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Abstract

We prove that the p-adic zeta-function constructed by Kubota and Leopoldt has the Dirichlet series
expansion

i ~ JL f_iv»+i

p\m

where the convergence of the first summation is for the p-adic topology. The proof of this formula
relates the values of £,,(—s, w{+^) for s e lp, with a branch of the '5th-fractional derivative' of a suitable
generating function.

2000 Mathematics subject classification: primary 11R23, 11G55, 11R60.

1. Statement of results

Ever since its discovery over fifty years ago, the p-adic Riemann zeta-function has
long been considered a very different animal to its complex cousin. Despite sharing
their special values at negative integers, the two exhibit vastly different behaviours.
The purpose of this note is to show that as analytic functions, they are not as dissimilar
as they first appear to the naked eye.

Fix an odd rational prime number p, and let us write Cp = Qp for the Tate field.
For any x € Z*, there is a natural decomposition x = co(x)(x), where co is the
Teichmuller character modulo p, and {.*) denotes the projection to the principal units
1 + plp. Kubota and Leopoldt defined a p-adic L-function £p(s, —) over the space
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{s 6 Cp : |sip < pfp-2)/^-1)}, satisfying the interpolation rule

fp(l - n, of) = (1 - pB~1)?00(l - «) for every integer n>\.

At negative integers the complex Riemann zeta-function will take rational values
£oo(l — n) = —Bn/n where Bn is the n-th Bernoulli number, so the right-hand side
above is viewed as a p-adic number. For a fixed congruence class p1 modulo p — 1,
the branches £p(s, a/) are all analytic functions, except for a simple pole at s = 1
when P = 0 (mod p — 1).

There are several different ways to construct these objects. One method is to
take a p-adic Mellin transform of the generalised Bernoulli distribution. Another
approach is the theory of Coleman power series, which converts cyclotomic units
into p-adic L-functions. The following result shows there is yet a third construction,
strongly reminiscent of the Dirichlet series YlT=i l/nZ> defining the standard Riemann
zeta-function at points z € C, Re(z) > 1.

THEOREM 1.1. For all s e TLP and branches fi modulo p — 1,

where convergence takes place in Qp, and the p A(—, —) 's are defined by

p"

fiA(n,s):=
m=p"-'

p\m

The p-adic power (m)s = exp(s logm) makes sense only if p \ m, and is properly
defined for \s\p < pfp-2)/^-'). in due course we shall prove that the p-adic sequence
[p A(n, s)}neN tends to zero at the rate 0{p~n).

This seems to be the first instance where a p-adic L-function has been expanded
as a Dirichlet series. Unfortunately, it does not seem feasible to go a stage further and
express the summation as an Euler product. The formal identity

( 1 - / - J )
2~] n~s for a prime number / ^ p

H6N-/I

has no meaningful convergence in the rigid analytic topology. For similar reasons, the

Euler factor (l - wl+p(2){2)l+s) cannot be absorbed into J27=i f> A ( n - •*)•
Let us now check what happens when we assume that s = —k is a rational integer.

Choosing the class p1 = — k (mod p — 1) means that the term coe(m)(m)s = m~k,

from which we deduce pA(n, -k) = J2m=P"->,P\m (-l)m+1w~*.
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COROLLARY 1.2. Ifk e Z is an integer, then

?„(*, 2(1
A J__ A 1

\m odd, p\m m even, />{m /

where the first summation converges inside ofQp.

At the exceptional point k — 1, the p-adic zeta-function has a simple pole. This is
reflected on the right-hand side by a zero in the Euler factor (l — 21"*).

If k < 0, the left-hand side equals (1 - p'k)U(k) = - ( 1 - p'k)B^k/{\ - k),
which means the Bernoulli numbers can be expressed as a p-adic Dirichlet series. In
fact, our calculations produce the congruence

m=l, p\m

at all integers k < 0 and » > 1, which we could not find anywhere in the literature.
On the other hand, if k > 2, then £p(k, o>'~*) no longer interpolates the classical

Riemann zeta-function. However, Coleman [2] has proven the limit equation

(1 - p~k) lim (lk{x) - p-klk(x")) = ?,(*, «'"*),

where ik(x) = ^ ~ = 1 xm/mA: is the polylogarithm, and x lies in P 1 ^ ) - {0, 1, ex)}.
In particular, combining his theorem with Corollary 1.2 yields an explicit expression
for the p-adic polylogarithm. We do not know whether this formula can be obtained
directly using rigid analysis.

REMARK 1.3. A curious phenomenon occurs when k is an integer greater than one.
Not only do the terms

p" i p" 1

_tA(«,-ifc)= E A " E AmK "-^ mK

m=p"~' m=p"~'
moii,p\m meven.pfm

tend to zero in the p-adic topology, but they also do for the archimedean topology.
An elementary computation involving partial sums reveals that

00

_k A(n, -k) = (1 - 2I~*)(1 — p~k) x £oo(&),

this time the convergence being inside R. Thus for any integer N 5> 1, the rational
number J^n=\ -t A(«, —k) simultaneously approximates £p(k, col~k) p-adically, and
approximates ^(k) as a real number!
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2. Fractional logarithmic differentiation

The fractional calculus was first invented by Liouville in the nineteenth century. In
a nutshell, it assigns a meaning to the operator dn/dX" when the order n g TL. It has
since turned into a very valuable tool in the control of dynamical systems. Vladimirov
[3] introduced the p-adic fractional derivative within the context of mathematical
physics, where it has applications to wavelet analysis and symmetry-breaking.

Our expansion for the p-adic zeta-function is based on the observation that Coates-
Wiles homomorphisms are, in some sense, fractional derivations in disguise. Let K
be a finite extension of Q p , with ring of integers @. The topological power series ring
A = ^[[X]] is often referred to as the Iwasawa algebra. For all n e N, we shall write
Pn(X) for the polynomial (1 + X)p" — 1. There is a well-known isomorphism

which is described in [4, Section 7.1].
The algebra A possesses a useful division algorithm. If F{X) e A and n > 1, then

there exist unique elements Qn(X) e A and Rn(X) e 0[X] such that

F(X) = Pn(X)Qn(X) + Rn(X) with deg(/?n) < p".

The /?n's form a Cauchy sequence in the topology of A, tending to F as n ->• oo.

LEMMA 2.1. If we set

/?fl(X) = £ ] /^(oT1 - l)0B(o(l + X)),

where fj,p» denotes the group of p"-th roots of unity.

PROOF. AS both sides are polynomials of degree < p", it is enough to show that
they agree at p" distinct points. If £ is any p"-th root of unity, then the right-hand side
evaluated at X = £ - 1 equals

- 1)0 B (1)+ ^ F(a~l - 1) xO,

since ©„ vanishes at non-trivial p"-th roots of unity.
In fact ©n(l) = 1 and F(£ — 1) = /?„(£ — 1), so both polynomials coincide on the

set of values {£ — 1 : £ e / v l - The result follows. •
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Consider the ^-linear differential operator (1 + X)(d/dX) : A —>• A introduced
in [1]. If we put X = exp(Z) - 1 so that F(exp(Z) - 1) e K[[Z]], then

^F(exp(Z)-l) = ((l + X ) A y o F W ,

which justifies the terminology logarithmic derivative.
Note that (1 + X)(d/dX) is not invertible on the whole of A. However, defining

the idempotent i/r by

fF(X):=F(X)--

it can be shown that (1 + X){d/dX) : A^=l -> Al(r=1 is a bijective derivation.
For example, if we take a polynomial G(X) = E ^ ' gm(l + X)m € &[X], then

deg(G)

m=0, p\m

so f kills off terms of the form (1 + X)mp.

LEMMA 2.2. IfF, Pn, Qn and Rn are as above, then for all k e N

d V ( d\k

PROOF. A bare-hands calculation shows that

= Pn(X)(l + X)-£-
dX

which lies in PnA + p"A c (p, X)n, since Pn € (p, X)n+1.
By using induction on k, the congruence is easily established. •

For a fixed congruence class ft (mod p — 1), we shall write yfi for the set of
positive integers congruent to /? modulo p — 1. On our polynomial G(X) e

d V de8(G)

dX'
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If p does not divide m, then mk is a continuous function of k e S^p, in fact

mk = a)k(m)(m)k = a/(m) x exp(Hogm).

However, if p divides m then mk tends to zero as k -* oo, which indicates we must
first cut out by i/r to obtain continuity.

DEFINITION 2.3. For a class ft (mod p - 1) and any 5 e Z,,, we define

pDs : 0[X]*=l - • ^ [ X ] ^ = 1 to be the limit fiD
s = lim ( (1 + X)— ) .

£- \ dXj

This is unique and well-defined, since each set <5^ is clearly dense in 1P. Moreover,
its action on the polynomial irG{X) e {?[X]*=l is given by the simple formula

dcg(G)

pDs
 OTJ,G(X)= ^2 (oHm)(m)sgm(l + X)m for all s € Ip.

m=0, p\m

Bearing in mind the approximation in Lemma 2.2, and upon observing that the ideals
(p, X)n form a decreasing sequence of neighborhoods of zero, we have shown the
following.

PROPOSITION 2.4. For any F(X) e A with convergents {Rn(X)]neH, the limit
pDs o -^F{X) := limn_,.oo (pDs ° tyRn(X)) exists and is well defined. For each
congruence class fi modulo p — 1, it follows that pDs : A^=1 —>• A*=1 is the unique
extension to the Iwasawa algebra of the operator given in Definition 2.3.

The operator (_)Di has p — 1 branches, just like the p-adic L-function. The
following properties of p Ds (in particular property (iv)) illustrate why the terminology
fractional logarithmic derivative is appropriate.

LEMMA 2.5. (i) For pu p2 e 2/(/? - 1)2 and s\,s2 e lp, we have p,Ds' o

(ii) Ifk € y?, then fiD
k = ((1 + X)d/dX)k;

(iii) For all s € Zp> the p-fold composition pDs o • • • o pD5 = pDps;
(iv) If a, b e N such that gcd(b, p(p - 1)) = 1, and fi = ab~l (mod p - I),

then the b-fold composition fiD
a/b o • • • o 0D

a/b = ((1 + X)d/dX)\

Due to the density of the subring of polynomials inside A, it is enough to check
these statements (i)-(iv) on elements of ^ [X]* = 1 . We leave them as an easy exercise
for the reader.

https://doi.org/10.1017/S1446788700015846 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015846


[7] A Dirichlet series expansion 221

3. Estimating the zeta-function

Let us return to the task of calculating the Dirichlet series for the Kubota-Leopoldt
zeta-function. We need two things: a formula relating fractional derivatives with
L-functions, and a sequence of good numerical approximations to the fractional
derivative. We start by addressing the latter problem.

Again F(X) 6 A with convergent polynomials {/?n(X)}n£M. Recall that if the
positive integer n is very large, then the ideal (p, X)n is very small (topologically).

LEMMA 3.1. For all integers n > 1, we have the approximation modulo (p, X)n

/L IT amF(a-1 - 1 ) \
1 2 ^ U l + X ) m .

m=\,p\m \ I

PROOF. From Lemmas 2.2 and 2.5 (ii), we know that ^DsofF(X) = fiD
sofRn(X)

modulo (p, X)n whenever s € yfi. Indeed, the continuity built into the fractional
derivative ensures this congruence holds true for all s € Zp.

As a consequence, it is enough to prove that pDs o \//Rn(X) equals the right-hand
side of the above equation. By a direct application of Lemma 2.1,

Rn(X) = J2 { )
ore/ip" m=0

whence
p"-\

fiD
s o fRn(X) = £ F(a~l - l)p-n J2 ^{m){m)sam{\ + X)m.

aZUp" m=0. p\m

This expression is equivalent to the formula in the statement of the lemma. •

PROPOSITION 3.2. IfS?2(X) := (X + 2 ) - ' then for all s elp and 0 (mod p - 1),

PROOF. We first remark that J£i{X) is a power series with /^-integral coefficients,
convergent everywhere on Zp except X = —2; in particular, it certainly lies in A.
Furthermore, we can rewrite it in the form

1 2

X (l + X ) 2 - ! '
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and then changing variable yields the formal identity

- 1) - I

Recall that the power series expansion Z/(exp(Z) - 1) = Y17=o BnZ"/n\ gives birth
to the Bemouilli numbers Bn.

We make the important observation that for all k e N,

X) Jx)
z=o

Actually this is a well-known formula found by Coates and Wiles [1], although an
analogous result can be traced back more than 150 years to the work of Kummer.
We do not intend to reproduce the details here, and instead refer the reader to the
description in [4, Section 12.2].

The natural numbers N are the disjoint union of the sets yfi with fi e l/(p — 1)2.
For all integers k € yp, the values ((1 + X)d/dX) yl/3?2(X)\x=0 are continuously
interpolated by the function ^ Ds o \jr j£f2(0) at points s e1p. Similarly, the Euler factor
(1 - 2 m ) is interpolated by (l - eol+l>(2)(2)l+s) in a p-adic sense. Lastly, the critical
values (1 — pk)Bi+k/(l + k) are precisely those of minus the Kubota and Leopoldt
p-adic L-function, evaluated at negative integers. •

It is time to combine these strands together, and give the proof of Theorem 1.1. Let
P denote a branch modulo p — 1, and let 5 be any p-adic integer. Then

,& o
p"

" = • ' - J2 «Am)<m>sftm(Jz?2) (modp"),
m = l , p\m

where the symbol Qm(Jz?2) denotes the summation p~" ]TagM „ amif2(a"' - !)•

KEY CLAIM. IfO<m<pn- 1, then nm(jSf2) = (-l)m/2.

Certainly if this assertion is correct, then Theorem 1.1 follows immediately from it.
In fact not only do the summands p A(n, s) of the Introduction tend to zero as n -> oo,
but they do so at exactly the rate O(p~").

PROOF. TO establish the truth of our Key Claim, we use simple induction on m.
Since the number Qm (Jz?2) lies inside the field Q(/zp»), we can carry out the calculation
inside the complex numbers.
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If m = 0, then

> + 2Re(a)

_
~P

_n 2Re(a) 2^ ^ + ' 1 + Re(a)

However, for any a € ixp», we know that

- ') Im(a)
1 + Re(a-') ~~ ~ 1 + Re(a) '

so the right-most part contributes nothing. We are left with the outcome that £2O

equals 1/2.
If 1 < m < p" - 1 so m ^ 0 (mod p"), then

By our inductive hypothesis, Qm_i(j£?2) = (— \)m~l/2, which must then imply that
««(^2) = (-Dm/2.

The proof is finished. D

REMARKS 3.3. (a) Theorem 1.1 is especially easy to implement on a computer.
To approximate the generalised Bernoulli distribution using Riemann sums is of
complexity at least O(p2n). Using our p-adic Dirichlet series instead, we need only
perform p" summations to achieve accuracy modulo p"Zp.
(b) Proposition 3.2 also works for more general power series that are of the form

&e{X) = l/X - c/((l + X)c - 1) with gcd(c, p) = 1. Mysteriously, c = 2 is the
only value where we get a clean Dirichlet expansion for the zeta-function; if c > 2
then the coefficients are a mess. The p-adic L-function corresponds to a measure on
the maximal real subfield of the p-cyclotomic extension of the rationals—it is surely
no coincidence that when c = [Q(fip«>) : R n Q(/zp°°)], the coefficients are so simple.
(c) It is intriguing to ask whether p-adic Shintani zeta-functions, or the various

p-adic L -functions attached to modular elliptic curves, have similar expansions as
Dirichlet series. If the answer is in the affirmative, then these objects could be studied
using techniques from analytic number theory. In order to answer these questions, we
need to define the fractional derivative in terms of toroidal group schemes, and also
for Lubin-Tate formal groups.

https://doi.org/10.1017/S1446788700015846 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015846


224 Daniel Delbourgo [10]

Acknowledgements

The author thanks Mark Searle and Justin Kitt for many long discussions about the
fractional calculus. He is also grateful to John Cremona and Paul Smith for verifying
the formulae on a SUN Workstation.

References

[1] J. Coates and A. Wiles, 'On p-adic L-functions and elliptic units', J. Aust. Math. Soc. 26 (1978),
1-25.

[2] R. Coleman, 'Dilogarithms, regulators and p-adic L-functions', Invent. Math. 69 (1982), 171-208.
[3] V. Vladimirov, I. Volovich and E. Zelemov, p-Adic analysis and mathematical physics (World

Scientific, Singapore, 1994).
[4] L. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics 83, 2nd edition

(Springer, New York, 1997).

Department of Mathematics
University Park
Nottingham
England NG7 2RD
e-mail: dd@maths.nott.ac.uk

https://doi.org/10.1017/S1446788700015846 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015846

