SCATTERING CALCULATIONS ON THE BASIS OF THE FREDHOLM INTEGRAL EQUATION METHOD

M. MATSUMURA ${ }^{1 *}$ AND M. SEKI ${ }^{2}$
${ }^{1}$ Astronomical Institute, Tohoku University Sendai 980, Japan
${ }^{2}$ College of General Education, Tohoku University Kawauchi, Sendal 980, Japan

```
ABSTRACT. The Fredholm integral equation method (FIM) is one of the
solutions to the scattering of electromagnetic radiation by homogeneous
and isotropio ellipsoidal particles. Some numerical calculations are
performed with the FIM. The results for spherical particies are
compared with those by the Mie theory. It is confirmed that the
agreement between them is satisfactory for all the models calculated.
    On the basis of the present method, we examine profiles of the
absorption band around }\lambda=10\mum\mathrm{ for spherical and ollipsoidal partioles
composed of crystalline olivine. It is found that the profile strongly
depends on the shape of the particle. Even when the particle is
moderately elongated (axial ratios are 2: \sqrt{}{2}:l), the profile is
signifioantly different from that for a sphere.
```

1. Fredholm Integral Equation Method (FIM)

The dyadic eleotric field E of the wave scattered by a particle with a refractive index mean be described by an integration equation

$$
\begin{equation*}
E(r)=I_{I} \exp \left(i k_{\mathrm{I}} \cdot r\right)+\int_{\text {vol }} G\left(r, r^{\prime}\right) \gamma\left(r^{\prime}\right) E\left(r^{\prime}\right) d r^{\prime} \tag{1}
\end{equation*}
$$

where k^{\prime} is the wave number vector of the incident light and

$$
\begin{align*}
& \mathbf{I}_{\mathbf{I}}=\mathbf{J}-\hat{\mathbf{k}}_{1} \hat{\mathbf{k}}_{\mathrm{I}} \tag{2}\\
& \mathbf{G}=\left(\mathbf{J}+k^{-2} \nabla \nabla\right) \exp \left(\mathrm{i} k\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) /\left(4 \pi\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right), \tag{3}\\
& \gamma(\mathbf{r})=k_{0}^{2}\left(m^{2}(\mathbf{r})-1\right) \tag{4}
\end{align*}
$$

Present address: Osaka Museum of Science, Nakanoshima 4-2-1, Kitaku, Osaka 630, Japan.
A.C. Levasseur-Regourd and H. Hasegawa (eds.), Origin and Evolution of Interplanetary Dust, 203-206. C 1991 Kluwer Academic Publishers, Printed in Japan.
where J is a unit dyadic, \hat{k}_{I} is a unit vector along k_{I}, and $k\left(k_{0}\right)$ is the wave number within (without) the particle. When $r \rightarrow \infty$, the asymptotic form of equation (1) is

$$
\begin{equation*}
E(r)=I_{1} \exp \left(i k_{1} \cdot r\right)+B\left(k_{s}, k_{1}\right) \exp \left(i k_{0} r\right) / r, \tag{5}
\end{equation*}
$$

where $k_{\text {e }}$ is the wave number vector of the acattered light, and B is the soattering amplitude given by

$$
\begin{equation*}
\mathbf{B}\left(\mathbf{k}_{\mathbf{s}}, \mathbf{k}_{\mathbf{I}}\right)=(4 \pi)^{-1} \mathbf{I}_{\mathbf{s}} \cdot \int_{\text {vol }} \exp \left(-i \mathbf{k}_{\mathbf{s}} \cdot \mathbf{r}\right) \gamma(\mathbf{r}) E(\mathbf{r}) \mathrm{dr} \tag{6}
\end{equation*}
$$

Equation (6) shows that we can evaluate numerically B provided that the field within the particle is known. The solution for E within the particle is, however, not obtained directly fromequation (l), aince it is an integral equation with a singular kernel. We perforil a transformation such that the singularity is removed analytioally. Following Holt et al (1978), we assume that the field within the partiole is expressed as the spatial Fourier transform

$$
\begin{equation*}
E(r)=\int C\left(k_{1}\right) \exp \left(i k_{1} \cdot r\right) d k_{1} . \tag{7}
\end{equation*}
$$

Making use of Equation (7), we get a pair of the coupled Fredholm equations, which can be rewritten as matrix equations

$$
\begin{equation*}
\mathbf{B}\left(\mathbf{k}_{S}, \mathbf{k}_{l}\right)=(4 \pi)^{-1} \mathbf{I}_{s} \cdot \sum_{i=1}^{n_{\text {max }}} c_{i} C\left(\mathbf{k}_{l}\right) U\left(\mathbf{k}_{S}, k_{l}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n_{\max }} K\left(k_{j}, k_{f}\right) \cdot c_{l} \mathbf{C}\left(k_{l}\right)=I_{1} U\left(k_{f}, k_{1}\right), \tag{9}
\end{equation*}
$$

Where expressions of J and K are given elsewhere (Holt et al 1978, Matsumura and Seki 1990). Once B is obtained, the calculations of the optical cross-sections are straightforward as is described in classical textbooks.

In the practical calculation with the FIM, we must choose adequate pivots $k_{1}\left(i=1, \ldots, n_{m a x}\right)$. In a apherical coordinate ($\theta_{p, \phi}$) whioh displays the directions of k_{1}, we first divide evenly the range of $0<\theta<\pi$ by $2 n_{\theta}$, i.e., intervals $\Delta \theta_{p}$ are equal to each other. Next, for each θ_{p}, we divide the range of $0<\phi_{P}<2 \pi$ evenly auch that the intervals $\quad \Delta \phi_{p}$ are nearly equal to $\Delta \theta$. Practically we get $n_{m a x}=2$, 12, 30, and 56 for $n_{\theta}=0,1,2$, and 3 (when $n_{\theta}=0$, the pivots are poles only).
2. Application to silicate $10 \mu \mathrm{ll}$ band

We apply the FIM to the investigation of the band profile observed near $\lambda=10 \mu \mathrm{ll}$ in many astronomical objects, which is attributed to silicate
partioles. The shape of the particle is assumed to be apherical or ellipsoidal (the axial ratios are $2: \sqrt{2}: 1$).

Table 1 presents values of efficiency factor for absorption $Q_{a b} a_{a} a$ function of n_{θ}. The equivalent radius a-q is defined as aga=(abc) $1 / 3$ where a, b, and o are three radif of the ellipsoid, and is aet to be l. 0 $\mu \mathrm{m}$ in these calculations. We confirm that the convergence for n_{θ} is rapid, and that the obtained values are correct enough provided that $\mathrm{n}_{\theta}=1$.

TABLE 1. Examples of calculations: Qabe for aca=1.0 $\mu \mathrm{m}$

$\lambda(\mu \mathrm{m})$	9.8	10.0	11.0	11.6
$\operatorname{Re}(\mathrm{~m})$	0.6109	0.6682	0.8004	2.748
$\mathrm{Im}(\mathrm{m})$	0.6344	1.061	1.379	2.291
$\mathrm{X}=9\left(\mathrm{k} \mathrm{k}_{0} \mathrm{a}_{-\mathrm{q}}\right)$	0.6410	0.6283	0.6713	0.6417

Sphere

$\mathrm{n}_{\theta}=0$	0.8397	1.807	2.366	0.8975
1	0.8943	1.902	2.416	0.8836
	2	0.8943	1.902	2.415
$M i e$		0.8943	1.902	2.415

0.8943

1. 902
2. 415
0.8835

Ellipsoid	$(2: \sqrt{2}: 1)$			
$\mathrm{n}_{\theta}=0$	0.8493	1.642	1.992	0.8934
1	0.9347	1.793	2.100	1.119
2	0.9347	1.793	2.100	1.119

Figure 1. Band profiles for crystallife olivine. Solid lines are for ellipaidal partioles, while dots are for spherical ones. The left figure is for ag $=0.03 \mu \mathrm{~m}$, and therightone is for acq $=1.0 \mu \mathrm{~m}$.

Figure \quad shows the results for crystaline olivine, where optical constants are oited from Mukai and Koike (l990). We find that the profile for the ellipaoidal particle (aolid line) is significantly different from that for the spherical one (dots).

The resulta for amorphous silicate are demonstrated in figure 2 (m is from Day 1979). The behavior of the solid line (resulta for ellipsoid) is closely similar to that of the dashed line (results for sphere). Thus, the offect of the shape is less sigifioant for amorphous silicate.

Recent observations of comets show a double peak structure in lo $\mu \mathrm{m}-$ band, and this fact is interpreted as the presence of orystallife olivine in cometary grains. The present atudy auggests that the effect of the shape is important to the quantitative interpretation of such observations.

Figure 2. Same as figure l but for amorphous ailicate. The reaults for sphere are shown by dashed line.

REFERENCES

Day, K. L. 1979, Ap. J., 234, 158.
Holt, A. R., Uzunoglu, N. K., Evans, B. G. 1978, IEEE Transaction on Antennas and Propagation 26, 706.
Matsumura, M., Seki, M. 1990, Ap. Space Sci., in prese.
Mukai, T., Koike, C. 1990, Icarus, in press.

