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ABSTRACT. Comparison of numerically computed solutions to exact (analytical) time-dependent
solutions, when possible, is superior to intercomparison as a technique for verification of numerical
models. At least two sources of such exact solutions exist for the isothermal shallow ice-sheet equation:
similarity solutions and solutions with ‘compensatory accumulation’. In this paper, we derive new
similarity solutions with non-zero accumulation. We also derive exact solutions with (i) sinusoidal-
in-time accumulation and (ii) basal sliding. A specific test suite based on these solutions is proposed and
used to verify a standard explicit finite-difference method. This numerical scheme is shown to reliably
track the position of a moving margin while being characterized by relatively large thickness errors near
the margin. The difficulty of approximating the margin essentially explains the rate of global
convergence of the numerical method. A transformed version of the ice-sheet equation eliminates the
singularity of the margin shape and greatly accelerates the convergence. We also use an exact solution
to verify an often-used numerical approximation for basal sliding and we discuss improvements of
existing benchmarks.

1. INTRODUCTION

Numerical computer codes for ice-sheet flow emerge from
two stages of effort, first the specification of a continuum
model (i.e. partial differential equations) and second the
numerical approximation of that model by a discrete
computer code. The second stage is necessitated by the
difficulty of identifying exact, analytical solutions to non-
linear partial differential equations for general initial and
boundary conditions. It should be carefully verified because
the results of numerical codes are, for problems as complex
as ice flow, the primary means of extracting predictions from
the continuum model.

Verification using exact solutions is the goal of the current
paper. The ‘benchmarking’ of the second (numerical) stage is
also the stated goal of the European Ice-Sheet Modelling
Initiative (EISMINT) efforts (Huybrechts and others, 1996;
Payne and others, 2000; hereafter referred to as ‘EISMINT I’
and ‘EISMINT II’).

One would suppose from the EISMINT efforts that exact
solutions to the simplest large class of ice-sheet models –
isothermal and shallow – are in extremely short supply. In
particular, only one two-dimensional (2-D) steady-state
solution is referenced in EISMINT I and exact solutions are
not mentioned in EISMINT II. We presume that lack of exact
solutions is the motivation for benchmarking by inter-
comparison.

A moving-margin exact solution exists in the literature
(Halfar, 1981, 1983), however. Here we generalize the
Halfar (1983) radial similarity solution, and show it is
the zero-accumulation case in a family of non-zero-
accumulation similarity solutions. These solutions are all
well suited for verifying numerical models. The Halfar
solution appears in the literature as a Mars polar cap model
by Nye (2000), and the two-dimensional (2-D) case of the
solution (Halfar, 1981) is discussed by Hindmarsh (1990)

and Leysinger Vieli and Gudmundsson (2004). Unfortu-
nately the Halfar solution does not appear in the standard
textbooks (Hutter, 1983; Paterson, 1994; Fowler, 1997; Van
der Veen, 1999).

The supply of exact time-dependent solutions suitable for
numerical verification is reasonably rich because we can
also construct exact solutions with ‘compensatory accumu-
lation’, a technique called the ‘method of manufactured
solutions’ (Roache, 1998) in computational fluid dynamics
(CFD). Compensatory accumulations allow construction of
an exact solution with oscillatory (in time) accumulation and
an exact solution with basal sliding in an ice-stream-like
sector, for instance. There exist enough exact solutions to
verify all features of time-stepping shallow, isothermal
numerical models.

In section 3 we propose a suite of tests based on the exact
solutions derived in section 2. The proposed suite is used in
section 4 to verify a standard explicit finite-difference
method. This method has been selected for both ease of
generalization to the thermocoupled case and also ease of
exposition here. We expect that other numerical schemes
will be verified by some selection of exact solutions and will
show comparable or greater numerical quality (within the
constraints discussed in section 5.1).

We use the term ‘verification’ for the comparison of very
accurate solutions with the numerical approximations
produced by a given code. The term ‘verification’ and a
second term ‘validation’ are standard in the CFD literature.
These terms are illustrated and informally defined in the
following excerpt:

‘Two types of errors may be distinguished: modelling
errors and numerical errors. Modelling errors arise from not
solving the right equations. Numerical errors arise from not
solving the equations right. The assessment of modelling
errors is called validation, whereas the assessment of
numerical errors is called verification . . . Validation makes
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sense only after verification, otherwise agreement between
measured and computed results may well be fortuitous’
(Wesseling, 2001, p. 560–561, emphasis in original).

Standards for verification in CFD are well established, as
in the validation and verification guidelines of the American
Institute of Aeronautics and Astronautics (AIAA, 1998) and
the ‘best practice’ guidelines of the European Research
Community On Flow, Turbulence And Combustion
(ERCOFTAC, 2000). In summary, the standard for verification
is the comparison of highly accurate solutions, usually exact
solutions, to numerical results for a variety of cases sufficient
to exercise all parts of the numerical scheme including
boundary conditions; evidence of convergence to the
continuum must be shown (AIAA, 1998). Note that verifica-
tion is generally finished by the satisfaction of such a standard
(until the code changes); validation is never completely
finished for any non-trivial code and continuum model.

Advantages of verification by exact solutions vs inter-
comparison include: (i) In intercomparison certain features
of the collected numerical results are chosen for comparison
and reporting. Researchers with new goals may be interested
in features not chosen. (ii) Convergence of numerical
methods is hard to measure by intercomparison. (It was
not attempted in EISMINT I.) ‘Convergence’ here refers to
the decay to zero of the ice-sheet-wide maximum numerical
error relative to highly accurate solutions as numerical
parameters go to their continuum limit (Roache, 1998) and
not analysis of local truncation error (cf. Waddington, 1981)
by itself. (iii) Without an exact solution, there is no way to
know the quality of a newly computed result which falls
outside a reported intercomparison range. For a hypothetical
example, suppose that in EISMINT I all codes had possessed
diffusivity calculations of ‘type II’. In that case, a new code
of ‘type I’ would produce thicknesses closer to the
continuum values than any of the reported results, but
would fall outside of the reported range. (iv) Exact solutions
are more portable because they can be recreated by anyone
who understands their derivation.

We do not view verification as an end in itself, of course.
The goal is close approximation of ice-sheet behavior. In
particular, it is desirable to compare the results of a variety of
verified (to the extent possible) ice-sheet codes to field
measurements and to compare the results of verified codes
for distinct continuum models. A recent paper by Leysinger
Vieli and Gudmundsson (2004) performs exactly such a
verified comparison of shallow and full-system (non-
shallow) models in the 2-D isothermal, frozen-bed alpine
glacier case. On the other hand, Mahaffy’s (1976) classic
work included validation relative to the contemporary state
of Barnes Ice Cap, Canada.

In this paper, we consider exact solutions to the isothermal
shallow case. We do not include ‘diagnostic’ temperature
calculations for two reasons. First, high-quality (relative to
EISMINT I and II grid choices) numerical results are known
for temperature calculations in a fixed or changing geometry,
though without full thermocoupling (Calvo and others, 1999,
2002a). Second, construction of exact solutions to the
thermocoupled shallow ice-sheet model is also possible by
manufacturing a solution. We will describe such solutions in
a future paper. Such solutions allow verification of most of
the features of the models addressed by EISMINT II. Finally,
any reasonable thermocoupled code will have a mode in
which the coupling can be turned off; this mode can be
verified using the methods of the current paper.

2. TIME-DEPENDENT EXACT SOLUTIONS
The notation of this paper matches, to the extent possible,
that of EISMINT I. At position x, y and time t the ice-sheet
thickness is Hðx, y, tÞ meters. We suppose isostatic bed
depression is described by a constant fraction f so that
h ¼ ð1� f ÞH is the surface elevation and �fH the bed
elevation. Let Mðx, y, tÞ (m a–1) be the rate of surface
accumulation, negative for ablation. Throughout this paper,
divergence and gradient are in horizontal variables.
Consider the isothermal shallow ice-sheet equation

without basal sliding, an equation of mass continuity

@H
@t

¼ M �r � q f, ð1Þ

where q f is the volume discharge due to internal deform-
ation of the ice. Assuming the Glen (1955) constitutive
relation as generalized by Nye (1957), and using the
shallow-ice approximation (Hutter, 1983; Fowler, 1997),
we have

q f ¼ ��Hnþ2jrhjn�1rh , ð2Þ
where n is a fixed exponent in the range 1:8 � n � 4
(Goldsby and Kohlstedt, 2001). EISMINT I parameterizes
� ¼ 2Að�gÞn=ðn þ 2Þ, where A is a temperature-dependent
flow-law parameter, � is the density of ice (assumed
constant), and g is the acceleration due to gravity.

Either of two boundary conditions for ice sheets is
supposed, along with Equations (1) and (2), to determine
unique solutions. The natural condition is imposed by
requiring H � 0 (Hindmarsh, 2001; Calvo and others,
2002b). Such a boundary condition applies to grounded
moving margins and to grounded steady margins in ablation
zones where q f ¼ 0. The Vialov–Nye condition H ¼ 0,
imposed at predetermined ice-free points, is a well-
established first approximation to the complex boundary
condition at a marine calving front. Typically q f 6! 0 at a
Vialov–Nye margin. Both boundary conditions are of
interest to modellers; section 5.1 addresses the difficulty of
numerically approximating both types of margins.

The reader interested primarily in numerical verification
may bypass the remainder of section 2, containing deriva-
tions of new exact solutions, and proceed to the exact-
solution-based test suite in section 3 and an example
verification using these tests in section 4. The results of the
next three subsections can be (and have been) checked by
substitution into the relevant differential equations.

2.1. A family of similarity solutions with non-zero
accumulation
We now consider certain exact, time-dependent and radial
solutions to Equations (1) and (2) with H � 0, called
similarity solutions. (See Barenblatt (1996) for examples of
similarity solutions in other fields.) It turns out that such a
solution exists if accumulation is proportional to thickness
and is inversely proportional to time. In particular, as will be
shown below, there is a similarity solution H ¼ H� to the
equation

@H
@t

¼ �t�1H þr � �Hnþ2jrhjn�1rh
� �

, ð3Þ

where � is an accumulation parameter explained below.
Such solutions are useful for verifying a numerical code’s
ability to respond to a time-dependent accumulation
(source) term.
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We seek a solution of the similarity form (ansatz)

H�ðr, tÞ ¼ t��’ðsÞ, s ¼ t��r ð4Þ
where r is the radial distance r2 ¼ x2 þ y2. (Regarding
derivatives in radial directions, recall that rg ¼ ðdg=drÞr̂
and r � g r̂ð Þ ¼ r�1d rgð Þ=dr if g ¼ gðrÞ and r̂ is the unit
radial vector.) The constants �, � and the function ’ are to
be determined.

Following Halfar (1983), one might try to start the
derivation by supposing Hðr, tÞ ¼ aF2ðtÞG brFðtÞð Þ for un-
known constants a, b and unknown functions F, G. This
leads to ordinary differential equations for F and G by
separation but presupposes � ¼ 2� which excludes a non-
zero-accumulation solution. Similarly, the elegant derivation
of Halfar’s solution in Nye (2000) starts from the assumption
that the volume is constant; this is not true of the � 6¼ 0
solutions here.

Instead, substitute H ¼ H� and h ¼ ð1� f ÞH� into Equa-
tion (3). The course of the derivation that follows is best seen
by noting that the conditions for eventual success are, most
importantly,

ð2n þ 1Þ�þ ðn þ 1Þ� ¼ 1 and � �þ 2� ¼ �: ð5Þ
Note that these equations completely determine � and � as
functions of n and �.

The role of the first of conditions (5) is to allow the
elimination of t from the equation found by substituting the
similarity form. The result is an ordinary differential equation

��’��s’0 ¼�’þ �ð1� f Þn 1
s

s’nþ2j’0jn�1’0
� �0

, ð6Þ

where ð�Þ0 denotes d/ds. Equation (6) can be integrated once
us ing the second of condi t ions (5 ) to wr i te
ð�þ �Þs’þ �s2’0 ¼ �ðs2’Þ0; the constant of integration is
seen to be zero because ’(0) and ’0(0) are finite. If ’0 � 0,
i.e. if flow is in the positive radial direction, then

�s ¼ �ð1� f Þn’nþ1ð�’0Þn: ð7Þ
This equation is separable. Note ’0ðsÞ < 0 for some s > 0
implies � > 0.

For the next integration, suppose � > 0 and suppose that
at time t0 > 0 the dome thickness at r ¼ 0 is H0. Integrating
Equation (7) yields

’ðsÞð2nþ1Þ=n¼ðt�0H0Þð2nþ1Þ=n� 2n þ 1
ð1� f Þðn þ 1Þ

�

�

� �1=n

sðnþ1Þ=n:

ð8Þ
Let R0 be the margin radius at time t0, that is, such that

’ðt��
0 R0Þ ¼ 0. We have the relation

t0 ¼ �

�

2n þ 1
1� fð Þ n þ 1ð Þ

� �n Rnþ1
0

H2nþ1
0

ð9Þ

between t0, H0 and R0 (cf. equation (19) in Nye (2000)). The
time t0 gives the characteristic scale for substantial changes
in the similarity solution.

In summary,

H� r , tð Þ ¼ t��’ t��r
� �¼H0

t
t0

� ���

1� t
t0

� ��� r
R0

" #nþ1
n

8<
:

9=
;

n
2nþ1

ð10Þ
is a solution to Equation (3) where

� ¼ 2� ðn þ 1Þ�
5n þ 3

, � ¼ 1þ ð2n þ 1Þ�
5n þ 3

, ð11Þ
and t0, H0 and R0 satisfy Equation (9). The dome height is
Hd tð Þ ¼ H� 0, tð Þ ¼ H0 t=t0ð Þ�� as a function of time while
the margin radius is Rm tð Þ ¼ R0 t=t0ð Þ�. The accumulation
function corresponding to H� is M�ðr , tÞ ¼ �t�1H�ðr, tÞ,
with dome value Md tð Þ ¼ �H0t�1 t=t0ð Þ��.

Formula (9) for the absolute time-scale, t0, is related to the
‘t ¼ 0’ value of our solution. By choosing H0 and R0 we have
determined the t ! 0þ volume of the ice, for � in the
appropriate range (see Table 1) and also the time t0 for the
dimensions to evolve to H0 and R0. For the purposes of
numerical verification, it is convenient to parameterize by
H0, R0 and accept t0 as the time-scale. (Compare comments
by Nye (2000) and Leysinger Vieli and Gudmundsson (2004)
on the modelling significance of t0 for the Halfar solutions.)

To understand the relation between the value of � and the
initial (t ! 0þ) and ultimate (t ! þ1) conditions of these
similarity solutions, we non-dimensionalize t � t0, r � R0,
H � H0 and write Equation (10) as

t��r
� �ðnþ1Þ=n þ t�Hð Þð2nþ1Þ=n ¼ 1 ð12Þ

in the new coordinates. Also

Hd tð Þ ¼ t��, Rm tð Þ ¼ t� and Md tð Þ ¼ �t� �þ1ð Þ ð13Þ
are dome height, margin radius and dome accumulation
rate, respectively, in the non-dimensional coordinates.

From Equations (11) and (13) we have the various cases in
Table 1.

Seeking only realistic solutions, we recall Equation (7),
and note that if ’0ðsÞ < 0 for some s > 0 then � > 0 and
� > �ð2n þ 1Þ�1. It follows that Rm tð Þ ! 0þ as t ! 0þ and
Rm tð Þ ! þ1 as t ! þ1. A ‘delta function initial condition’

Table 1. Initial and ultimate conditions for solutions H�ðr ,tÞ; see Equations (10) and (11). Equation (13) defines Hd and Md

Range of � Sign of � Sign of �þ 1 Limit as t ! 0þ Limit as t ! þ1
Hd Md Hd Md

�ð2n þ 1Þ�1 < � < 0 + + þ1 �1 0 0�

� ¼ 0 + + þ1 0 0 0
0 < � < 2ðn þ 1Þ�1 + + þ1 þ1 0 0þ

� ¼ 2ðn þ 1Þ�1 0 + 1 þ1 1 0þ

2ðn þ 1Þ�1 < � < 5 – + 0 þ1 þ1 0þ

� ¼ 5 – 0 0 1 þ1 1
5 < � < þ1 – – 0 0þ þ1 þ1
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description is only appropriate for the solutions H� with
�ð2n þ 1Þ�1 < � < 2ðn þ 1Þ�1; this range includes the
Halfar � ¼ 0 solution, of course.

Similarity solutions of Equation (3) for �1 < � �
�ð2n þ 1Þ�1 do exist. They satisfy ’0 � 0 and � � 0.
Equations (7), (8), (9), (10) and (12) must be changed
appropriately. These solutions have infinite ice-sheet extent
(thus R0 is not defined) and infinite ice volume at all times.
Flow is towards r ¼ 0 into an interior ‘cup’ (except when
� ¼ 0, then thickness is constant in r ). In any case, note that
when � < 0 there is increasing ablation with increasing
height. These curiosities are, perhaps, not useful for model-
ling or verification.

Figure 1 shows the profiles of H� for n ¼ 3 at t ¼ 0.1t0, t0
and 10t0 and for � ¼ �1:7, 0 and 1.5. The � 6¼ 0 solutions
have time-dependent volume; they are all new.

An interesting similarity solution is obtained by setting
� ¼ 5. In this case the dome thickness Hd(t) grows linearly in
time, from zero at t ¼ 0, and the dome accumulation Md(t)

is constant as a function of time. Test C in section 3 is based
upon this case.

The concatenated solution H ¼ H��5 for 0 � t � t0 and
H ¼ H��0 for t � t0 forms a simple analytical ‘complete life-
cycle’ model for an isothermal shallow ice sheet. It starts
with zero ice and experiences a period of linear-in-surface-
elevation accumulation. The accumulation switches off at
t ¼ t0 (when � ¼ 0) or switches to ablation (when � < 0) and
the sheets decay to zero thickness as t ! þ1. There is no
discontinuity of H at t ¼ t0 because H�ðr, t0Þ is independent
of �.

2.2. Solution with basal sliding in an ice-stream-like
region
In this subsection we show that compensatory accumulation
functions can be defined to create essentially any profile we
choose. The resulting exact solutions can be used, for
example, to test the ability of numerical codes to deal with a
spatially varying accumulation source term and/or basal
sliding (for a broad range of sliding laws).

The Bodvarsson (1955)–Vialov (1958) radially symmetric
ice sheet with Vialov–Nye margin H ¼ 0 at r ¼ L and
constant accumulation M0 (Equation (17) below) is a well-
known exact steady solution to the isothermal shallow-ice
equation. In this subsection we construct an exact steady
solution with basal sliding in an ice-stream-like sector, based
upon the Bodvarsson–Vialov solution.

In particular, consider the equation

0 ¼ M �r � q f þHub
� �

, ð14Þ
where q f is given by Equation (2) as before and ub is the
basal sliding velocity, assumed proportional to a power p of
the basal shear stress (�b ¼ �xz , �yz

� � ¼ ��gHrh in the
shallow-ice approximation):

ub ¼ ��
p
b ¼ �� �gHð Þp rhj jp�1rh, ð15Þ

for some sliding coefficient � � 0. Various physical motiva-
tions for such laws exist (MacAyeal, 1989; Paterson, 1994).
Simple modification of the derivation below allows con-
struction of exact solutions with basal sliding given by any
reasonable function �b ¼ Fð�bÞ.

Our exact solution will have non-constant sliding par-
ameter � ¼ �ðr , �Þ, in polar coordinates, varying continu-
ously from zero in the regions of frozen base to a maximum
�max within the ice-stream-like region. In particular, we
suppose the region is a sector r1 < r < r2, �1 < � < �2, and
we suppose such a sector appears in each quadrant of the
ice sheet by reflection across x ¼ 0 and y ¼ 0. (Such
symmetry produces a convenient verification test (see
section 4) but is inessential to the derivation here.)
Supposing r ¼ L is the position of the margin, we require
r1 > 0 and r2 < L for non-singularity of certain quantities in
what follows. In test E (section 3) we choose

�ðr , �Þ ¼ �max
4ðr � r1Þðr2 � rÞ

ðr2 � r1Þ2
4ð�� �1Þð�2 � �Þ

ð�2 � �1Þ2
, ð16Þ

within the region, and � ¼ 0 otherwise, for (relative)
simplicity. Note that � r1 þ r2ð Þ=2, �1 þ �2ð Þ=2ð Þ ¼ �max.

Figure 2 shows the region of non-zero sliding and
contours of the sliding parameter. Note �1 ¼ 10, �2 ¼ 40,
r1 ¼ 200 km and r2 ¼ 700 km, where L ¼ 750 km in this
map plane view; these are the parameters used in test E. The
angles �1 and �2 have been chosen to produce a relatively

Fig. 1. Three cases of the similarity solution (Equations (10)
and (11)). (a) The Halfar (1983) solution (� ¼ 0) with constant
volume and zero accumulation. (b) The � ¼ �1=7 solution with
height-dependent ablation and decaying volume; the margin does
not advance. (c) The � ¼ 1:5 solution with height-dependent
accumulation and increasing volume; the margin advances rapidly.
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generic sliding sector, not specially aligned to the finite-
difference grid in section 4.

For the figures and for verification we choose p ¼ 1 and
�max ¼ 2:5� 10�11 Pa–1m s–1. These values produce, for
example, a velocity of 80ma–1 at a basal shear stress of
100 kPa (1 bar).

To construct an exact solution to Equation (14) we find a
compensatory accumulation Mb as follows. First, HðrÞ is
given by a predetermined function, in this case the
Bodvarsson–Vialov profile

HV rð Þ ¼ 2n�1M0=�
� �1= 2nþ2ð Þ

L1þ1=n � r1þ1=n� �n= 2nþ2ð Þ ð17Þ
with M0 a positive constant. Now let

Mb ¼ r � HVubð Þ ¼ ��g 1� fð Þr � �H2
VrHV

� �
: ð18Þ

Then HV solves Equation (14) with M ¼ M0 + Mb and ub
given by Equation (15) with p ¼ 1. This can be seen by
substitution. Note that Mb is bounded and piecewise-
differentiable but discontinuous; it is well known that
discontinuous source terms pose no difficulties for diffusion
equations (Evans, 1998).

The main point, however, is simply that HV is the exact
solution to Equation (14) because Mb has been specifically
chosen to make it so. Figure 3 shows H and M ¼ M0 + Mb

along the center line of the sector. The accumulation is
greater than M0 upstream in the region, and is negative
(ablation) downstream, in order to compensate for the basal
sliding. That is, faster flow from basal sliding exports ice
from the upstream region and piles it downstream; accumu-
lation must compensate. Details of the calculation are
addressed in the Appendix; test E in section 3 is based on HV

and Mb.

2.3. Time-dependent solution with compensatory
accumulation
The technique used in section 2.2 to generate an exact
solution with basal sliding has more general applicability.
Many exact solutions suitable for testing, including the time-
dependent solution we now describe, can be found this way.
This solution, which has profile Hp (Equation (24)), is a
perturbation of an apparently new steady-state solution Hs

(Equation (21)). We construct a new steady solution because
no existing smooth exact solution has its margin in an
ablation zone. We seek a solution subject to a natural

(ablation zone) boundary condition because, in the follow-
ing verification test, margin drift is an indication of numer-
ical error.

(Our derivation will produce a compensatory accumu-
lation from the derivative of the flux, which therefore should
be smooth. For the 2-D steady case there is an exact solution
with piecewise constant accumulation/ablation (Paterson,
1994, p. 245) which has been used in verification (Calvo and
others, 2002b), but that solution does not generalize to the
radial case with a convenient expression.)

Thus, for the moment, we seek a steady radial solution
to the isothermal shallow ice-sheet equation with
margin at r ¼ L situated in an ablation zone. With
q f ¼ qðrÞr̂, H ¼ HðrÞ, h ¼ ð1� f ÞH and (�)’ for d/dr, the
scalar flux is qðrÞ ¼ �ð1� f Þn�HðrÞnþ2jH0ðrÞjn�1H0ðrÞ. As-
suming H0 � 0, H1þ2=n �H0ð Þ ¼ q1=n

	
1� fð Þ�1=n


 �
. Integrat-

ing from an arbitrary radius r to a margin at r ¼ L, where
HðLÞ ¼ 0, we have

H rð Þ2þ2=n¼ 2n þ 2
n 1� fð Þ�1=n

Z L

r
q sð Þ1=n ds : ð19Þ

The purpose of this recapitulation is to note that an
analytical expression for HðrÞ exists if the nth root of the
flux function qðrÞ has an analytical integral. Thus we are
invoking a technique for producing myriad steady analytical
solutions. Note, however, that if r = 0 is in an accumulation
zone and if the margin r ¼ L is in an ablation zone then qðrÞ
will grow linearly at r ¼ 0 from a value of zero and will
decay linearly at r ¼ L to zero. One possible flux function
qðrÞ with all of these properties is

qðrÞ ¼ C s1=n þ 1� sð Þ1=n �1
� �n

ð20Þ

for some C , where s ¼ r=L. A dome thickness H0 at r ¼ 0
determines C ¼ 1� fð Þn�H2nþ2

0

	
2 1� 1=nð ÞL½ �n. The corres-

ponding thickness function is

Hs rð Þ ¼ H0

1� 1=nð Þn= 2nþ2ð Þ

� 1þ 1=nð Þs � 1=n þ 1� sð Þ1þ1=n�s1þ1=n
h in= 2nþ2ð Þ

, ð21Þ

where s ¼ r=L. From Equation (20) we find an accumulation
function Ms rð Þ ¼ r�1 d=drð Þ rq rð Þð Þ by differentiation, that is,

Ms rð Þ ¼ C
Ls

s1=n þ 1� sð Þ1=n�1
h in�1

� 2s1=n þ 1� sð Þ1=n�1 1� 2sð Þ � 1
h i

: ð22Þ

Fig. 2. Contours of sliding parameter, �, for an exact solution with
basal sliding.

Fig. 3. Profile of ice thickness, H, (solid curve) and accumulation,
M, (dashed curve) along the center line of the sector.

Bueler and others: Exact solutions and verification of numerical models 295

https://doi.org/10.3189/172756505781829449 Published online by Cambridge University Press

https://doi.org/10.3189/172756505781829449


Note Msð0þÞ ¼ 2C=L and MsðL�Þ ¼ �C=L by limit argu-
ments.

The particular functions Hs and Ms together form a
new steady solution with dome in accumulation region
and margin in ablation region (see Fig. 4). Both Hs and Ms

are smooth on 0 < r < L, and they satisfy 0 ¼ Msþ
r � �Hnþ2

s rhsj jn�1rhs
� �

exactly. They will be incorporated

into test D in section 3.
We now return to the construction of an exact time-

dependent solution. Suppose that we add to the steady
profile Hs a sinusoidal-in-time perturbation in the vicinity of
the equilibrium line. Suppose, for example, a perturbation

P r , tð Þ ¼ Cp sin 2�t
	
Tp

� �
cos2

� r � 0:6Lð Þ
0:6L

� �
ð23Þ

if 0:3L < r < 0:9L, and Pðr , tÞ ¼ 0 otherwise; Tp is the
period of the perturbation and Cp its magnitude. Let

Hp r , tð Þ ¼ Hs rð Þ þ P r , tð Þ: ð24Þ
Now, H ¼ Hp is an exact solution to the time-dependent
equation

@H
@t

¼ Ms þMcð Þ þ r � �Hnþ2 rhj jn�1rh
� �

ð25Þ

with compensating accumulation defined by

Mc ¼
@Hp

@t
�Ms �r � �Hnþ2

p rhp
�� ��n�1rhp

� �
, ð26Þ

where hp ¼ (1 – f)Hp. That is, one makes the constructed
function Hp an actual solution to Equation (25) by
compensating with precisely that additional accumulation
which makes it a solution.

Figure 5 shows thickness profiles and accumulation over
one period Tp. Note that M is bounded but discontinuous
because P has a continuous first, but not second, spatial
derivative. During verification, the accumulation function is
extended by �0:1ma–1 in the region beyond the exact
margin position so as to induce mild negative feedback for
margin drift (see section 4).

In a map plane view of the ice sheet the perturbation and
corresponding non-zero values of Mc are confined to an
annulus away from r ¼ 0 and r ¼ L. Because of the large
variation of M over time, and because of the discontinuous
nature of M, the resulting numerical verification test is quite
challenging. Details of the calculation of Mc, as needed for
test D in section 3, are given in the Appendix.

3. A TEST SUITE
We propose a verification suite for numerical ice-sheet
codes based on exact, generally time-dependent, solutions.
The five tests described here apply only to the isothermal-
shallow-ice approximation. The exact solutions used in
tests A (Bodvarsson, 1955; Vialov, 1958) and B (Halfar,
1983) appear in earlier literature. The remainder are new.
This suite should be modified if more suitable exact
solutions are found.

The tests include two steady-state solutions, one well
known (test A) and one new (test E), while the remainder are
time-dependent. They have flat beds (i.e. f ¼ 0) and no basal
sliding, with the exception of test E which has a linear basal
sliding relation in a predetermined region.

The ice-sheet profiles in these tests are radially sym-
metric. Such solutions are challenging, in varying degrees,
for numerical codes using rectilinear grids (finite-difference
methods) or using adaptive triangulations (finite-element
methods), because in either case the exact margin, as well as
other contour lines, will not coincide with gridlines. A range
of grid-orientation vs margin-orientation cases is thereby
automatically tested.

A suggested verification mode for a time-stepping numer-
ical scheme using the steady solutions (tests A and E) is:

exact thickness, H, is used as the numerical initial
condition;

exact accumulation, M, is used at every step of the run;

after a run time sufficient to observe convergence to
numerical equilibrium, errors are evaluated by compar-
ing the computed thickness to the exact thickness.

Fig. 4. The profile (solid curve) of a steady exact solution with
margin in an ablation zone. Accumulation function shown (dashed)
with location of equilibrium line noted. Dimensions and constants
as in test D; see section 3.

Fig. 5. (a) The envelope of Hp (Equation (24)), a perturbed steady
solution. (b) The corresponding accumulations M ¼ Ms + Mc

(Equations (22) and (26)). Profiles are shown at t ¼ 0, Tp/8, . . .
7Tp/8, that is, at eight equally spaced times in one period of the
perturbation.
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A verification mode using the time-dependent solutions
(tests B–D) is:

exact thickness, H, evaluated at the initial time, is used
as the numerical initial condition;

exact accumulation, M, as a function of time and space,
is evaluated at each gridpoint at every time-step;

at each time-step, t, errors are evaluated by comparing
the computed thickness to the exact thickness at that time.

These modes of verification are illustrated in the next section.
Tables 2 and 3 detail the five tests. We have used the

EISMINT I values of physical parameters when possible. The
Glen exponent is n ¼ 3 in all tests. The overall constant � ¼
2Að�gÞn=ðn þ 2Þ is determined from the EISMINT I values
A ¼ 10–16 Pa–3 a–1, g ¼ 9.81m s–2 and � ¼ 910 kgm–3, so
that � ¼ 9.0177� 10–13m–3 s–1; there are 31 556926 s a�1.
The deformational flux q f is in every case given by
Equation (2).

4. VERIFICATION OF A STANDARD NUMERICAL
MODEL
In this section, we start by describing, for completeness and
reproducibility, a standard and widely used numerical
method for approximating isothermal shallow-ice flow,
namely, an explicit finite-difference method. We then ‘run
it through its paces’ with tests A–E. (This section is based on
computations with MatlabTM programs placed in the public
domain.)

There is good general agreement between exact and
numerical solutions. There is clear evidence of convergence
at all gridpoints in tests B–D, and for all interior gridpoints in
tests A and E. Convergence is likely for all gridpoints in
tests A and E. The particular difficulty of margin shape
approximation, especially in regard to the Vialov–Nye case,
is addressed in section 5.1.

A goal of this paper is to understand the nature and
magnitude of numerical errors in a finite-difference method.

Using our supply of exact solutions, we will report
maximum errors and not the degree of agreement between
different numerical approaches to the same problem.
However, in section 5, we will also report the results of
the same method on a sampling of the EISMINT I bench-
marks and see that they are within the published range. We
will then improve the EISMINT I benchmarks by estimating
‘exact’ results for the EISMINT I experiments using grid
refinement and extrapolation.

4.1. Numerical method summary
The most general form of the equation of continuity
considered in this paper is

@H
@t

¼ M �r � q f þHub
� �

, ð27Þ

where q f is given by Equation (2) and ub is given by
Equation (15) with p ¼ 1. For simplicity we use f ¼ 0 so
H ¼ h.

We suppose a rectangular grid ðxj , yk , tlÞ with fixed
spacing �x,�y,�t. Let Hjkl approximate Hðxj, yk , tlÞ
where Hðx, y, tÞ is the exact solution to a particular
initial/boundary-value problem. Our explicit finite-differ-
ence scheme for Equation (27) is

Hj, k, lþ1 �Hjkl

�t
¼ Mðxj, yk , tlÞ �

Qx
jþ1=2 �Qx

j�1=2

�x

�
Qy

kþ1=2 �Qy
k�1=2

�y
, ð28Þ

where, defining � ¼ rHj j ¼ @H=@xð Þ2þ @H=@yð Þ2
h i1=2

and

recalling that � is the spatially varying sliding coefficient,

Qx
jþ1=2 ¼ � � �Hjþ1=2, k, l

� �nþ2
�jþ1=2
� �n�1

h
þ �g� xjþ1=2, yk

� �
�Hjþ1=2, k, l

� �2iHjþ1, k, l �Hjkl

�x
:

ð29Þ
The quantity in square brackets in Equation (29) is the

Table 2. A test suite of exact solutions for verification of numerical isothermal ice-sheet models

Test Description Equation solved Thickness and accumulation

A Bodvarsson (1955)–Vialov (1958) steady state;
constant accum.; margin in accumulation zone

M ¼ r � q f
[boundary condition: Vialov–Nye H ¼ 0]

HðrÞ given by Equation (17)
M ¼ M0 > 0

B Halfar (1983) similarity solution; moving natural
margin; zero accumulation; constant volume

@H
@t ¼ �r � q f

[boundary condition: H � 0]
Hðr ,tÞ given by Equations (10) and (11)
with � ¼ 0
½M ¼ 0�

C � ¼ 5 similarity solution with positive time-
dependent accumulation; moving natural margin;
H = 0 initial condition; rapid growth

@H
@t ¼ M �r � q f

[boundary condition: H � 0]
Hðr ,tÞ given by Equations (10) and (11)
with � ¼ 5
Mðr,tÞ ¼ ð5=tÞHðr ,tÞ

D Solution with compensatory accum.; ablation-zone
margin; oscillating thickness in annulus; oscillating
accumulation in annulus

@H
@t ¼ M �r � q f

[boundary condition: H � 0]
H(r,t) ¼ Hs(r) + P(r,t)
M(r,t) ¼ Ms(r) + Mc(r,t)
[Hs(r), Ms(r), P ðr,tÞ from
Equations (21–23), respectively;
The Appendix gives Mc(r,t)]

E Bodvarsson–Vialov thickness; steady state; linear
basal sliding in sector; compensatory accumulation;
margin in accumulation zone

M ¼ r � q f þHub
� �

[boundary condition: Vialov–Nye H ¼ 0]
[ub given by Equation (15) with p ¼ 1]

HðrÞ given by Equation (17)
M(r,y) ¼ M0 + Mb(r,y)
[The Appendix gives Mb(r,y)]

Bueler and others: Exact solutions and verification of numerical models 297

https://doi.org/10.3189/172756505781829449 Published online by Cambridge University Press

https://doi.org/10.3189/172756505781829449


numerical ‘diffusivity’. The staggered grid values of H and �

are �Hjþ1=2, k, l ¼ ðHjþ1, k, l þHjklÞ=2 and

ð�jþ1=2Þ2 ¼ Hjþ1, k, l �Hjkl

�x

� �2

þ
�Hjþ1=2, kþ1, l � �Hjþ1=2, k�1, l

2�y

� �2

ð30Þ

respectively, with appropriate modifications at the other
staggered gridpoints. The ‘staggered grid’ flux Qy

kþ1=2 is
computed analogously. The deformational part of the
Qx

� ,Q
y
� formulas is exactly as in Mahaffy (1976) and is

described as ‘type I’ in EISMINT I (see also Hindmarsh and
Payne, 1996).

To implement the natural boundary condition H � 0,
tentative thicknesses Hj, k, lþ1 are found from Equation (28)

using values at t ¼ tl . If Hj, k, lþ1 < 0 then Hj, k, lþ1 is set to
zero, otherwise the value is kept (Hindmarsh, 2001). In the
case of a Vialov–Nye boundary condition, those gridpoints
predetermined as outside the ice region are set as H ¼ 0 at
every time-step.

Overall dimensions �Lx � x � Lx , �Ly � y � Ly and run
time T are supposed fixed. In our verifications the spatial
domain is square so we suppose Lx ¼ Ly , N ¼ Nx ¼ Ny ,
�x ¼ 2Lx=N, �y ¼ 2Ly=N and �t ¼ T=K ; there are
ðN þ 1Þ gridpoints in each spatial direction.

Explicit methods, while easy to implement, are well
known to be subject to stability restrictions (Hindmarsh and
Payne, 1996). To analyze numerical stability, one must
temporarily linearize the problem. In particular, one must fix
the diffusivity D ¼ ð1� f Þ�Hnþ2jrhjn�1 at some time-step
so that it no longer evolves in time. Steps of our explicit
scheme for @H=@t ¼ M þr � ðDrHÞ are then subject to the
restriction (maxDÞ�t=�x2 < C for some constant C of order
one (Morton and Mayers, 1994). In a fixed total time run, a
doubling of N therefore requires an increase in the number
of time-steps K by a factor of 4. On the other hand, the work
of a run is proportional to N2K for this, and any other,
explicit method. Therefore the work increases by a factor of
16 when N is doubled. Note that a fastest possible
‘refinement path’ (Morton and Mayers, 1994) in �x,�t
space will therefore have �t � C 0�x2 for some C 0 (see
Fig. 6).

This restriction (maxDÞ�t=�x2 < C does not directly
apply to the actual (non-linear) evolution, but it has practical
value. For instance, in test A we empirically determine
C � 0:15 from several runs while the linear stability analysis
of Hindmarsh (2001) predicts that C ¼ ð2nÞ�1 ¼ 1=6 from
the slab flow. The restriction is reliable enough to be made
the basis of an adaptive time-stepping scheme, though in this

Table 3. Continuation of Table 2: values of test parameters, comments and suggested uses

Test Values used in section 4 Comments and suggested uses

A n ¼ 3, M0 ¼ 0:3ma�1, L ¼ 750km Non-zero flux and infinite velocity at Vialov–Nye margin. Use for evaluation of numerically
induced margin shape errors (steady accumulation-zone case).

B n ¼ 3, � ¼ 0,
� ¼ 1=9, � ¼ 1=18,
H0 ¼ 3600m, R0 ¼ 750km,
t0 ¼ 422:45 years (see Equation (9))

See section 2.1. Initial condition is H ¼ H�(r,t0). Margin shape intermediate between steady
accumulation-zone and steady ablation-zone shapes. Volume has constant value
V ¼ 3 997940km3 independent of time. Evaluate errors 25 000 years after initial time t0.
Use for evaluation of numerically induced margin shape and position errors (moving-
margin case) and evaluation of volume calculation methods.

C n ¼ 3, � ¼ 5, � ¼ �1, � ¼ 2,
H0 ¼ 3600m, R0 ¼ 750km,
t0 = 15208 years (see Equation (9))

See section 2.1. Accumulation has constant maximum value 5H0=t0 ¼ 1:1836ma–1 but
accumulation region grows over time. Initial condition is H ¼ 0 at time t ¼ 0. Volume at
final time t0 is V ¼ 3997940km3. Evaluate error at time t0. Test B may be used as a
continuation of this test for a complete ice-sheet ‘life cycle’. Use for evaluation of time-step
limits and adaptive time-stepping schemes and also evaluation of errors made with variable
accumulation.

D H0 ¼ 3600m, L ¼ 750km,
Cp = 200m, Tp = 5000 years

See section 2.3 Evaluate error at 25 000 years, i.e. five periods Tp. Use for evaluation of
volume errors with oscillating accumulation and evaluation of numerically induced margin
errors (steady ablation-zone case).

E M0 ¼ 0:3ma�1, L ¼ 750km
�max ¼ 2:5� 10�11 Pa–1m s–1

r1 ¼ 200km, r2 ¼ 700 km
�1 = 108, �2 = 408

See section 2.2. Accumulation is sum of constant M0 and compensatory Mb. Basal
velocity ub given by Equations (15) (with p ¼ 1) and (16). Use for evaluation of basal sliding
and frozen/sliding transitions.

Fig. 6. Step sizes �t and �x used for each test; ‘refinement paths’.
Values of �x correspond to N ¼ 30, 60, 120 and 240 grids. Values
of �t chosen as large as allowed by stability.
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paper we used a fixed time-step in each run. Tests B and C
would show distinct benefits of adaptation: in the first case,
�t would lengthen as the sheet became shallower; �t
would shorten in the second as the sheet thickened.

To compute ice-sheet volume we have chosen the
numerical method

Vnum ¼ �x�y
X
i, j

Hi, j : ð31Þ

This method is a reasonable choice because it is exactly the
two-variable trapezoid rule. However, since H has un-
bounded gradient at a margin, all volume methods based
upon polynomial approximation (trapezoid, Simpson’s,
Gauss’. . .) will suffer from volume errors at the margin.
The trapezoid rule at least makes minimal presumptions on
differentiability.

It turns out that volume method (31) is compatible with
the flux conservation of our explicit method and with our
implementation of the H � 0 natural boundary condition.
By ‘compatible’ we mean that this numerical scheme
conserves Vnum to within the rounding error (less than one
part in 1014) in accumulation-free cases. See the verification
with test B below.

4.2. Verification and grid refinement study
Because the tests in this paper have radial symmetry, we
have saved time by performing all computations in the
quadrant 0 � x � Lx , 0 � y � Ly . (In test E there is symmetry
of accumulation across both x ¼ 0 and y ¼ 0.) We impose
reflection boundary conditions along the lines x ¼ 0, y ¼ 0;
the origin ðx, yÞ ¼ ð0, 0Þ is the center (‘dome’) of each ice
sheet.

In each time-dependent test, the horizontal extent
Lx ¼ Ly was chosen large enough so that exact and
numerical ice sheets never advance to within one gridpoint
of the outside boundaries x ¼ Lx , y ¼ Ly of the compu-
tational domain. In particular, the natural boundary condi-
tion H � 0 in tests B–D was always imposed at gridpoints
away from the x ¼ Lx , y ¼ Ly boundaries.

The runs were done with fixed �t, which was adjusted by
hand to be close to the stability limit for the particular
problem. From the grid refinement study we are convinced
that, for time-dependent problems, choosing �t small
enough to satisfy stability requirements makes the Oð�tÞ
error of our first-order-in-time explicit method negligible
relative to errors in spatial derivative approximations.

Runs using N ¼ 30, 60, 120 and 240 were performed for
each test; N ¼ 30 is the EISMINT I choice and N ¼ 60 is the
EISMINT II choice. Figure 6 shows the refinement paths, in
�t,�x space, used for each test.

Figures 7 and 8 summarize the results. We show
maximum errors, i.e. max jHnum �Hexactj over all gridpoints
ðx, yÞ ¼ ðxj, ykÞ at the final time t ¼ tf, and dome errors
jHnumð0, 0, tfÞ �Hexactð0, 0, tfÞj as functions of N, respect-
ively. Best-fit lines, i.e. linear regression in ðlogNÞ�
logðerrorÞ plane, and their slopes (‘OðN�pÞ’), are added to
suggest the rate of convergence, discussed below.

Dome errors are surrogates for the ill-defined concept of
‘away-from-the-margin errors’. For example, Figure 9 shows
contours of the errors for tests A and B with N ¼ 60. The
largest errors are confined to the vicinity of the margin,
while error is relatively uniform and small in the interior.
Dome errors are substantially smaller than maximum errors
and they converge to zero faster. An explanation appears in
section 5.1.

4.3. Further remarks on test A
Test A is a steady-state solution for which a run of 25 000
model years is sufficient for convergence to numerical
equilibrium from the exact profile as an initial value (cf.
EISMINT I). The error Hnum �Hexact therefore compares
numerical to exact equilibrium.

We believe our numerical method is completely typical
of EISMINT I (see section 5.3) but the maximum errors for
test A in Figure 7 are larger than those suggested by figure 2
in EISMINT I. In EISMINT’s figure an error apparently on the
order of 300m is shown at the last interior gridpoint (near
the margin); only a 26m dome error is actually reported.
(We necessarily refer to the EISMINT I 2-D results; three-
dimensional (3-D) errors cannot be known without an
analytical solution to the EISMINT I 3-D experiments.) As
pointed out earlier, our radial tests are much more
challenging than the EISMINT I steady-state experiment, in
that circular margins are not aligned to the grid.

Figure 9a shows the spatial distribution of the error in
test A. From Figure 7 we have a suggested OðN�0:33Þ rate of
maximum error convergence. By contrast, the centered
difference approximation of the r � qf term has OðN�2Þ
local truncation error (found from Taylor’s theorem assuming
four continuous derivatives (Morton and Mayers, 1994)), and
thus the rate OðN�2Þ is the best possible global (dis-
cretization) error achievable by a numerical scheme using
the centered formula. Note that in easier problems than ice
flow, local errors tend to accumulate as one moves in from

Fig. 7. Maximum error for each test; behavior of the errors under
grid refinement. Errors for tests A and E are indistinguishable at this
scale.

Fig. 8. Dome error for each test; behavior under grid refinement.
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the boundary to give larger global errors. For ice flow with a
grounded margin we see the opposite situation: errors are
large near where H is exactly imposed (the boundary
condition) and are small at the dome. In this case,
unbounded derivatives obviously degrade the best behavior
(see sections 5.1 and 5.2).

4.4. Further remarks on test B
Test B is the zero-accumulation similarity solution of Halfar
(1983), describing the spreading of a delta mass of ice
driven solely by gravity. As shown in Figures 7 and 8, the
errors are substantially smaller than in test A and converge
to zero faster. They are smaller, in part, because the dome
thickness at the final time is smaller (2283.4m as opposed
to 3600m), but primarily because the margin gradient
singularity is milder (see section 5.1). Figure 9b shows the
spatial dependence of the error at the final time when
N ¼ 60.

In Figure 10 we examine the numerical mislocation of the
margin. We show gridpoints where the exact and numerical
solutions disagree about whether ice is present at the final
time. It turns out that, regardless of the value of N in test B,
the width of the arc of mislocated-ice gridpoints is always
three. That is, the arc can always be crossed by ‘stepping on’
at most three of them. We do not know the explanation for

this particular number, but we may conclude that the
method is doing an acceptable job of locating the margin.
The location error is linear in �x, that is, OðN�1Þ, while the
O(N–0.39) thickness error near the margin decays much more
slowly.

The exact solution in test B has constant volume over
time. The finite-difference method used here also yields
constancy of the numerical volume computed by Equa-
tion (31). Indeed, when the initial and final numerical
volumes were compared, the absolute errors were 2, 0, 0.5
and 7m3 for N ¼ 30, 60, 120 and 240, respectively. The
numerically computed volume in question is approximately
4� 106 km3 and thus these errors are all smaller than 10�14

in a relative sense. Note that the numerical volume
(Equation (31)) is not a perfect estimate of the exact volume.
For instance, formula (31) approximated the exact (analy-
tical) volume in test B only to within 0.07% for N ¼ 60.
Rather, the numerical choices made here (finite-difference
method, numerical boundary condition and numerical
volume method) are consistent in terms of volume con-
servation. Local volume conservation (flux conservation) for
the finite-difference method is reasonably obvious; the
property of our numerical scheme illuminated by this
experiment is the (numerical) conservation of volume at
the margin with a natural H � 0 boundary condition.

Fig. 9. Spatial dependence of the errors in tests A and B when
N ¼ 60. Error is defined as Hnum �Hexact, which is positive
everywhere using our type I scheme. Only one-quarter of the sheet
is shown owing to symmetry. (a) Test A: maximum error of 650m
near margin; interior of sheet has errors in range 30–70m.
(b) Test B: maximum error of 170m near margin; interior of sheet
has errors in range 1–5m.

Fig. 10. (a) Gridpoints on an N ¼ 30 grid where the exact and
numerical solutions disagree about whether ice is present at the
final time in test B. (b) The corresponding result for N ¼ 240. The
arc is three gridpoints wide in both cases. The arc is also three
gridpoints wide when N ¼ 60 and N ¼ 120 (not shown).
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4.5. Further remarks on test C
Test C is a new non-zero-accumulation similarity solution
with zero initial condition and linearly increasing dome
height over time. The accumulation function has a constant
(in time) maximum value of about 1.2ma�1. Because M is
proportional to H, the region of non-zero accumulation
grows as the ice sheet advances.

Because diffusivity D depends on the n þ 2 power of H,
as thickness increases stability can ‘suddenly’ become an
issue at some time-step. This test is therefore well suited to
testing adaptive time-stepping (although we did no such test
here).

The accumulation function M is irregular in the sense that
it goes to zero with unbounded derivative at the margin. We
use the final volume to measure the degree to which the
numerical method accurately accumulates ice over time.
The result is that the final numerical volume Vnum converges
to the exact value at a relatively rapid OðN�2:41Þ rate.

In this paper, we have not taken full advantage of the
verification opportunities offered by test C, namely, to verify
a shallow numerical model of the ‘mass-balance altitude
feedback effect’ (Leysinger Vieli and Gudmundsson, 2004)
in the case where accumulation is linear in surface height
(thickness). In our tests we regarded the exact Mðr , tÞ as a
predetermined function of space and time. However, since
M ¼ �t�1H, one can instead compute the accumulation
Mnum ¼ 5t�1Hnum at each gridpoint based on the approxi-
mate value Hnum. Such a calculation requires using the exact
solution Hðr , tÞ at positive t for an initial condition; an ice
sheet of zero thickness does not grow if accumulation is
linear in thickness.

4.6. Further remarks on test D
Test D is a time-dependent, sinusoidal perturbation of a new
steady-state solution. After each period of Tp ¼ 5000 model
years the exact solution returns to the same thickness profile

and thus to the same volume. It has margin in an ablation
zone and the margin boundary condition is simply H � 0.
The numerical margin is allowed to drift. We impose a
0.1ma�1 ablation rate in the region outside the exact
margin for mild negative feedback.

Now, because of oscillatory and irregular accumulation
(Fig. 5), this test is ideal for measuring the degree to which
the numerical method does not conserve volume. Figure 11a
shows that as the grid is refined the numerical volume at the
final time of 25 000 model years seems to converge to the
exact value. Figure 11b shows the numerical and exact
volumes over time; the N ¼ 30 and N ¼ 240 curves are
omitted for clarity. Note, in particular, that no apparent
phase error has occurred, and we believe this is because our
time-steps are relatively small (for stability reasons).

4.7. Further remarks on test E
Test E is a steady-state solution which adds linear basal
sliding and compensatory accumulation, in a sector, to test A
(see Fig. 2). Again, a run of 25 000 model years was regarded
as sufficient to produce numerical equilibrium, given the
exact profile as an initial value.

The errors are maximum near the margin as in test A, and
indeed dominate the error made in approximating basal
sliding. We conclude that our numerical scheme for basal
sliding is completely compatible, in terms of numerical
difficulties, with difficulties already present in the frozen
base case.

A contour map of the test E thickness error appears in
Figure 12. It shows that the two processes of basal sliding
and compensatory accumulation do, as designed, essentially
cancel each other. By comparison with Figure 9a, we see
that a slight asymmetry of the error contours, especially the
30m contour, is the only visible indication of numerical
non-cancellation.

5. DISCUSSION

5.1. On the approximation of margins
We now redo the regression on the maximum error
graph (Fig. 7) by discarding the N ¼ 30 case as an ‘outlier’.
The result (Fig. 13) is that the three margin shapes –
steady accumulation zone/Vialov–Nye (A and E), moving

Fig. 11. Test D. (a) Relative volume error at 25 000 model years.
(b) Exact (solid curve) and numerical volumes over time for N ¼ 60
(dotted curve) and N ¼ 120 (dashed curve).

Fig. 12. Error Hnum �Hexact in test E with N ¼ 60. Near-margin and
interior errors are nearly identical to those in test A (cf. Fig. 9a).
Compensatory accumulation and basal sliding essentially cancel as
intended.
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similarity/natural (B and C), and steady ablation-
zone/natural (D) – determine the rates of convergence of
the maximum error everywhere on the sheet. Unfortunately,
we also see by the poor linear fit that for the Vialov–Nye
margin cases (tests A and E) the rate of convergence may be
slower than these linear fits suggest. It is conceivable, at
least, that the error does not approach zero as OðN�pÞ for
any p > 0, even in theory. In practice, it is clear that no
achievable grid exists for our finite-difference method that
would give a maximum error of, say, 50m in test A. By
contrast, a maximum error of 50m is achievable in test B
using N ¼ 960, i.e. two more doublings of N ¼ 240, if the
convergence rate continues.

The source of large maximum errors is the difficulty of
numerically approximating ice-sheet margin shape. It turns
out, in other words, that large maximum errors do not come
from some elaborate non-linear mechanism or from the
misapplication of numerical boundary conditions, but rather
from the ‘simple’ issue of singular margin gradient.

Certainly the shallow approximation is invalid as a
precise continuum description of ice flow as one approaches
the margins, where neglected stress components become
important. However, the shallow-ice approximation is both
a good approximation for ice-sheet-scale behavior and is
more practical at ice-sheet scales than the full system
equations (Leysinger Vieli and Gudmundsson, 2004), so the
extent of disagreement between continuum solutions and
their numerical approximations is important. In particular,
we will explain why large numerical errors at margins do not
‘corrupt’ accuracy over the interior of the ice sheet.

The known (asymptotic) margin shapes correspond to
three specific exponents. The mildest are ablation-zone
steady margins with shape HðxÞ � x1=2 where x is a generic
coordinate describing distance into the ice sheet from the
margin (Fowler, 1997). (These are ‘mild’ in the sense that xp

is of increasing differentiability at x ¼ 0 as p increases.) The
next mildest profiles appear in the similarity solutions
H ¼ H� of section 2.1. The shape is independent of the
accumulation parameter �: H�ðxÞ � xn=ð2nþ1Þ. Finally, accu-
mulation-zone steady margins (Vialov–Nye margins) have
the steepest shape HðxÞ � xn=ð2nþ2Þ (Fowler, 1997).

We assume other time-dependent margin shapes are
possible. We also suppose, however, that the xn=ð2nþ2Þ power
of a Vialov–Nye margin represents the most singular shape
of interest to modellers.

The importance of these powers can be seen by
evaluating the flux, given by Equation (2), as x ! 0þ, in
these three cases. The result is that qðxÞ � x1, xn=ð2nþ1Þ, x0,
respectively. In the last case, q is not even continuous at
x ¼ 0 because, presumably, qðxÞ ¼ 0 for x outside the ice.

All finite-difference methods which depend on the
standard Oð�x2Þ centered-difference formulas for deriva-
tives can be regarded as being implicitly based upon
global piecewise linear approximation (although they are
derived by Taylor series arguments). This can be seen
clearly in certain examples, for instance, the perfect
correspondence between the standard finite-difference
and finite-element treatments of the simplest Poisson
problem on a rectangle (section 1.2 of Johnson (1987)).
Finite-element methods are, of course, explicitly based
upon piecewise linear (or, at least, piecewise polynomial)
approximations.

Consider the piecewise linear approximation of an ice-
sheet margin with asymptotic shape HðxÞ ¼ xp , 0 < p < 1,
as in Figure 14. Suppose that a gridpoint coincides with the
exact position of a margin. The next gridpoint is �x up-
glacier and the error between the exact H and its linear
approximation is EðxÞ ¼ xp � ðlineÞ ¼ xp � ð�xÞp�1x: The
maximum Emax ¼ max EðxÞ, for 0 � x � �x, is at �x ¼
�x � p1=ð1�pÞ and has magnitude

Emax ¼ 	ð�xÞp ¼ OðN�pÞ ð32Þ
for 	 ¼ pp=ð1�pÞ � p1=ð1�pÞ. A more complete version of this
analysis shows that even as the position of the last on-ice
gridpoint is varied the approximation error is still OðN�pÞ.

Our hypothesis is that Equation (32) predicts the numer-
ical error in the vicinity of the margin, and thus the
maximum error on the whole ice sheet (which we hypothe-
size always occurs at a point near the margin). Table 4
compares the prediction of this hypothesis to observed
global maximum errors in the tests of section 4. The
correspondence is close for the (steady) ablation-zone and
similarity margins, but for the Vialov–Nye (steady) accumu-
lation-zone margin the numerical errors are even larger than
predicted by Equation (32). For natural margins there is a
high-quality approximation of a continuum quantity evol-
ving ‘in the background’, specifically of the transformed
thickness 
 ¼ Hð2nþ2Þ=n, considered in section 5.2, and
Equation (32) really determines the error. For the Vialov–Nye
margin something is going wrong even for the 
-evolution,
namely that 
 is not continuously differentiable at the
margin.

Fig. 13. The convergence of maximum error is influenced by the
type of boundary condition imposed. Here the linear regression is
to the N = 60, 120 and 240 values only. Maximum errors in tests A
and E coincide at the resolution of this figure.

Fig. 14. Linear approximation of a margin HðxÞ ¼ xp gives error
EðxÞ ¼ Cð�xÞp .

Bueler and others: Exact solutions and verification of numerical models302

https://doi.org/10.3189/172756505781829449 Published online by Cambridge University Press

https://doi.org/10.3189/172756505781829449


In any case, we believe this is strong evidence that margin
shape, and not more optimistic local truncation error
predictions from Taylor’s formula (e.g. Waddington, 1981),
controls the global discretization error in a shallow-ice-sheet
simulation. As noted, such Taylor-series arguments predict
OðN�2Þ local error which accumulates as one moves in
from the margin.

5.2. Regularization of the margin by a transformation

Following Calvo and others (2002b), we let 
 ¼ Hð2nþ2Þ=n for
Glen exponent n. Equations (1) and (2), with ub ¼ 0 and
f ¼ 0 for simplicity, are equivalent to

@ 
n= 2nþ2ð Þ
 �
@t

¼ M þr � ~� r
j jn�1r

� �

ð33Þ

for ~� ¼ n= 2n þ 2ð Þ½ �n�. Equation (33), with its natural
boundary condition 
 � 0, describes an evolution equiva-
lent to the original ice equation.

The 
-margin is much less steep than the H-margin. To
see this, let n ¼ 3 for simplicity. Margin shapes H(x) � x1/2,
x3/7 and x3/8 are transformed to Z(x) � x4/3, x8/7 and x1,
respectively. That is, the ablation-zone steady and similarity
margins are transformed to functions 
 with continuous
derivative. The accumulation-zone (Vialov–Nye) margin is
transformed to a 
-margin with bounded but discontinuous
derivative. For illustration, the 
-analog of the Halfar (1983)
solution, that is, the 8=3 power of H�ðr, tÞ in Equation (10)
with � ¼ 0, is shown in Figure 15.

We rerun test B doing the calculation in terms of 
. The
numerical method used for 
 (Equation (33)) is the direct
analog of the explicit finite-difference method described in
section 4.1. Figure 16 shows the rate at which the (relative)
maximum and (relative) dome errors converge as N
increases. (‘Relative maximum’ error is ’relative to the value
of 
 at the dome’.) For the evolution of 
 the maximum error

and dome error now decay at comparable rates. The
maximum error goes to zero at rate OðN�1:07Þ, instead of
O N�0:44ð Þ for H, because the 
-margin is well behaved. The
significance of this good performance is, we believe, that
errors in H are much greater near the margin than in the
interior only because H is the 3=8 power of 
 and not
because of more complicated non-linear effects. The
convergence rate of the H dome thickness closely matches
that of 
. ‘Corruption’ from margin errors does not extend
into the interior for either the H or 
 computation, except to
reduce the order of interior convergence from the best
conceivable rate OðN�2Þ to about OðN�1:5Þ.

5.3. Methods for improving the EISMINT benchmarks
Having verified our numerical method relative to exact
solutions, we consider the continuum problems used by
EISMINT as benchmarks. An important criticism of
EISMINT I is that the values reported as benchmark results
are not numerical results of ‘benchmark quality’. For
several examples of benchmark-quality results for problems
in fluid dynamics without an analytical/exact solution, see
Roache (1998). We will show how such benchmark-quality
results can be extracted for these particular problems.
Nonetheless, for verification the use of exact solutions
is easier and the sources of error are more under-
standable than if benchmark-quality numerical solutions
are used.

We have reproduced three of the six EISMINT I
experiments, namely the ‘fixed-margin experiment in steady
state’, the ‘fixed-margin experiment forced by sinusoidal
boundary conditions with a period of 20 kyr,’ and the
‘moving-margin experiment in steady state’, to show how
the benchmarks can be improved upon. We compute on the
EISMINT I grid with N ¼ 30 and then on refined grids with
N ¼ 60, N ¼ 120 and N ¼ 240.

Table 4. Margin shape predicts global error decay rate; Glen exponent n ¼ 3

Test Margin shape Prediction (Equation (32)) Global error (Fig. 13)

D H � x1=2 ¼ x0:50 (ablation-zone; natural) O N�0:50ð Þ O N�0:51
� �

B, C H � x3=7 � x0:43 (similarity; natural) O N�0:43ð Þ O N�0:44ð Þ,O N�0:46ð Þ
A, E H � x3=8 � x0:38 (Vialov–Nye) O N�0:38ð Þ O N�0:204ð Þ,O N�0:206ð Þ

Fig. 15. Profiles of 
 for the � ¼ 0 similarity solution at times t0
(dotted curve) and 3t0 (solid curve). Note there is no discontinuity
of @
=@r at the margin; shape is 
 ¼ x8=7 if x is distance from
margin. (Cf. Fig. 1a.)

Fig. 16. Convergence of relative maximum (solid lines) and dome
(dashed lines) errors under grid refinement, for both H-evolution
and 
-evolution. (Cf. Figs 7, 8 and 13.)

Bueler and others: Exact solutions and verification of numerical models 303

https://doi.org/10.3189/172756505781829449 Published online by Cambridge University Press

https://doi.org/10.3189/172756505781829449


Table 5 reports the EISMINT I results and our results for
dome/divide thickness Hð0Þ, ‘midpoint’ flux (which is at
400 km away from the dome; the margin in the fixed case is
at position 750 km) and margin position itself (in the moving-
margin experiment). The table gives the EISMINT I 3-D value
and range, that is, the mean and standard deviation of the
11 results from 3-D codes, and also the value and range of
results from those five codes which, like ours, use ‘type I’
diffusivity/flux finite-difference approximations. We report
our results on the N ¼ 30 and N ¼ 240 grids (‘X30’
and ‘X240’); though N ¼ 60 and N ¼ 120 results were
calculated, they are omitted from the table for clarity. In
each case ourN ¼ 30 values are in the EISMINT type I range.

Consider the dome/divide thickness Hð0Þ in the fixed-
margin and steady case. There exists a correct value for the
continuum problem; unfortunately the EISMINT I square
geometry means that it is not known analytically. However,
we can use grid refinement and Richardson extrapolation
(Burden and Faires, 2001) to get a much more accurate
estimate than from theN ¼ 30 grid, or indeed from any fixed
grid. Figure 17 shows Hð0Þ values from the N ¼ 30, 60, 120
and 240 grids. These are associated with decreasing values
of �x, of course. Following the technique of Richardson
extrapolation, we suppose that the numerical approximation
to Hð0Þ is a polynomial function of �x; the convergence
results of section 4 suggest limited validity to this assumption
as dome errors converge as Oð�xqÞ for 1 < q < 2 (Fig. 8).
We nonetheless choose the degree of that polynomial to be
two (and ignore the N ¼ 30 case; see Fig. 13).

Using data for three values of �x (N ¼ 60, 120 and 240),
we find the coefficients a, b and c in X ¼ aþ b�x þ c�x2

where X is the computed quantity. Evaluation of this

polynomial Xð�xÞ at the ultimately refined grid spacing
�x ¼ 0 gives the Richardson extrapolation value reported in
the table as ‘XRE’ and shown in Figure 17. The column ‘jdiffj’
in Table 5 gives values of jX240 – XREj. Richardson extrapo-
lation does not come with an error bound, but this difference
is a (probably conservative) estimate of the precision of XRE.

Two details in Table 5 require comment. First, the
position of the margin in the moving-margin experiment is
a discrete quantity and extrapolation is not appropriate. The
exact (analytical) value is available, 579.81 km, and our
N ¼ 240 value (581.25 km) is, as expected, better than the
EISMINT I value of 600 km. Second, the midpoint flux value
in the moving-margin experiment did not behave with
sufficient regularity under grid refinement to produce a good
extrapolation. This value is sensitive to discrete jumps of
margin position. These cases show some of the limitations of
Richardson extrapolation of numerical results for producing
benchmark values, but codes can nonetheless be tested
against such extrapolated results if relevant exact solutions
are not available.

6. CONCLUSIONS
Exact solutions do exist and are sufficiently diverse to allow
verification of numerical codes for isothermal, shallow-ice-
sheet models. Such verification completely avoids the rough
grid intercomparison performed by EISMINT I. Indeed, it
avoids creating uncertain benchmark values from numerical
approximations. We hope that the ideas here serve as a
refoundation of the EISMINT effort, which has proceeded
with validation and verification of thermocoupled shallow-
ice-sheet models (EISMINT II) and other ‘Phase II’ models.

Grid refinement shows that the explicit finite-difference
numerical scheme of this paper substantially succeeds in
recovering time-dependent continuum results in cases for
which we have exact solutions. Other numerical schemes
should, of course, succeed as well. Grid refinement also
gives an estimated rate of error decay as N increases. Such
rates potentially allow the choice of a grid which produces a
given accuracy on a class of problems similar to an
accomplished verification.

A widely noted difficulty became quantitatively clear in
our verification process: margins are difficult to approxi-
mate. Margin shape from the shallow approximation is
always a sufficiently singular function so that a numerical
method based on piecewise polynomial approximation (thus
any finite-difference or finite-element method) makes
substantial errors near the margin. Indeed, the rate of decay
of the maximum thickness error anywhere on the ice sheet is
essentially predictable from the margin shape. Vialov–Nye

Table 5. A sampling of EISMINT I benchmarks values (columns 3 and 4), our values on the N ¼ 30 rough grid (column 5) and versions
improved by grid refinement and Richardson extrapolation (columns 6 and 7). See section 5.3 for last column

Benchmark Quantity EIS 3-D EIS 3-D type I X30 X240 XRE jdiffj

Fixed, steady Hð0Þ (m) 3384	 39:4 3419:9	 1:7 3420:5 3400:1 3397:0 3:1
qmid (102 m2 a–1) 794:99	 5:67 789:95	 1:83 791:14 791:99 792:20 0:2

Fixed (20 kyr) Hð0Þ (m) 3230:1	 34:8 3264:8	 5:6 3265:6 3247:0 3244:2 2:9
Moving, steady Hð0Þ (m)

qmid (102 m2 a–1)
margin pos. (km)

2978:0	 19:3
999:38	 23:55
600

2997:5	 7:4
999:24	 17:91
600

3003:2
995.24
600

2988:1
999:29
581:25

2987:8
NA
NA

0:4
NA
NA

Fig. 17. Richardson extrapolation gives a better estimate of the
correct dome/divide thickness for the EISMINT I fixed-margin,
steady-state experiment.
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margins are particularly difficult to approximate. Generally,
however, errors in margin approximation do not seriously
corrupt the accuracy of numerical approximation in the ice-
sheet interior (in the isothermal case, at least).
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APPENDIX
CALCULATION OF COMPENSATORY
ACCUMULATIONS
From section 2.2, and as further specified in test E, the
Bodvarsson–Vialov steady solution can be made into a
solution to a steady equation with basal sliding by adding a
compensatory accumulation

Mb ¼ ��g 1� fð Þr � �H2
VrHV

� �
:

We use f ¼ 0 in test E. Denoting @=@r ¼ ð�Þ0, recall that
r � ðar̂Þ ¼ r�1ðraÞ0. Thus

Mb ¼ ��g H2
VH

0
V r�1�þ �0� �þ �HV 2 H0

V

� �2þHVH00
V

� �h i
:

Let CV ¼ 2n�1M0=�
� �1= 2nþ2ð Þ and ! ¼ L1þ1=n � r1þ1=n. From

test A, HV rð Þ ¼ CV!
n= 2nþ2ð Þ. The derivative terms needed to

calculate Mb are as follows:

H0
V ¼ �CV

2
r1=n! �n�2ð Þ= 2nþ2ð Þ,

H00
V ¼ �CV

2n
! �3n�4ð Þ= 2nþ2ð Þ r 1�nð Þ=n!þ n þ 2

2
r2=n

� �
,

and �0 ¼ 0 except that for r1 < r < r2 and �1 < � < �2,

�0 ¼ �max4 �� �1ð Þ �2 � �ð Þ �2 � �1ð Þ�2

� 4 r1 þ r2 � 2rð Þ r2 � r1ð Þ�2:
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From section 2.3, and as further specified in test D, a
perturbation of a steady solution can be made into an exact
time-dependent solution by calculating the compensatory
accumulation (Equation (26)):

Mc ¼
@Hp

@t
�Ms �r � �Hnþ2

p rhp
�� ��n�1rhp

� �
:

The thickness Hp is given by Equation (24). In the case n ¼ 3
and f ¼ 0, as in test D, further details are as follows.

For 0 < r < 0:3L and r > 0:9L, Pðr, tÞ ¼ 0 for all t. The
compensating accumulation is

Mc ¼ �Ms �r � �Hnþ2
s rHsj jn�1rHs

� �
¼ 0:

For 0:3L < r < 0:9L, if g rð Þ ¼ cos2 � r � 0:6Lð Þ 0:6Lð Þ�1
h i

then the three terms of Mc are:

Ms as Equation ð22Þ;
@Hp

@t
¼ 2�Cp

Tp
g rð Þ cos 2�t

	
Tp

� �
;

r � �H5
p rHp
�� ��2rHp

� �
¼ 1

r
@

@r
r�H5

p
@Hp

@r

� �3
" #

¼ �H4
p

@Hp

@r

� �2 1
r
Hp

@Hp

@r
þ 5

@Hp

@r

� �2

þ3Hp
@2Hp

@r2

" #
:

Note H0
p ¼ H0

s þ Cp sin 2�t
	
Tp

� �
g 0, where �ð Þ0¼ d=dr. From

Equation (21)

Hs ¼ H0 2=3ð Þ�3=8X3=8,

where

X rð Þ ¼ 4r
3L

� 1
3
þ 1� r

L

� �4=3
� r

L

� �4=3
:

Thus we need

H0
s rð Þ ¼ 3H0

8 2=3ð Þ3=8
X�5=8X0,

X0 rð Þ ¼ �4
3L

r
L

� �1=3
þ 1� r

L

� �1=3
�1

� �
,

g 0 rð Þ ¼ ��

0:6L
sin

� r � 0:6Lð Þ
0:3L

� �
,

H00
p ¼ H00

s þ Cp sin 2�t
	
Tp

� �
g 00,

H00
s rð Þ ¼ 3H0

8 2=3ð Þ3=8
�5
8
X�13=8 X0ð Þ2þX�5=8X00

� �
,

X00 rð Þ ¼ �4
9L2

r
L

� ��2=3
� 1� r

L

� ��2=3
� �

,

g 00 rð Þ ¼ ��2

0:18L2
cos

� r � 0:6Lð Þ
0:3L

� �
:
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