SOME PROPERTIES OF BEATTY SEQUENCES II
Ian G. Connell
(received September 9, 1959)

1. Introduction. In a previous paper (1] we discussed a
property of the complementary sequences

(1) up = [n(l+ 1/« )], vp=[n(l+ex)] , n=1,2,3,... ,
where square brackets denote the greatest integer function and
o« is any positive irrational. We called {u,} and {v,} Beatty
sequences of argument «.

We now discuss some further properties which are con-

nected with simple continued fractions. If & > 1 has the con-
tinued fraction expansion

(2) X = agt——g—=g s+s = [20,31,32; 00 ]

the nth convergent to « is the ordinary fraction

(3) Pn/qpn = [ao,al,...,an]’, n=0,1,2,... .
The expansion for 1/« is

(4) 1/« = [0,a5,27,...]

and if the convergents to 1/ are p,'/qy,' ,

(5) Po'=0,90'=1, pp'=49,.15 Qn' = Pn-1 -

If dIl= [an’a’n-}-l""']-’ then
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(6) x = [agajseecsap s L] -

2. The subscript rules.

THEOREM 1. If {uns and {vn} are the Beatty sequences
of argument « > 1 and if < has the convergents p,/q,, then

(7 Upon T P2n + qn-1.
(8) “pons1 | P2ntl * An41 v
(9) Vgo, ~ P2n t %2n o

(10) Va,ne1 - P2otl t d2ntl -l

forn=0,1,2,... .

Proof. By the well known formulas
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we have
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4 [Pzn(l+q2n/P2n' ¥3 )J
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i

Pon * 92n~ 1
since -1 <-p, Y3 < 0. The rest follow just as easily,

NOTE. By equations (5) it is easily seen that the theorem
is true for 0 < x < 1, For this essentially replaces X by
1/« which interchanges {u_} and {vn} and (7)-(10) is replaced
by an equivalent set.

For example if & = (1+ +/5)/2 the p_ and q, are the
Fibonacci numbers {1 ,1,2,3,5,8,13,21, .. } and inspecting
Table I in [1] we see that
=13,

20 , etc.
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The previous proof can be extended to prove the first
part of .

THEOREM 2. The sequences {up} and {vy} each con-
tain arithmetic progressions of arbitrary length, but neither
contains one of infinite length.

Proof. As above,
umpzn = [ mpZn(l + an/PZn ')’3 )]
= m(p, +dzp) -1

for 1 €« m < p;, . Thus {un} acontains an arithmetic progres-
sion of length py,, i.e., of arbitrary length. Similarly for {vn} .

But suppose {un} contained the infinite progression am + b,
m=1,2,3,... . Sinceup= [n(l+ 1/« )] ,

up € n{l+ 1/ ) « up+ 1,

n
or
n - "‘ngun"k <0,
L+ 1 «L+ 1
That is
1 -

S
<rJiu <1,
{nm+1}

where r(x) = x - [ x] is the fractional part of x. Hence
(11) 1- /(x4 1) <1 {(am+b)ek/(ex+ 1)} < 1

for all m. But the set of points r{ma « /(« + 1)} is uniformly
distributed in the unit interval since aa /(& + 1) is irrational.

Thus the set.

{ ax b« }
T m +
« 4+ 1 o 4+ 1

is uniformly distributed in the unit interval in contradiction to
(11). The same proof goes through for {vn}.

A proof of the statement about uniform distribution can
be found in [2], chap. XXIII.

Note that Van der Waerden's theorem on arithmetic pro-
gressions (see [3]), chap. 1) guarantees only that at least one
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of the sequences contains an arithmetic progression of arbitrary
length. '

3. An algorithm. For an irrational number « > 1 define
the representation

(12) Y(a) = {v];v2,V3sean }» vp= [n(l+x)] .

It is clear that V{(« ) uniquely determines « (if it is a possible
representation) and conversely.

Three obvious properties of the representation are
(13) [¢] =vy -1,
(14) Yla -k)= {v] -k, vz - 2k, v3 - 3k, ...}
for any integer k, and
(15) Y (l/« )= {uj,up,u3,+.. }, upn=[n{l+ 1/e)].
On the basis of these three properties we shall obtain

(2) an algorithm to determine the continued fraction expan-
sion of « given {(« ), and

(b) an algorithm for V¢ (« ) given the continued fraction
expansion of « . This inverse algorithm is in effect an algorithm
for the Beatty sequences of argument «.

(2) The usual continued fraction algorithm is an iterative
procedure, each step consisting of taking an integral part and
performing a division. To find the expansion [ag,2),a2,.. - ]
of o« we calculate in succession

ag = [a] s a1 =1/(x - ag)

ay= [x1] » %2=1/(a-a2))

"

ay [z 2] » etc.

In the present case we are given V(« )= {v},v2,...}.

Hence by (13) a, = v; - 1. Next we calculate Y(a - ap) by (14)
and get ¥(1/(x -ag))= {w},w2,...} by the complementarity
property (15). Using (13) again, a} = w] - 1. And so the
process is iterated.
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For example let & = e = 2.718, Thenvp= [3.718 n]

and
V() = {3,7,11,14,18,22,26,29, 33,37,40,44,48,52,55,59, ...},
ag =2,
Y(x -a,) = {1,3,5,6,8,10,12,13,15,17, 18, 20,22,24,25,27,...},
V() = {2,4,7,9,11,14,16,19,21,23,26,...},
aj = 1,
Y(aq-ap) = {1,2,4,5,6,8,9,11,12,13,15,...},
P(ap) =13,7,10,14,... } ,
a=2,
Ylep-ayz) = {1,3,4,6,... },
Y(x3) = {2,5,... },
az =1,
Yl 3-a3) = {1,3,... 1},

\P(d4)={29°-° })
ag = 1.

Therefore e = [2,1,2,1,1,... ] . Infacte= [2,1,2n,1] n°:1
(c.f. [4], p. 134).

This algorithm avoids divisions with many significant
figures. The disadvantage lies in having to calculate a large
number of the vp; but this becomes an advantage in the inverse
algorithm.,

(b) We are given a = [ag,2]1,...] . Now o«p = TJap,...]
and Y(«p)=[ap+1,...] = ¥(1/(et ] -a.1)). Taking the
complement we get P(X 5.1 -ap_1) = [1,2,.000ap,... 1.
Hence v(« n.1) = [1+ an-1, 2+2ap-1,...] . Iterating we
finally arrive at Y(« o) = Y(« ), the required result.
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For example let « = ™ = [3,7,15,1,292,...] .
V(«p) = {16,...]}
Y(e1-7) = {1,2,3,...,15,...]
V() = {8,16,24,...,120,...}
Y(rw-3) = {1,2,3,4,5,6,7,9,10,11,...}
Y(m) = {4,8,12,16,20,24,28,33,37,41,...}
We have omitted most of the final answer in order to conserve
space. The number of terms this method yields is often re-
markable. Starting with o = ™, Y(ax4) = {293,...} one
obtains v} = 4,...,Vv32988 = 136,622, whence
up = l,o..,u103634 = 136,621,
This algorithm fails for the one number (1 + #/5)/2 and
numbers equivalent ( [2], chap. X) to it.
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