SOME PROPERTIES OF BEATTY SEQUENCES II

Ian G. Connell

(received September 9, 1959)

1. <u>Introduction</u>. In a previous paper [1] we discussed a property of the complementary sequences

(1)
$$u_n = [n(1+1/\alpha)], v_n = [n(1+\alpha)], n = 1,2,3,...,$$

where square brackets denote the greatest integer function and α is any positive irrational. We called $\{u_n\}$ and $\{v_n\}$ Beatty sequences of argument α .

We now discuss some further properties which are connected with simple continued fractions. If $\alpha > 1$ has the continued fraction expansion

(2)
$$\alpha = a_0 + \frac{1}{a_1 + a_2 + \dots = [a_0, a_1, a_2, \dots]}$$

the nth convergent to & is the ordinary fraction

(3)
$$p_n/q_n = [a_0, a_1, ..., a_n], \quad n = 0, 1, 2, ...$$

The expansion for $1/\alpha$ is

$$(4) 1/\alpha = [0, a_0, a_1, \ldots]$$

and if the convergents to 1/4 are p_n'/q_n' ,

(5)
$$p_0' = 0, q_0' = 1, p_n' = q_{n-1}, q_n' = p_{n-1}.$$

If $\alpha_n = [a_n, a_{n+1}, \ldots]$, then

Can. Math. Bull. vol. 3, no.1, Jan. 1960

Excerpt from Master of Science thesis, University of Manitoba, 1959.

(6)
$$\alpha = [a_0, a_1, ..., a_{n-1}, \alpha_n]$$
.

2. The subscript rules.

(7)
$$u_{p_{2n}} = p_{2n} + q_{2n} - 1,$$

(8)
$$u_{P_{2n+1}} = P_{2n+1} + q_{2n+1},$$

(9)
$$v_{q_{2n}} = p_{2n} + q_{2n}$$
,

(10)
$$v_{q_{2n+1}} = p_{2n+1} + q_{2n+1} - 1$$

for $n = 0, 1, 2, \dots$

Proof. By the well known formulas

$$\alpha = p_{2n}/q_{2n} + \gamma_1 , \quad 0 < \gamma_1 < 1/q_{2n}^2 ,$$

$$\alpha = p_{2n+1}/q_{2n+1} - \gamma_2 , \quad 0 < \gamma_2 < 1/q_{2n+1}^2 ,$$

$$1/\alpha = q_{2n}/p_{2n} - \gamma_3 , \quad 0 < \gamma_3 < 1/p_{2n}^2 ,$$

$$1/\alpha = q_{2n+1}/p_{2n+1} + \gamma_4 , \quad 0 < \gamma_4 < 1/p_{2n+1}^2 ,$$

we have

$$u_{p_{2n}} = [p_{2n}(1 + q_{2n}/p_{2n} - \gamma_3)]$$

= $p_{2n} + q_{2n} - 1$

since $-1 < -p_{2n} \gamma_3 < 0$. The rest follow just as easily.

NOTE. By equations (5) it is easily seen that the theorem is true for 0 < α < 1. For this essentially replaces α by 1/ α which interchanges {u_n} and {v_n} and (7)-(10) is replaced by an equivalent set.

For example if $\alpha = (1+\sqrt{5})/2$ the p_n and q_n are the Fibonacci numbers $\{1,1,2,3,5,8,13,21,\ldots\}$ and inspecting Table I in [1] we see that

$$u_5 = 8$$
 , $v_5 = 13$, $u_8 = 12$, $v_8 = 20$, etc.

The previous proof can be extended to prove the first part of

THEOREM 2. The sequences $\{u_n\}$ and $\{v_n\}$ each contain arithmetic progressions of arbitrary length, but neither contains one of infinite length.

Proof. As above,

$$u_{mp_{2n}} = [mp_{2n}(1 + q_{2n}/p_{2n} - \gamma_3)]$$

= $m(p_{2n} + q_{2n}) - 1$

for $l\leqslant m\leqslant p_{2n}$. Thus $\{u_n\}$ contains an arithmetic progression of length $p_{2n},$ i.e., of arbitrary length. Similarly for $\{v_n\}$.

But suppose $\{u_n\}$ contained the infinite progression am + b, $m = 1, 2, 3, \ldots$ Since $u_n = [n(1 + 1/\alpha)]$,

$$u_n < n(1 + 1/\alpha) < u_n + 1$$
,

or

$$n - \frac{\alpha}{\alpha + 1} < u_n \frac{\alpha}{\alpha + 1} < n$$
.

That is

$$1 - \frac{\alpha}{\alpha + 1} < r \left\{ u_n \frac{\alpha}{\alpha + 1} \right\} < 1,$$

where r(x) = x - [x] is the fractional part of x. Hence

(11)
$$1 - \alpha/(\alpha + 1) < r \{(am + b) \alpha/(\alpha + 1)\} < 1$$

for all m. But the set of points $r\{ma \alpha /(\alpha + 1)\}$ is uniformly distributed in the unit interval since $a\alpha /(\alpha + 1)$ is irrational.

Thus the set

$$r \left\{ m \frac{a\alpha}{\alpha+1} + \frac{b\alpha}{\alpha+1} \right\}$$

is uniformly distributed in the unit interval in contradiction to (11). The same proof goes through for $\{v_n\}$.

A proof of the statement about uniform distribution can be found in [2], chap. XXIII.

Note that Van der Waerden's theorem on arithmetic progressions (see [3], chap. 1) guarantees only that at least one

of the sequences contains an arithmetic progression of arbitrary length.

3. An algorithm. For an irrational number $\alpha > 1$ define the representation

(12)
$$\psi(\alpha) = \{v_1, v_2, v_3, \dots\}, v_n = [n(1+\alpha)].$$

It is clear that $\psi(\alpha)$ uniquely determines α (if it is a possible representation) and conversely.

Three obvious properties of the representation are

$$[\alpha] = v_1 - 1,$$

(14)
$$\psi(\alpha - k) = \{v_1 - k, v_2 - 2k, v_3 - 3k, ...\}$$

for any integer k, and

(15)
$$\psi(1/\alpha) = \{u_1, u_2, u_3, \dots\}, u_n = [n(1+1/\alpha)].$$

On the basis of these three properties we shall obtain

- (a) an algorithm to determine the continued fraction expansion of α given $\psi(\alpha)$, and
- (b) an algorithm for $\psi(\alpha)$ given the continued fraction expansion of α . This inverse algorithm is in effect an algorithm for the Beatty sequences of argument α .
- (a) The usual continued fraction algorithm is an iterative procedure, each step consisting of taking an integral part and performing a division. To find the expansion $[a_0, a_1, a_2, \ldots]$ of α we calculate in succession

$$a_0 = [\alpha]$$
, $\alpha_1 = 1/(\alpha - a_0)$
 $a_1 = [\alpha_1]$, $\alpha_2 = 1/(\alpha - a_1)$
 $a_2 = [\alpha_2]$, etc.

In the present case we are given $\psi(\alpha) = \{v_1, v_2, \dots\}$. Hence by (13) $a_0 = v_1 - 1$. Next we calculate $\psi(\alpha - a_0)$ by (14) and get $\psi(1/(\alpha - a_0)) = \{w_1, w_2, \dots\}$ by the complementarity property (15). Using (13) again, $a_1 = w_1 - 1$. And so the process is iterated.

For example let α = e = 2.718. Then v_n = [3.718 n] and

$$\psi (\alpha) = \{3,7,11,14,18,22,26,29,33,37,40,44,48,52,55,59,\ldots\},$$

$$a_{0} = 2,$$

$$\psi(\alpha - a_{0}) = \{1,3,5,6,8,10,12,13,15,17,18,20,22,24,25,27,\ldots\},$$

$$\psi(\alpha_{1}) = \{2,4,7,9,11,14,16,19,21,23,26,\ldots\},$$

$$a_{1} = 1,$$

$$\psi(\alpha_{1}-a_{1}) = \{1,2,4,5,6,8,9,11,12,13,15,\ldots\},$$

$$\psi(\alpha_{2}) = \{3,7,10,14,\ldots\},$$

$$a_{2} = 2,$$

$$\psi(\alpha_{2}-a_{2}) = \{1,3,4,6,\ldots\},$$

$$\psi(\alpha_{3}-a_{3}) = \{2,5,\ldots\},$$

$$a_{3} = 1,$$

$$\psi(\alpha_{4}) = \{2,\ldots\},$$

$$a_{4} = 1.$$

Therefore e = [2,1,2,1,1,...]. In fact $e = [2,\overline{1,2n,1}]_{n=1}^{\infty}$ (c.f. [4], p. 134).

This algorithm avoids divisions with many significant figures. The disadvantage lies in having to calculate a large number of the v_n ; but this becomes an advantage in the inverse algorithm.

(b) We are given $\alpha = [a_0, a_1, \dots]$. Now $\alpha_n = [a_n, \dots]$ and $\psi(\alpha_n) = [a_n + 1, \dots] = \psi(1/(\alpha_{n-1} - a_{n-1}))$. Taking the complement we get $\psi(\alpha_{n-1} - a_{n-1}) = [1, 2, \dots, a_n, \dots]$. Hence $\psi(\alpha_{n-1}) = [1 + a_{n-1}, 2 + 2a_{n-1}, \dots]$. Iterating we finally arrive at $\psi(\alpha_0) = \psi(\alpha)$, the required result.

For example let $\alpha = \pi = [3,7,15,1,292,...]$. $\psi(\alpha_2) = \{16,...\}$ $\psi(\alpha_1-7) = \{1,2,3,...,15,...\}$ $\psi(\alpha_1) = \{8,16,24,...,120,...\}$ $\psi(\pi-3) = \{1,2,3,4,5,6,7,9,10,11,...\}$ $\psi(\pi) = \{4,8,12,16,20,24,28,33,37,41,...\}$

We have omitted most of the final answer in order to conserve space. The number of terms this method yields is often remarkable. Starting with $\alpha = \pi$, $\psi(\alpha_4) = \{293, \ldots\}$ one obtains $v_1 = 4, \ldots, v_{32988} = 136,622$, whence $u_1 = 1, \ldots, u_{103634} = 136,621$.

This algorithm fails for the one number $(1 + \sqrt{5})/2$ and numbers equivalent ([2], chap. X) to it.

REFERENCES

- 1. I. Connell, Some properties of Beatty sequences I, Can. Math. Bull. 2(1959), 190-197.
- 2. G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, (Oxford, 1945).
- 3. A.Y. Khinchin, Three Pearls of Number Theory, (New York, 1952).
- 4. O. Perron, Kettenbrüche, (New York, 1950).

C.A.R.D.E., Quebec.