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THE SUP METRIC ON INFINITE PRODUCTS

CARLOS R. BORGES

We study the properties of the sup metric on infinite products Z = [] I . (If d

is a bounded metric on X then p, defined by p((xa), (ya)) = supd(xa, ya), is
a

the sup metric on Z.) In particular, we prove that if X is an AR(metiic) or a
topological group then so is Z.

Of all the equivalent metrics in Euclidean spaces, the sup metric is the one which
can immediately be extended to infinite products of real lines. Nonetheless, it appears
that no one has investigated the properties of this metric; since we could not think of
any good reason for this, we decided to have a go at it and, in our opinion, the results
which follow show that this metric is useful. Many pertinent questions remain open.

We conclude this study by introducing the sup uniformity in infinite products of
uniform spaces; however, we know very little about its properties.

1. THE SUP METRIC

In this section we develop the general results which explain the behaviour of the
sup metric on infinite products, as well as some of the extension properties and linear
properties of this metric.

Let {Y, d) be a bounded metric space. Let Z — Z(Y, d, A) = J"[ K be a cartesian

product of A (assume A is a cardinal number) copies of Y and define a function
p: Z x Z -> R by p((xa), (ya)) = supd(xa, ya).

a£A

LEMMA 1 . 1 . (Z, p) is a metric space.

PROOF: Straightforward. D

REMARK. Clearly, one can define the sup metric for infinite products Yl %a of anU

metric spaces (Xa, da), as long as all the metrics da are bounded by a common constant
7; however, there is no need for this since we can consider Yl Xa as a subspace of

a€A
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462 C.R. Borges [2]

Z(Y, d, A), where Y is the disjoint topological union V %a °f the spaces Xa with
a€A

the metric d denned by the da and d(x, y) = 7 for x G Xa, y € Xp with a ^ fi.
Lemma 1.5 proves that bounded equivalent metrics on X generate equivalent met-

rics on Z.

LEMMA 1 .2 . For each (xa) € Z and e > 0, B((xa), e) = |J H B(xa, 6).
«<ea€A

PROOF: It is clear that |J J] B(xa, *) C £((sBa), e), since (ya) € I] B(xa, *)
KtaEA a€A

implies that p((xa), (ya)) ^ ^. Conversely, if p((xa), (ya)) = 6 < e then (ya) 6

LEMMA 1 . 3 . For each v, the projection map pv: Z —> Yv is an open continuous
function.

PROOF: This is immediate from Lemma 1.2, since pv(B((xa), e)) =
\J B(xv,6) = B(xv,e). D

LEMMA 1 . 4 . A function g: T —* E is continuous if and only if {pa o p}a£A is

equicontinuous.

PROOF: The "if" part: Pick w G T and e > 0. Pick a neighbourhood Nw of
w such that Pa(y(-'vto)) C B(pa(g(w)), e/2), for each a £ A. Therefore, g{Nw) C
Y[ B(pa(g(w)), e/2) C B(g(w), e). This proves that g is continuous.

The "only if" part: Pick w G T and e > 0. Pick a neighbourhood #„, of w such
that p(iVw) C B(g(w), e/2). Since B(s(io), e/2) C U B(pa(g(w)), e.) we then get

a€A
that pa(j(-^iii)) C B(pa(g(w)), e), for each a G A. This completes the proof. D

LEMMA 1 .5 . If d\ and d^ are bounded equivalent metrics on X then they gen-
erate equivalent metrics pi and p?. on Z(X, d\, A) = Z(X, d%, A).

PROOF: Let h: {X, di) —» (X, t/2) be a homeomorphism. Define
g: Z(X, du A) -» Z(X, d2, A) by pag{{*~)) = hM; hence pQ</-1((^)) = fc-x(^).
It follows immediately from Lemma 1.4 that g and g~l are continuous, which completes
the proof. u

PROPOSITION 1 .6 . If Y is a dosed ball of a Banach space then (Z, p) is an
AR (metrisable).

PROOF: Let (X, /x) be a metric space, A a closed subset of X and f': A —> Z a
continuous function. Without loss of generality, assume that Y is the unit ball centred
at the origin of a Banach space.

Note that, by Lemma 1.4, {pa o g}ae\ is an equicontinuous family of functions
from A to Y. Consequently, by Theorem 1 in the Appendix, {<p(pa ° ff)}a€A is an
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equicontinuous family of functions from X to Y.

Finally, let us define a function g: X —* Z by pQ<7(x) = <p{pa o j ) ( x ) , for each
x G -X". Lemma 1.4 immediately implies that g is continuous. Since it is dear that
~g\A — g, we have proved that Z is an A.R(metrisable), which completes the proof. D

THEOREM 1 . 7 . Let (Y, d) be an AR (metric), where d is a bounded metric.
Then Z(Y, d, A) is an AR (metric).

PROOF: Embed Y in a closed ball of C(Y), the space of bounded, real-valued

functions with the sup norm (and metric d). Let Y be a closed ball in C(Y)

which contains Y and let r: Y —» Y be a continuous retraction. Then the map

r: Z\Y, d, AJ —> Z(Y, d, A), defined by f[(ya)) = ('"(Va)), is a continuous retrac-

tion (see Lemma 1.4). Therefore, by Proposition 1.6, Z(Y, d, A) is an .A.R (metric). D

QUESTION. Does Z(Y, d, A) inherit connectedness, equiconnectedness, . . . , from

(Y,d)?

For convenience, let S(X) = inf{card D \ D = X}. (Recall that the density d(X)

of X is defined by d(X) = »0S(X).)

THEOREM 1 . 8 . If (X, d) is a metric space with 6(X) = A then X is isometric
to a subspa.ce of Z(R, A).

PROOF: Without loss of generality, let us assume that A ^ No. Let D be a dense
subspace of X such that cardD = A. Let B = {B(x, r) \ x G D and r is a rational
number}; we clearly get that B is a basis for the topology associated with d such that

cardB = A. For each B G B, let fB: X -> R be the function defined by /s(a;) =
d(x, X - B). Note that {fB \ B G B} is equicontinuous. (Note that, if w G X, e>0

and d(w, x) < e then \fB(v>) - IB(X)\ = \d{w, X - B) - d(x, X - B)\ < d(w, x) < e,
because d(a, X — B) ^ d(a, b) + d(b, X — B) for any a, b £ X.) Therefore, by letting
h: X —> £(R, B) be defined by ps{h(x)) = / B ( * ) , we immediately get from Lemma 1.4
that h is continuous. Indeed, h is an isometry: Note that, for any distinct x,y£X,

there exists a sequence {xn} C D and a sequence { r n } of rational numbers such that
(i) d(x,xn)<(l/n)d(x,y),
(ii) x G B(xn, Tn), y $ B(xn, rn),

(iii) limrn = d(x, y).
n

Letting Bn - B(xn,rn), we then get that lim |/en(x) - /sn(y) | - lim/Bn(a;) =
n n

d(x, y). This shows that p(h(x), h(y)) ^ d(x, y). Since the preceding parenthetical
argument also shows that d(z, y) ^ p(h(x), h(y)), we then get that h is an isometry.
This completes the proof. D

COROLLARY 1 . 9 . If(X,d) is a complete metric space with 6(X) = A then X
is isometric to a closed subspace of Z(R, A).
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Unfortunately, Theorem 1.8 is not good enough}. Let us recall that any separable
metric space is a subspace of the space a which is the countable product of real lines
with the generalised Euclidean metric (that is, f] R with the metric p((xn), (yn)) =

n£u>
£)2~nmin{l, |*n — !/n|})- The space 8 is separable and its topology is the Tychonoff
n

product topology (recall that uncountable Tychonoff products of nondegenerate spaces
are not metrisable). Theorem 1.8 fails to duplicate the preceding result in one important
aspect: If 6(X) = A ^ Ho, then 6(Z(X, d, A)) = 2A. (From Theorem l.l(c) of [3] we
get that there exists a natural number n and a subset D — {xa \ a G A} of X such
that cardD = A and {B(xa, 1/n) | a 6 A} is a pairwise disjoint collection of open
balls of X with the same radius 1/n. It follows that {B{(xa), 1/n) | (xQ) G U D} is

a pairwise disjoint collection of open balls of Z(X, d, A) whose cardinality is AA = 2A.
Again, by Theorem l.l(a) of [3], S(Z) = 2A.) The preceding observation raises the
obvious question.

QUESTION. If A ^ No , is there a "well-behaved" metric v on Z(R, A) such that
6(Z) = A? (By "well-behaved" we hope that v should be linear.)

THEOREM 1 .10 . II (G,d) is a topological group, with a bounded and

translation-invariant metric d, then Z[G, d, A) is a topological group.

PROOF: (Note that any translation-invariant metric d! yields an equivalent met-
ric d which is translation-invariant and bounded: Simply, let d(x, y) = d'(x, y) if
d'(x, y) ^ 1, and d{x, y) = 1 otherwise.) Clearly, the inverse map (ssa) —* (^a1) ' s

continuous. In order to show that the coordinatewise multiplication map ((xa)i (j/<*)) —+
(xaya) is continuous, pick e > 0 and 6 > 0 such that B(l, S)B(1, S) C B(l, e/2).
Since d is translation-invariant, we then get that B(xa, 6)B(ya, 6) C B(xaya, e/2),
for each a e A. (Note that d(xa, za) < S, (d(ya, wa) < 6 -» d(l, w^'1) < S) =>
d(l, z"1 ZcWcy-1) < e/2 «• d(xa, ZaWay-1) < e/2 -«• d{xaya, zawa) < e/2.) Hence,
JB((a;Q), S)B((ya), S) C B((xaya), e). This completes the proof. D

REMARK. It is noteworthy that the preceding proof depends on the two-sided invari-

ance of the metric d. It may be interesting to know whether Z(G, A) will still be a

topological group if the metric d is only left-invariant or only right-invariant or neither.

THEOREM 1 . 1 1 . If (L, d) is a linear metric space, where d is bounded and
translation invariant, then Z(L, d, A) is a linear metric space.

PROOF: (It is noteworthy that every linear metric space does have a bounded and
translation-invariant metric, by a theorem of Kakutani — see Theorem 1.1.1 of [2].)
By Theorem 1.10, we only need prove that the scalar map R x Z - t Z , defined by
(r> (^a)) —* (r^a) is continuous, and this is straightforward. U
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2. T H E SUP UNIFORMITY

Let (y, Ii) be a uniform space. Using the pseudometric approach to uniformities,
let Q = {da | a £ F and each da is a bounded pseudometric on X} be a gauge for li.
Since each da generates a pseudometric pa on Z = Z(X, A) — Yl Y, vre get a family

aEA

Q* — {pa I a 6 F} of pseudometrics on Z. It turns out that Q* actually generates a
base for a uniformity for Z: Simply note that if pa, pp £ U* then sup(pa, pp) £ W,
since sup(da, dp) € U and it generates sup(pQ) pp).

APPENDIX

We will re-examine the Dugundji Extension Theorem in order to obtain a new
result which is necessary for the preceding work.

First of all, let us recall that, for any metric space (X, d) and closed subset A of
X, the proofs of Lemma 2.1 and Theorem 4.1 of [1] imply that there exists a locally
finite open cover U = {f/a}a6A of X — A, xa £ Ua and aa £ A, and a partition of
unity {pQ}a€A subordinated to U such that

(i) d{xa, aa) < 2d{xa, A);
(ii) for each a £ A and 6 > 0 there exists S'(a, 6) = 8' > 0 such that

Ua D B(a, 6') ^ 0 implies that Ua C B(a, 6/3) and d(a, aa) <S;
(iii) if Y is a locally convex subset of a linear topological space and f: A —>Y

is a continuous function, then the function <fi(f): X —> Y defined by

•f " e»p.(>)/W if. e x - A ,

is a continuous extension of /

THEOREM 1. Let (X, d) be a metric space, A a closed subset of X and Y
a locally convex bounded subset of a Banach space. If {/y}-yer J's an equicontinuous
family of functions fy: A —» Y then {<p(fy)}-yer is a equicontinuous family of functions

PROOF: Without loss of generality, let us assume that ||Y|| = sup{||j/|| | y £
Y} < 1. Let us first prove that {f(f-,)}feT is equicontinuous at each a £ A. Note that

) — /7(oa) | | . From hypothesis, given e > 0 there exists 6 > 0
such that /7(JB(O, i) D ^) C 5(/7(o), e) for each 7 £ T. Consequently, by (ii),
x £ 5(a, £')rWQ implies that d(a, aa) < 6 which implies that ||v(/7)(o) - <p(f-i){x)\\ ^
EaPa(^) II/T(«) " A(«a)|| ^ ZaP°(*)e = t, breach 7 £ T; that is, p(/7)(*(a, «')) C

(o), e), for each 7 £ F, as required.
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Finally, we prove that {<p(f-t)}yer ig equicontinuous at each w 6 X — A: Pick
B(w, 6) C X — A which meets only I7a i , . . . , Uan in U. Then, for any x G B(w, 6),

n
E o |Pc.(*) - Pa(t«)| | |y|| ^ E o IPa(z) ~Pa(t»)| = E |Pa<(*) - Pa<(w)|. Consequently,

t= l

given e > 0 there exists B(«;, I) C B(tu, *) such that \\<p(f-y)(x) - y(A)(w)ll =

E |Pa<(*) ~ POJ(W) | < £> f° r all x G ^ ( f , J) and 7 6 F; this implies that

y?(/7)(JB(ti>, «)) C B(y>(/T)(t(;), e) , for all 7 G F . This completes the proof. D
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