt, we can rewrite
(3.4) in the form

Id +ηt = R(t, s) ◦ hs ◦ T (s, t). (3.6)

On the other hand, by the variation-of-constants formula we have

R(t, s)(x) = T (t, s)x+
∫ t

s

T (t, u)f(u, R(u, s)(x)) du+
∑

s�τi<t

T (t, τ+
i )gi(R(τi, s)x). (3.7)

Using again (3.4), we can thus rewrite (3.6) in the form

ηt(x) = R(t, s)(hs(T (s, t)x)) − x

= T (t, s)hs(T (s, t)x) +
∫ t

s

T (t, u)f(u, R(u, s)(hs(T (s, t)x))) du (3.8)

+
∑

s�τi<t

T (t, τ+
i )gi(R(τi, s)(hs(T (s, t)x))) − x

= T (t, s)ηs(T (s, t)x) +
∫ t

s

T (t, u)f(u, hu(T (u, t)x)) du

+
∑

s�τi<t

T (t, τ+
i )gi(hτi(T (τi, t)x)). (3.9)

Applying P (t) to (3.8) yields

P (t)ηt(x) = U(t, s)ηs(T (s, t)x) +
∫ t

s

U(t, u)f(u, hu(T (u, t)x)) du

+
∑

s�τi<t

U(t, τ+
i )gi(hτi

(T (τi, t)x)). (3.10)

Since η ∈ X , it follows from (2.3) that, for t � s,

‖U(t, s)ηs(T (s, t)x)‖ � De−a(t−s)+ε|s|‖ηs‖∞ � De−a(t−s)‖η‖ε.

Therefore, taking the limit in (3.10) when s → −∞ we obtain

P (t)ηt(x) =
∫ t

−∞
U(t, u)f(u, hu(T (u, t)x)) du +

∑
τi<t

U(t, τ+
i )gi(hτi

(T (τi, t)x)). (3.11)
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On the other hand, applying T (s, t) to (3.8) and replacing x by T (t, s)x we obtain

T (s, t)ηt(T (t, s)x) = ηs(x) +
∫ t

s

T (s, u)f(u, hu(T (u, s)x)) du

+
∑

s�τi<t

T (s, τ+
i )gi(hτi(T (τi, s)x)). (3.12)

Applying Q(s) to (3.12) yields

Q(s)ηs(x) = V (s, t)ηt(T (t, s)x) −
∫ t

s

V (s, u)f(u, hu(T (u, s)x)) du

−
∑

s�τi<t

V (s, τ+
i )gi(hτi(T (τi, s)x)). (3.13)

Since η ∈ X , it follows from (2.4) that for t � s,

‖V (s, t)ηt(T (t, s)x)‖ � De−b(t−s)+ε|t|‖ηt‖∞ � De−b(t−s)‖η‖ε.

Therefore, taking the limit in (3.13) when t → +∞, we obtain

Q(s)ηs(x) = −
∫ ∞

s

V (s, u)f(u, hu(T (u, s)x)) du −
∑
s�τi

V (s, τ+
i )gi(hτi(T (τi, s)x)).

(3.14)
In view of (3.5), it follows from (3.11) and (3.14) that

F (η)(t, x) = P (t)ηt(x) + Q(t)ηt(x) = ηt(x) = η(t, x).

Now we assume that F (η) = η. Replacing (t, x) by (t, T (t, s)x) in (3.5), we obtain

η(t, T (t, s)x)

=
∫ t

−∞
U(t, u)f(u, hu(T (u, s)x)) du +

∑
τi<t

U(t, τ+
i )gi(hτi(T (τi, s)x))

−
∫ ∞

t

V (t, u)f(u, hu(T (u, s)x)) du −
∑
t�τi

V (t, τ+
i )gi(hτi(T (τi, s)x))

= T (t, s)ηs(x) +
∫ t

s

T (t, u)f(u, hu(T (u, s)x)) du +
∑

s�τi<t

T (t, τ+
i )gi(hτi(T (τi, s)x)),

which thus yields

ht(T (t, s)x) = T (t, s)x + ηt(T (t, s)x)

= T (t, s)hs(x) +
∫ t

s

T (t, u)f(u, hu(T (u, s)x)) du

+
∑

s�τi<t

T (t, τ+
i )gi(hτi

(T (τi, s)x)).
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Moreover, by the variation-of-constants formula (see (3.7)), we have

R(t, s)(hs(x)) = T (t, s)hs(x) +
∫ t

s

T (t, u)f(u, R(u, s)hs(x)) du

+
∑

s�τi<t

T (t, τ+
i )gi(R(τi, s)hs(x))

We note that ht(T (t, s)x) and R(t, s)(hs(x)) satisfy the same variation-of-constants for-
mula and coincide for t = s. Therefore, they are the same, and identity (3.4) holds. This
completes the proof of Lemma 3.3. �

Lemma 3.4. Provided that δ is sufficiently small, there exists a unique η ∈ X satis-
fying Fη = η.

Proof. It is sufficient to prove that the operator F is a contraction. For each η, ξ ∈ X
we have

F (η)(t, x) − F (ξ)(t, x)

=
∫ t

−∞
U(t, u)[f(u, T (u, t)x + η(u, T (u, t)x)) − f(u, T (u, t)x + ξ(u, T (u, t)x))] du

+
∑
τi<t

U(t, τ+
i )[gi(T (τi, t)x + η(τi, T (τi, t)x)) − gi(T (τi, t)x + ξ(τi, T (τi, t)x))]

−
∫ ∞

t

V (t, u)[f(u, T (u, t)x + η(u, T (u, t)x)) − f(u, T (u, t)x + ξ(u, T (u, t)x))] du

−
∑
t�τi

V (t, τ+
i )[gi(T (τi, t)x + η(τi, T (τi, t)x)) − gi(T (τi, t)x + ξ(τi, T (τi, t)x))].

It follows from (3.1) and (3.2) that

‖f(u, T (u, t)x + η(u, T (u, t)x)) − f(u, T (u, t)x + ξ(u, T (u, t)x))‖
� δe−ε|u|‖η(u, T (u, t)x) − ξ(u, T (u, t)x)‖,

and

‖gi(T (τi, t)x + η(τi, T (τi, t)x)) − gi(T (τi, t)x + ξ(τi, T (τi, t)x))‖
� δe−ε|τi|‖η(τi, T (τi, t)x) − ξ(τi, T (τi, t)x)‖.

Using (2.3) and (2.4), we thus obtain

eε|t|‖F (η)(t, x) − F (ξ)(t, x)‖

� Dδ

∫ t

−∞
e(−a+ε)(t−u)eε|u|‖η(u, T (u, t)x) − ξ(u, T (u, t)x)‖ du

+ Dδ
∑
τi<t

e(−a+ε)(t−τi)eε|τi|‖η(τi, T (τi, t)x) − ξ(τi, T (τi, t)x)‖
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+ Dδ

∫ ∞

t

e(−b+ε)(u−t)eε|u|‖η(u, T (u, t)x) − ξ(u, T (u, t)x)‖ du

+ Dδ
∑
t�τi

e(−b+ε)(τi−t)eε|τi|‖η(τi, T (τi, t)x) − ξ(τi, T (τi, t)x)‖.

Taking the supremum in x yields

eε|t| sup
x∈X

‖F (η)(t, x) − F (ξ)(t, x)‖

� Dδ

∫ t

−∞
e(−a+ε)(t−u)eε|u|‖ηu − ξu‖∞ du

+ Dδ
∑
τi<t

e(−a+ε)(t−τi)eε|τi|‖ητi
− ξτi

‖∞

+ Dδ

∫ ∞

t

e(−b+ε)(u−t)eε|u|‖ηu − ξu‖∞ du

+ Dδ
∑
t�τi

e(−b+ε)(τi−t)eε|τi|‖ητi
− ξτi

‖∞

� Dδ

(
1

a − ε
+ ra−ε +

1
b − ε

+ rb−ε

)
‖η − ξ‖ε.

Finally, taking the supremum in t, we obtain

‖F (η) − F (ξ)‖ε � Dδ

(
1

a − ε
+ ra−ε +

1
b − ε

+ rb−ε

)
‖η − ξ‖ε.

Therefore, for δ sufficiently small, the operator F is a contraction in X . �

It remains to show that the functions ht = Id +ηt are homeomorphisms. This can be
established following arguments in the proof of Theorem 1 in [6]. For completeness we
sketch the argument.

We first note that for each y ∈ X and t ∈ R, the equation ht(x) = y has a solution of
the form x = y + z if and only if z = −ηt(y + z). By the Brouwer Fixed-Point Theorem
applied to the ball of radius ‖ηt‖∞ there exists z satisfying z = −ηt(y+z), and thus ht is
surjective. To show that ht is injective, we observe that if x, y ∈ X satisfy ht(x) = ht(y)
for some t ∈ R, then

R(s, t)(ht(x)) = R(s, t)(ht(y))

for every s ∈ R. By (3.4) we obtain hs(T (s, t)x) = hs(T (s, t)y), and hence

T (s, t)(x − y) = −[ηs(T (s, t)x) − ηs(T (s, t)y)]. (3.15)

The right-hand side is bounded in t and s. On the other hand, if x − y �= 0, then either
P (t)(x − y) �= 0 or Q(t)(x − y) �= 0, and thus the left-hand side of (3.15) is not bounded
in t. This contradiction shows that x − y = 0, and hence ht is injective for each t ∈ R.
Finally, since ht is continuous and invertible, it follows from the Domain Invariance
Theorem that ht is a homeomorphism. This completes the proof of Theorem 3.1. �
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4. Conjugacies under linear perturbations

This section is dedicated to the construction of conjugacies between the evolution oper-
ators defined by two linear differential equations. For this we need a stronger version of
dichotomy. Namely, we say that (1.1) admits a strong non-uniform exponential dichotomy
if there exist projections P (t) for t ∈ R satisfying (2.2), and constants c � a > 0,
d � b > 0, D > 0 and ε � 0 satisfying the inequalities (2.3) and (2.4), as well as

‖T (t, s)P (s)‖ � Dec(s−t)+ε|s|, t � s,

‖T (t, s)Q(s)‖ � Ded(t−s)+ε|s|, t � s.

Now we consider the linear impulsive differential equations (1.1) and

x′ = Â(t)x, t �= τi, ∆x|t=τi = Bix, (4.1)

for some m × m matrices Â(t) and Bi for each t ∈ R and i ∈ Z. In addition to the
hypotheses in § 2, we assume that t �→ Â(t) has at most discontinuities of the first kind
at the times τi. We shall always assume that (1.1) and (4.1) admit strong non-uniform
exponential dichotomies in R. Without loss of generality we take the same constants a, b,
c, d, D and ε for the two dichotomies. Let also T (t, s) and T̂ (t, s) be evolution operators
associated respectively to (1.1) and (4.1). We consider the corresponding projections P (t)
and P̂ (t), as well as the corresponding stable and unstable subspaces

E(t) = P (t)X and F (t) = Q(t)X,

and
Ê(t) = P̂ (t)X and F̂ (t) = Q̂(t)X,

where Q(t) = Id−P (t) and Q̂(t) = Id−P̂ (t) for each t ∈ R. We note that X = E(t)⊕F (t)
for each t.

Theorem 4.1. Assume that (1.1) and (4.1) admit strong non-uniform exponential
dichotomies, and that dim E(t) = dim Ê(t) for some t (and thus, for all t). If min{a, b} >

2ε, then there exist homeomorphisms ht : X → X for t ∈ R such that

ht ◦ T (t, s) = T̂ (t, s) ◦ hs, t, s ∈ R. (4.2)

Proof. We first explain how the result can be obtained by constructing separately
conjugacies for the stable and unstable components. Namely, let us assume that we have
constructed homeomorphisms h−

t : E(t) → Ê(t) for t ∈ R such that

h−
t ◦ T (t, s) = T̂ (t, s) ◦ h−

s on E(s), t, s ∈ R, (4.3)

and homeomorphisms h+
t : F (−t) → F̂ (−t) for t ∈ R such that

h+
t ◦ S(t, s) = Ŝ(t, s) ◦ h+

s on F (−s), t, s ∈ R. (4.4)

We note that the homeomorphisms h+
t can be obtained repeating the construction of the

homeomorphisms h−
t replacing T and T̂ , respectively, by the evolution operators S(t, s) =
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T (−t, −s) and Ŝ(t, s) = T̂ (−t, −s) (this corresponds to reverse the time direction, thus
transforming the expansion along the unstable subspaces into contraction, as in the case
of the homeomorphisms h−

t defined on the stable subspaces). One can easily verify that
for each t ∈ R the map ht : X → X defined by

ht(x, y) = h−
t (x) + h+

−t(y), (x, y) ∈ E(t) × F (t) (4.5)

is a homeomorphism. Furthermore, the identities in (4.2) follow readily from (4.3)
and (4.4).

Now we proceed with the construction of the homeomorphisms h−
t . We follow closely

arguments in [4], and thus we only sketch the construction (referring to that paper for
details). For simplicity of the exposition we assume that P (t) = P̂ (t) = Id for each t ∈ R,
in which case E(t) = Ê(t) = X for each t ∈ R. This corresponds to the assumption
that the dichotomy only exhibits contraction. The general case can be obtained with
straightforward modifications. Again, for simplicity of the exposition, we shall write ht

instead of h−
t (although when E(t) = Ê(t) = X it follows readily from (4.5) that indeed

ht = h−
t ).

For each t ∈ R and x ∈ X, we set

q(t, x) =
∫ ∞

0
‖T (t + τ, t)x‖ dτ.

It follows from (2.3) that the function q is well defined (recall that we are only considering
the stable direction). Furthermore, we have

q(t, T (t, s)x) =
∫ ∞

0
‖T (t + τ, s)x‖ dτ =

∫ ∞

t

‖T (u, s)x‖ du,

and thus, for x �= 0 the function t �→ q(t, T (t, s)x) is strictly decreasing. One can also
show that

q(t, T (t, s)x) → 0 when t → +∞

and that

q(t, T (t, s)x) → +∞ when t → −∞.

Therefore, for each s ∈ R and x ∈ X \ {0} there exists a unique time t = τs,x ∈ R such
that q(t, T (t, s)x) = 1.

For each t ∈ R, we define a map ht : X → X by

ht(x) =

⎧⎪⎨
⎪⎩

T̂ (t, τt,x)T (τt,x, t)x
q̂(τt,x, T (τt,x, t)x)

if x �= 0,

0 if x = 0,

where
q̂(t, x) =

∫ ∞

0
‖T̂ (t + τ, t)x‖ dτ.
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These maps are precisely the desired conjugacies. Let us sketch the argument. For y =
T (t, s)x and τ = τt,y, we have

q(τ, T (τ, s)x) = q(τ, T (τ, t)y) = 1.

Therefore, τs,x = τt,y = τt,T (t,s)x (in view of the uniqueness of each of these numbers),
and we obtain

ht(T (t, s)x) =
T̂ (t, τt,T (t,s)x)T (τt,T (t,s)x, t)T (t, s)x

q̂(τt,T (t,s)x, T (τt,T (t,s)x, s)x)

=
T̂ (t, τs,x)T (τs,x, s)x
q̂(τs,x, T (τs,x, s)x)

= T̂ (t, s)
T̂ (s, τs,x)T (τs,x, s)x
q̂(τs,x, T (τs,x, s)x)

= T̂ (t, s)hs(x)

for each t, s ∈ R. This establishes (4.2).
Repeating arguments from [4] we can establish the following two lemmas.

Lemma 4.2. For each t ∈ R the function ht is continuous at 0.

Lemma 4.3. There exists a continuous function K : R × (X \ {0})2 → R such that,
for every t ∈ R and x, x̄ ∈ X \ {0},

|τt,x − τt,x̄| � K(t, x, x̄)‖x − x̄‖.

By Lemma 4.3, the function x �→ τt,x is locally Lipschitz (and thus continuous) in
X \ {0} for each fixed t.

Lemma 4.4. For each t ∈ R, the function x �→ q̂(τt,x, T (τt,x, t)x) is continuous on
X \ {0}.

Proof of Lemma 4.4. Take x, x̄ ∈ X \ {0} and write

τ = τt,x and τ̄ = τt,x̄.

Let also
y = T̂ (t, τ)T (τ, t)x and ȳ = T̂ (t, τ̄)T (τ̄ , t)x̄.

We have

q̂(τ, T (τ, t)x) = q̂(τ, T̂ (τ, t)y) =
∫ ∞

0
‖T̂ (τ + u, t)y‖ du =

∫ ∞

τ

‖T̂ (z, t)y‖ dz

and

q̂(τ̄ , T (τ̄ , t)x̄) =
∫ ∞

τ̄

‖T̂ (z, t)ȳ‖ dz.
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To prove that the function x �→ q̂(τ, T (τ, t)x) (with τ = τt,x) is continuous, it is sufficient
to find continuous functions K4 = K4(t, τ) and K5 = K5(t, x, x̄, y, τ) such that

Z := |q̂(τ, T (τ, t)x) − q̂(τ̄ , T (τ̄ , t)x̄)| � K4‖x − x̄‖ + K5‖y − ȳ‖. (4.6)

Indeed, since the jumps in (1.1) and (4.1) are the same, the function x �→ y =
T̂ (t, τt,x)T (τt,x, t)x is continuous for each t ∈ R. Therefore, the desired statement follows
from (4.6). On the other hand, inequality (4.6) can be obtained by repeating arguments
in [4]. �

The continuity of each map ht follows immediately from the above lemmas.
The inverse of ht is obtained as follows. For each t ∈ R, we define a map gt : X → X

by

gt(x) =

⎧⎪⎨
⎪⎩

T (t, τ̂t,x)T̂ (τ̂t,x, t)x
q(τ̂t,x, T̂ (τ̂t,x, t)x)

if x �= 0,

0 if x = 0,

where τ̂t,x is the unique real number such that q̂(τ̂t,x, T̂ (τ̂t,x, t)x) = 1. Then

ht(gt(x)) =
T̂ (t, τ)T (τ, τ̂)T̂ (τ̂ , t)x

q̂(τ, T (τ, t)gt(x))q(τ̂ , T̂ (τ̂ , t)x)
, (4.7)

where τ = τ(t, gt(x)) and τ̂ = τ̂(t, x). Now we observe that

1 = q(τ, T (τ, t)gt(x)) = q

(
τ, T (τ, t)

T (t, τ̂)T̂ (τ̂ , t)x
q(τ̂ , T̂ (τ̂ , t)x)

)
=

q(τ, T (τ, τ̂)T̂ (τ̂ , t)x)
q(τ̂ , T̂ (τ̂ , t)x)

, (4.8)

and thus
f(τ) := q(τ, T (τ, τ̂)T̂ (τ̂ , t)x) = q(τ̂ , T̂ (τ̂ , t)x).

Proceeding as for τt,x, one can show that for each α > 0 there exists a unique real number
τ such that f(τ) = α. Since f(τ̂) = q(τ̂ , T̂ (τ̂ , t)x), it follows from uniqueness that τ = τ̂ .
Proceeding in a similar manner to that in (4.8) and using the fact that τ = τ̂ , we obtain

q̂(τ, T (τ, t)gt(x)) =
q̂(τ, T̂ (τ, t)x)
q(τ, T̂ (τ, t)x)

=
q̂(τ̂ , T̂ (τ̂ , t)x)
q(τ, T̂ (τ, t)x)

=
1

q(τ, T̂ (τ, t)x)
,

and it follows from (4.7) that

ht(gt(x)) =
T̂ (t, τ)T̂ (τ, t)x

q̂(τ, T (τ, t)gt(x))q(τ, T̂ (τ, t)x)
= x.

This shows that gt is the inverse of ht, which completes the proof of the theorem. �
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