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SUMMARY
The Inverse Kinematics (IK) problem of manipulators can be divided into two distinct steps: (1)
Problem formulation, where the problem is developed into a form which can then be solved using
various methods. (2) Problem solution, where the IK problem is actually solved by producing the
values of different joint space variables (joint angles, joint velocities or joint accelerations). The main
focus of this paper is concentrated on the discussion of the IK problem of redundant manipulators,
formulated as a quadratic programming optimization problem solved by different kinds of recurrent
neural networks.
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1. Introduction
Inverse kinematics (IK): Position control of manipulators entails solving the IK problem so that, for
desired Cartesian coordinates of the end effector, the corresponding joint angles can be computed and
used as set points to individual actuator position control.1 Solving the IK problem for manipulators
is a challenging task. The complexity of the problem is caused by the manipulator’s geometry and
the nonlinear trigonometric equations that describe the mapping between the Cartesian space and the
joint space.2–5

Traditional methods for solving inverse kinematics: Three traditional methods are used to solve
the IK problem: (1) geometric.6–9 This approach uses trigonometric calculations.10 This approach
is simpler for manipulators with smaller number of degrees of freedom (DOF). For manipulators
with larger number of DOF, one possible solution is to split the problem into smaller parts and make
calculations with geometrical approach,11 (2) algebraic.12–22 Algebraic methods are used to obtain
closed-form solutions. The kinematic equations of the manipulator are transformed into higher degree
polynomial and then all the roots of the polynomial are determined, and (3) iterative.23, 24 These
methods are usually used on manipulators that may not have closed-form IK equations.25
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1496 Inverse kinematics of redundant manipulators

Issues pertaining to traditional methods for solving inverse kinematics

1. Prohibitive computational cost because of the high complexity of the geometric structure of
manipulators26, 27 and the mathematical structure of the formulation.28

2. If the number of DOF increases, traditional methods become complex.29

3. The involvement of complex higher order polynomials retarded the wide application of algebraic
methods.

4. Robots work in real environments that cannot be modeled accurately using mathematical
expressions.28

5. Numerical methods are influenced by initial value selection, suffer from limited convergence and
unavailability of multiple solutions. Moreover, they do not provide solution if the Jacobian matrix
is singular at a particular pose of the manipulator.

6. Numerical methods cannot be used to develop a generalized strategy to obtain IK solutions
independent of manipulator’s geometry and the number of DOF.30

Neural network-based solution of inverse kinematics: Many papers were published about the
neural network-based IK solution for manipulators.2, 26, 27, 31–47 Interest in neural network research
was generated to reduce the computational complexity of motion planning and control of manipu-
lators.48–59 Neural networks are useful for learning the IK of manipulators lacking a well-defined
model.60 Solving the IK using artificial neural networks is useful where less computation times
are needed, such as in real-time adaptive manipulator control.33, 61–63 The IK solution using neural
networks comes under the class of iterative methods.40

Redundant manipulators: Kinematically redundant manipulators are those having more DOF than
required to perform a given end-effector primary task.64–66 A fundamental issue in controlling redun-
dant manipulators is the redundancy resolution problem65, 67, 68 (IK problem).65, 68 Since redundant
manipulators have more DOF, multiple solutions exist to the IK problem.69, 70 Hence, the redun-
dancy complicates the manipulator’s control problem.68, 71–76 By resolving the redundancy properly,
it is possible to achieve useful subtasks such as repetitive motion,46, 67 obstacle avoidance,77–82 joint
limits avoidance,82–85 singularity avoidance,80, 82, 86, 87 fault tolerance88, 89 and optimization of various
performance criteria90–93 while conducting the end-effector motion task. One example of the per-
formance criteria to be optimized is the norm of joint torques,94–96 which aims at making a more
effective utilization of input power from actuators.

Conventional method for redundancy resolution: The conventional solution of the redundancy
problem is obtained by the pseudo-inverse-based formulation (one minimum-norm particular solu-
tion plus a homogeneous solution).71–76, 97 However, in this method, joint angle, joint velocity and
joint acceleration limits are usually not considered, as these inequality constraints are relatively not
easy to be handled by this type of formulation.98 If J is rank-deficient, the pseudo-inverse-based
methods may encounter the singularity problem. When the end effector traces a closed path, the
joint angles may not return back to their initial ones after completing the end-effector task. This is
called joint angle drift, or repeatability problem.67, 99 This may induce a problem that the manipula-
tor’s behavior is hard to predict. The manipulator’s configuration can be readjusted by moving joints
without moving the end effector (manipulator self-motion); however, this is not efficient.67, 100 The
joint angle drift problem was raised in ref. [91]. A pseudo-inverse-based solution may not be repeat-
able.72, 75, 91 In ref. [101], the necessary condition of repeatability was analyzed, and this condition
reveals why the pseudo-inverse-based method is not repetitive in general. A sufficient condition for
the drift-free control by the pseudo-inverse-based method was given in ref. [102]. Repetitive control
based on the pseudo-inverse method is the exception, rather than the general rule.103 The extended
Jacobian method was presented to solve the nonrepetitive problem in refs. [104,105]. This method is
effective for the repetitive motion planning (RMP) of redundant manipulators. However, singulari-
ties may occur at the boundary of conservative regions.106 The extended Jacobian method is difficult
to handle inequality-type constraints such as joint limits. Moreover, the extended Jacobian method
usually includes matrix inversion which results in higher computational cost.

The IK problem of manipulators can be divided into two distinct steps: (1) Problem formulation,
where the problem is developed into a form which can then be solved using various methods. (2)
Problem solution, where the values of different joint space variables (joint angles, joint velocities
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or joint accelerations) are produced. For example, the problem can be formulated as a set of kine-
matic equations which are reformulated as a higher degree polynomial. Algebraic methods are then
used to obtain closed-form solutions by determining the roots of the polynomial. The redundancy
problem can be resolved in a more favorable manner via online optimization techniques.65, 67, 107–109

These schemes can be reformulated as a quadratic programming (QP) subject to equality, inequality
and bound constraints. Such schemes can be solved using many types of recurrent neural networks
(RNNs).110, 111 In 1980s, Hopfield and Tank proposed their neural network designed for solving
optimization problems.112 Since then, RNNs are thought to be a powerful alternative to real-time
optimization.69 Unlike feedforward neural networks, most RNNs do not need off-line supervised
learning and thus are more suitable for real-time control of redundant manipulators in uncertain
environments.113 In this paper, the main focus is concentrated on the discussion of the IK problem
of redundant manipulators formulated as a QP optimization problem solved by different kinds of
RNNs.

This paper is organized as follows: Section 2 lists the basic forward and IK equations. Section 3
presents example problem formulations including pseudo-inverse-type formulation. In Section 4,
important RNNs used as QP solvers are briefly reviewed. In Section 5, the steps involved in the
redundancy resolution problem formulated as a QP problem and solved using different types of RNNs
are discussed. In Section 6, the detailed steps of the redundancy resolution problem are described by
the aid of example formulation and RNN solvers. Section 7 discusses the results presented in some
of the important references. Section 8 concludes the paper.

2. Preliminaries
The forward kinematics equation relating the end-effector position and orientation vector r ∈ Rm

in Cartesian space and the joint angle vector θ ∈ Rn for redundant manipulators is described
by:67, 99, 100, 110, 111, 113, 114

r = f (θ) (1)

The IK problem is to find the joint variables given the desired position and orientation of the end
effector through the inverse mapping of (1):113

θ = f −1(r) (2)

The direct way to solve (2) is to derive a closed-form solution from (1). Unfortunately, obtaining
a closed-form solution is difficult for most manipulators due to the nonlinearity of f

(
.
)
. Making

use of the linear relation between joint velocity θ̇ and Cartesian velocity ṙ is a common indi-
rect approach to the IK problem.113 Differentiating (1) w.r.t. time, the relation between ṙ and θ̇ is
obtained:67, 99, 100, 110, 111, 113, 114

ṙ = Jθ̇, (3)

where J is the Jacobian matrix
(
J = ∂f /∂θ ∈ Rm×n

)
. This approach begins with the desired veloc-

ity of the end effector ṙd (based on a planned trajectory and required completion time), then the
joint velocity vector θ̇ is computed. By integration of θ̇, the corresponding joint position vector θ is
obtained, which is then used to control the manipulator.113 Differentiating (3) w.r.t. time yields the
relation between the joint acceleration θ̈ and Cartesian acceleration r̈:110, 111, 114

Jθ̈ = r̈ − J̇θ̇ (4)

From the view point of IK (i.e., to solve θ, θ̇ and/or θ̈ for given r, ṙ and/or r̈, (1), (3) and (4) are all
underdetermined and thus admit infinite solutions.

3. Problem Formulation

3.1. Conventional formulation
The IK problem can be formulated as the pseudo-inverse formulation.75, 115–118 The pseudo-inverse-
type formulation at the joint velocity level can be:52, 67, 100, 110

θ̇ = J+ṙd + (
I − J+J

)
z (5)
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where J+ is the pseudo-inverse of J, and z is an arbitrary vector selected by using some optimization
criteria, for example, singularity avoidance, obstacle avoidance and/or task priority control. J+ṙ is
the minimum-norm particular solution and

(
I − J+J

)
z is the homogeneous solution.67 The method

in (5) entails the computation of time-varying pseudo-inverse J+.

3.2. Bi-criteria kinematic control
The minimum two-norm solution of joint velocity vector minimizes the sum of squared joint veloc-
ities, which does not necessarily minimize the magnitudes of individual joint velocity. It is used as
the optimization criterion in many robotic applications, more because of its mathematical tractability
than physical desirability.91 The minimum ∞-norm solution (also called minimum effort or min-
imum amplitude solution) of joint velocity vector explicitly minimizes the largest component of
the joint velocity vector in magnitude and is consistent with the physical limits. Moreover, the
minimization of ∞-norm enables better monitoring and control of the magnitude of individual
joint velocities.93, 119–121 However, the minimum ∞-norm solutions may encounter a discontinuity
problem.122 This problem exists because of the non-uniqueness possibility. In other words, if the
manipulator trajectory orients the solution space so that it is parallel to a hypercube face, the solution
may jump from one edge to the other before continuing smoothly on its way.119 To remedy the discon-
tinuity problem, a balancing scheme is presented in ref. [119] that calculates the minimum ∞-norm
and Euclidean-norm solutions separately, and then incorporates the two weighted solutions as the
final solution. Compared to the minimum-norm solution, the balancing scheme may at least double
the computational time, which may hinder online sensor-based robotic applications. Neural networks
are efficient alternatives for real-time solution to such a balanced IK problem.122 In ref. [122], the
following bi-criteria kinematic control problem was considered to avoid discontinuities in minimum
effort solution:

Minimize
1

2

[
α
∥∥θ̇

∥∥2

2 + (1 − α)
∥∥θ̇

∥∥2

∞
]

α ∈ (0, 1) (6)

Subject to Jθ̇ = ṙ (7)

θ̇
− ≤ θ̇ ≤ θ̇

+
(8)

θ− ≤ θ ≤ θ+ (9)

The parameter α is used to diminish the discontinuity, while keeping small the maximal magnitude
of minimum effort solution. As α → 0, the bi-criteria solution approaches the infinity-norm solution.
As α → 1, the bi-criteria solution approaches the standard two-norm solution. The limited joint range
can be formulated in terms of θ̇ using variable bounds. Joint angle limits and joint velocity limits were
then combined into a bound constraint. The bi-criteria kinematic control problem (6)–(9) was then
expressed as a QP.122 A dual neural network (DNN) was designed using the Karush–Kuhn–Tucker
(KKT) condition and the projection operator for optimal bi-criteria kinematic control of redundant
manipulators. Comparison between the minimum effort, bi-criteria and minimum power kinematic
control schemes showed that the maximal amplitude and power consumption of bi-criteria solutions
are usually between those of the minimum effort and the minimum power solutions. Compared to
the minimum Euclidean-norm, the bi-criteria solution always has a smaller maximal magnitude of θ̇

3.3. Drift-free inverse kinematics
Owing to the local nature of general redundancy resolution schemes where only the current values of
joint variables are known, minimization of joint displacement between the current and initial states
was investigated in refs. [69, 98, 113, 123] to obtain cyclic motion. QP-based RMP schemes could
avoid the kinematic singularity problem owing to its inverse-free processing manner (no need to
invert J).100 Three RMP schemes can be used for redundancy resolution:

• The Velocity-Level Repetitive Motion Planning (VRMP) scheme.
The RMP scheme can be formulated at the joint velocity level.67, 69, 98, 124, 125
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Fig. 1. RNN QP solvers.

• The acceleration-level repetitive motion planning (ARMP) scheme.
The VRMP scheme may not be applicable to some manipulators which are controlled by joint
acceleration or the joint torque. In refs. [110, 111], an ARMP scheme was derived via Zhang’s
neural-dynamic method.65 The joint angle, joint velocity and joint acceleration limits are con-
sidered. The proposed ARMP scheme is repetitive because it utilizes the drift-free criterion. The
ARMP scheme is reformulated as a QP problem in terms of joint acceleration θ̈

• The jerk-level repetitive motion planning (JRMP) scheme.
In ref. [126], a cyclic motion planning scheme has been developed to remedy the joint drift phe-
nomenon of redundant manipulators constrained by joint physical limits. The scheme in this paper
is resolved at jerk level. The cyclic motion criterion and the avoidance of joint physical limits
(joint angle, joint velocity, joint acceleration and joint jerk limits) are considered into the JRMP.
The jerk-level scheme is reformulated as a dynamical quadratic program which can be solved by
a neural network or a suitable numerical algorithm.

Compared with the extended Jacobian method, the RMP schemes can handle inequality-type con-
straints. Moreover, these schemes can achieve inversion-free purpose by reformulating them into the
QP problem which is solved by RNNs.111

4. RNN QP Solvers
Figure 1 shows the functional relationship between different types of RNNs used to solve the IK
problem formulated as a QP problem. The primal-dual neural network (PDNN) presents the basic
idea from which the DNN, LVI-PDNN and S-LVI-PDNN are derived. The DNN is constructed using
the dual decision variables only. The LVI-PDNN is designed based on the QP-LVI conversion, while
the S-LVI-PDNN is a simplified version of LVI-PDNN.

Numerical algorithms can be employed for the solution of QPs.92, 127–131 However, con-
sidering subtask criteria and physical constraints, manipulator redundancy resolution becomes
time-consuming either by computing the pseudo-inverse-type solution or numerically solving QP
problems.67 The minimal arithmetic operations of a QP numerical algorithm are usually proportional
to the cube of the decision variable vector’s dimension (O

(
n3

)
operations).92, 128–130 Consequently,

numerical algorithms may not be efficient for real-time applications.100, 132 The real-time compu-
tational requirement in sensor-based high-DOF robotic systems motivates the emergence of more
efficient parallel processing schemes.67 Parallel-processing computational methods, for example,
neural-dynamic and analog solvers,55, 99, 107, 113, 114, 123, 133–136 can be applied to solve the online QP
problem.100 Neural-dynamic approach is regarded as a powerful alternative for real-time computation
in view of its parallel processing nature and convenience of hardware implementation.54, 113, 123, 135, 137

Many of the neural networks used for kinematic control of manipulators are feedforward net-
works trained via supervised learning using the backpropagation algorithm. RNNs have also been
applied for kinematic control. The dynamical system approach, as a method for solving optimiza-
tion problems, was first proposed in ref. [138]. Many dynamic solvers based on neural networks
were developed.54, 55, 59, 113, 121, 133, 135, 137–143 Neural networks of other kinds83, 144 can also be applied
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to solve the redundancy resolution problem. In the following sections, the main types of RNNs used
as QP solvers are briefly reviewed.

4.1. Lagrangian network
Description: The dynamic equations of the Lagrangian network can be derived using the Lagrangian
of the time-varying QP problem55

Literature review: A Lagrangian neural network was exploited in ref. [145] to handle general QP
problems. In ref. [55], the optimal redundancy resolution is determined by the Lagrangian network
through real-time solution to the IK problem formulated as a quadratic optimization problem. The
signal for a desired velocity of the end effector is the input of the Lagrangian network, and the joint
velocity vector of the manipulator along with the associated Lagrange multipliers are the outputs.

Advantages: The Lagrangian network is shown to be capable of asymptotic tracking for the
motion control of kinematically redundant manipulators. It also overcomes the deficiencies of neural
techniques that follow a penalty principle to solve constrained optimization problems.

Disadvantages: When solving inequality-constrained QPs, the Lagrange neural network may
exhibit the premature defect and the network dimensionality is larger than that of the original
problem.

4.2. Primal-Dual Neural Network
Description: The dynamic equations of the PDNN network can be derived using the gradient of the
energy function.121

Literature review: As an improvement to the model in ref. [54], a two-layered PDNN is presented
in ref. [121] to online minimize the ∞-norm of joint velocity. The PDNN121 was developed for exact
solution of constrained QPs, and they handle the primal QP and its dual problem simultaneously by
minimizing the duality gap with gradient method. In ref. [146], a PDNN was proposed for gener-
ating the asymptotic convergent optimal solutions to strictly convex QP problems.94 proposed the
Lagrangian network and the PDNN for real-time joint torque optimization for kinematically redun-
dant manipulators. For both neural networks, the desired accelerations of the end effector are given
as their inputs, and the signals of the minimum driving joint torques are generated as their outputs
to drive the manipulator. Both proposed networks are shown to be capable of generating minimum
stable driving joint torques. The torques computed by the PDNN never exceed the joint torque limits.

Advantages: PDNN uses only simple hardware (adders, multipliers and integrators). Furthermore,
the network is guaranteed for converging to exact optimal solution without penalty parameters and
proven to be asymptotically stable.121

Disadvantages: The dynamic equations of the PDNN are complicated and contain high-order
nonlinear terms, with the network size usually larger than the dimensionality of the primal and dual
problems.

4.3. Dual Neural Network
Description: As a special case of the PDNN, the DNN113 was proposed using the dual decision
variables only. Different from the PDNN, the DNN is developed directly using KKT conditions and
the projection operator to reduce network complexity and increase computational efficiency.

Literature review: In ref. [113], the IK problem of redundant manipulators was formulated as a
parametric QP problem at the velocity level with equality constraint solved by a DNN by the real-time
computation of the minimum two-norm joint velocity vector. In ref. [114], the real-time torque mini-
mization problem was formulated as a time-varying QP, where the redundancy was resolved at the
acceleration level and joint angle limit avoidance is simultaneously taken into account. The problem
was solved using a DNN composed of one layer of m + n neurons. The proposed DNN is exponen-
tially convergent to an equilibrium point. In ref. [114], the DNN model in ref. [113] was extended to
solve equality and bound-constrained optimization problems and then apply it to minimize the joint
torque at the acceleration level with joint limits considered. Following the approach in ref. [113], to
resolve the discontinuity deficiency of minimum ∞-norm solution, a DNN was designed in ref. [122]
using the KKT condition and the projection operator for online kinematic control of physically con-
strained redundant manipulators, which is formulated as the inequality-constrained strictly convex
QP problem with bi-criteria of the infinity and Euclidean norms. Joint angle and joint velocity limits
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are incorporated into the proposed scheme. The DNN is composed of one layer of no more than
3n + m+1 neurons without using analog multiplier or penalty parameter, as opposed to the approach
in ref. [143]. A DNN was applied to solve the repeatability problem and simulation results based on
PA10 manipulator was presented in ref. [69]

Advantages: The DNN in ref. [113] has an architecture of smaller size than that of the Lagrangian
network in ref. [55], and it is composed of one layer of n neurons with no analog multipliers or
penalty parameters. A circuit realizing the DNN consists of n summers, n integrators and n2 con-
nections. The DNN is theoretically proven to be exponentially stable.113 PDNN94, 121, 143 has more
complicated dynamics and structure in terms of high-order terms and number of neurons/layers.
Compared to the PDNN,121 the dynamic equation of a DNN is piecewise linear without any high-
order nonlinear term. Consequently, the architecture of the DNN is much simpler than that of the
PDNN and Lagrangian networks.122 Starting from any initial state, the state vector of the DNN is
convergent to an equilibrium point and the output vector converges to the optimal solution of the
bi-criteria IK problem.122

Disadvantages: The DNN requires online matrix inversion and thus is only able to handle strictly
convex QPs and less desirable in terms of computational efficiency and hardware implementation.123

4.4. Linear Variational Inequalities-Based Primal-Dual Neural Network
Description: As a QP real-time solver, the linear variational inequalities-based primal-dual neural
network (LVI-PDNN) is designed based on the QP-LVI conversion and KKT condition.

Literature review: In refs. [67, 99], LVI-PDNN is used to solve the RMP problem online by min-
imizing a suitable performance index and incorporating joint angle and joint velocity limits into the
problem formulation. The scheme is reformulated as a QP problem and resolved at the velocity level.
An LVI-PDNN was developed in ref. [147] with simple piecewise linear dynamics, global (exponen-
tial) convergence to optimal solutions, and capability of handling general QP and linear programming
problems in an inverse-free manner. In ref. [148], a neural-dynamic-based synchronous optimization
scheme of dual redundant manipulators has been proposed. An ARMP optimization criterion has
been derived twice. The redundancy resolution problem of the left and right arms are formulated as
two QP problems. The two QPs are then integrated into a standard QP problem. An LVI-PDNN was
used to solve the QP problem. Considering the differentiation error and the implementation error, a
perturbed LVI-PDNN has been proposed to solve the QP problem.

Advantages: The LVI-PDNN is capable of handling general QP and linear programming problems
in an inverse-free manner, as it does not entail online matrix inversion.67, 99 Different from other
neural networks,69, 122, 123, 149 there is no matrix inversion of expensively O

(
n3

)
operations in the LVI-

PDNN approach. The network architecture and computational complexity are thus simpler than other
RNNs.67

Disadvantages: There are no disadvantages for the LVI-PDNN compared to the other neural
networks discussed in this section.

4.5. Simplified-Linear Variational Inequality-Based Primal-Dual Neural Network
Description: The simplified model simplified-linear variational inequality-based primal-dual neu-
ral network (S-LVI-PDNN) is obtained by removing the scaling term of the LVI-PDNN dynamic
equation [compare (23) and (24)].

Literature review: In ref. [136], to reduce the implementation and computational complexities, an
S-LVI-PDNN model is investigated. In ref. [124], an S-LVI-PDNN was presented for online RMP.
To do this, a drift-free criterion is exploited in the form of a quadratic function. Joint angle and joint
velocity limits are incorporated in the RMP scheme. The scheme is reformulated as a time-varying
QP. The S-LVI-PDNN has a simple piecewise linear dynamics and could globally exponentially con-
verge to the optimal solution of strictly convex QPs. The S-LVI-PDNN model is simulated based on
PA10 manipulator, and simulation results show the effective remedy of the joint angle drift problem.

Advantages: The S-LVI-PDNN has simpler computational complexity than the LVI-PDNN.
In ref. [100], a DNN, LVI-PDNN and S-LVI-PDNN are presented for online RMP of redundant
manipulators, and a drift-free criterion is exploited in the form of a quadratic performance index.
The scheme also incorporates joint angle and joint velocity limits. The scheme is reformulated as a
QP. As QP real-time solvers, the proposed neural networks all have piecewise linear dynamics and
can globally exponentially converge to the optimal solution of strictly convex QP. It was shown that
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Table I. Number of operations to be performed by different RNN solvers.

DNN (20) LVI-PDNN (23) S-LVI-PDNN (24)

Additions/subtractions 10n + 4m 6(n + m) 4(n + m)

Multiplications 5n(n + m) 2(n + m)2 (n + m)2

Problem 
formulation

Solution:
LVI-PDNN

S-LVI-PDNN

Joint limits 
conversion

LVI 
reformulation

QP 
reformulation

Solution:
Lagrangian

DNN
PDNN

Fig. 2. Methodology for redundancy resolution using RNNs.

the S-LVI-PDNN has the lowest structural and computational complexity among the three networks
(see Table I).

Disadvantages: There are no disadvantages for the S-LVI-PDNN compared to the other neural
networks discussed in this section.

5. Methodology
Figure 2 shows the main steps involved in the IK problem formulated as a QP problem solved by
different types of RNNs.

The procedures start by the initial formulation of the problem, for example, a performance index
can be utilized to achieve drift-free motion at the velocity level (VRMP) or acceleration level
(ARMP) taking into consideration different joint variables limits (joint angle limits, joint velocity
limits and joint acceleration limits). Depending on the level at which the redundancy resolution
problem is formulated (velocity level or acceleration level) and the limited joint variables consid-
ered, the second step involves the conversion of all joint limits to conform with the same level of the
problem, for example, if the problem is formulated at the joint acceleration level, while joint angle,
joint velocity and joint acceleration limits are all considered, then the limited joint angle range and
joint velocity range have to be converted into an expression based on joint acceleration. In the third
step, the problem is reformulated as a QP problem where a new performance index is utilized along
with the new joint constraints that resulted from the joint limits conversion conducted in the previous
step. At this stage, the problem can be solved using an RNN like DNN or PDNN. The problem can
also be solved using LVI-PDNN or S-LVI-PDNN. To do this, a QP-LVI conversion step has to be
conducted, where the problem is finally reformulated as a set of LVIs.

6. Case Study: Drift-Free Inverse Kinematics at the Velocity Level Solved by DNN, LVI-PDNN
and S-LVI-PDNN

When devising the initial problem formulation, the below points should be considered:

1. The problem is solved at different levels, pertaining to objective function order:
Velocity level, first order

(
θ̇, ṙ

)
, acceleration level, second order

(
θ̈, r̈

)
, jerk level, third order(...

θ ,
...
r
)
.
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2. Performance criteria to be optimized, as defined in the objective function, for example, Joint
velocity.

3. Norm of performance criteria to be optimized:
Single Criterion (two-norm or ∞-norm) or bi-criteria (combined ∞-norm and two-norm).

4. Subtasks considered, as defined in the problem constraints:
For example, Joint angle limits, Joint angle and joint velocity limits, etc.

Other subtasks can be handled in the same framework (e.g., obstacle avoidance149), if the subtasks
are formulated in terms of constraints rather than performance indices.

6.1. The VRMP scheme
Taking into account the joint angle and joint velocity limits, the VRMP scheme for physically con-
strained redundant manipulators can be formulated as67, 99, 100, 111 (with the same performance index
as in refs. [69, 98]:

Minimize
1

2

(
θ̇ + z

)T (
θ̇ + z

)
, where z = λ (θ − θ (0)) (10)

Subject to Jθ̇ = ṙ (11)

θ− ≤ θ ≤ θ+ (12)

θ̇
− ≤ θ̇ ≤ θ̇

+
, (13)

where λ is a positive design parameter used to scale the magnitude of the manipulator response to
joint displacements.

6.2. Joint limits conversion
As the redundancy is resolved at the joint velocity level, the limited joint angle range

[
θ−, θ+]

in (12) has to be converted into an expression based on joint velocity.99, 107, 114, 134, 150 For exam-
ple, the following transformation from θ to θ̇ expressions can be used (i.e., using a dynamic bound
constraint):100

μ
(
θ− − θ

) ≤ θ̇ ≤ μ
(
θ+ − θ

)
(14)

where the intensity coefficient μ > 0 is used to scale the feasible region of θ̇ caused by the above
transformation. The choice of coefficient μ should make sure that the feasible region of θ̇ converted
by joint limits (12) is usually not less than the original one made by joint velocity limits (13),100 μ ≥
max1≤i≤n

{(
θ̇

+
i − θ̇

−
i

)
/
(
θ+

i − θ−
i

)}
. Large values of μ may cause quick joint deceleration when the

manipulator approaches its joint limits. The physical meaning of the transformation can be explained
by taking the right-hand inequality of (14) as an example. As joint variable θ increases (toward its
upper bound θ+, evidently the upper bound of joint velocity variable θ̇ should accordingly decrease.
If θ reaches its upper limit θ+, the right-hand inequality of (14) becomes θ̇ ≤ 0 which means that θ

cannot increase any more. Thus, θ will never exceed its upper limit θ+. Similarly, θ will not exceed
its lower limit θ− either, owing to the left-hand inequality of (14).100 Equations (13) and (14) can
thus be combined into one dynamic bound-constraint ξ− ≤ θ̇ ≤ ξ+ in a unified manner, where the ith
elements of ξ− and ξ+ are defined as:100 ξ−

i = max
{
θ̇−

i , μ
(
θ−

i − θi
)}

, ξ+
i = min

{
θ̇+

i , μ
(
θ+

i − θi
)}

.

6.3. QP reformulation
The VRMP scheme (10)–(13) can be reformulated as the following QP problem in terms of joint
velocity θ̇:67, 100, 111

Minimize
1

2
θ̇

T
Wθ̇ + zT θ̇ (15)
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Subject to Jθ̇ = ṙ (16)

ξ− ≤ θ̇ ≤ ξ+, (17)

where W = I, ξ− and ξ+ are the lower and upper limits, respectively, of the new bound constraint.
The velocity-level performance index (15) which results from the simplification of (10) is also called
the drift-free criterion at the joint velocity level. Most coefficients in (15)–(17) are time-varying,
which entails real-time solution.67

6.4. DNN solver
The QP (15)–(17) can be rewritten as:100

Minimize
1

2
θ̇

T
Wθ̇ + zT θ̇ (18)

Subject to γ− ≤ Eθ̇ ≤ γ+, γ− =
[
ṙT ,

(
ξ−)T

]T
, γ+ =

[
ṙT ,

(
ξ+)T

]T
, E =

[
J
I

]

At some instant t, QP problem (15)–(17) can be viewed as a parametric optimization problem. By
the KKT condition,130 θ̇ is a solution to (18) IFF there is a dual decision variable vector u ∈ Rn+m

such that θ̇ − ETu + z= 0 (in view of W = I = W−1) and:100

⎧⎪⎪⎨
⎪⎪⎩

[
Eθ̇

]
i
= γ−

i if ui > 0

γ−
i ≤ [

Eθ̇
]

i ≤ γ+
i if ui = 0[

Eθ̇
]

i
= γ+

i if ui < 0

which is equivalent to the system of piecewise linear equations Eθ̇ = P�

(
Eθ̇ − u

)
,123 where P�

(
.
)

is a projection operator from Rn+m onto � = {
u | γ− ≤ u ≤ γ+} ⊂ Rn+m and the ith output of P� (u)

is defined as:100

⎧⎪⎨
⎪⎩

γ−
i if ui < γ−

i

ui if γ−
i ≤ ui ≤ γ+

i , ∀i ∈ {1, 2, . . . , n + m}
γ+

i if ui > γ+
i

By the above analysis, the necessary and sufficient condition for solving QP (18) is that θ̇ and u
satisfy θ̇ − ETu + z = 0 and Eθ̇ = P�

(
Eθ̇ − u

)
. Substituting the former equation into the latter:100

P�

(
EETu − Ez − u

) = EETu − Ez (19)

which gives rise to the dynamic equation of DNN solving QP (18) as well as QP (15)–(17):100

u̇ = c
(
P�

(
EETu − Ez − u

) − EETu + Ez
)
, (20)

where c is a design parameter used to scale the convergence rate of neural networks

6.5. LVI reformulation
By duality theory,130 for the primal QP problem (15)–(17), its dual QP problem can be derived with
the aid of dual decision variables. The dual decision variable is usually defined as the Lagrangian
multiplier for each constraint such as (16) and (17). QP (15)–(17) can be converted to a set of LVIs.
That is, to find a primal-dual equilibrium vector v∗ ∈ � = {

u | γ− ≤ u ≤ γ+}
such that:67, 99, 100

(
v − v∗)T (

Mv∗ + q
) ≥ 0, ∀ v ∈ � (21)

where the primal-dual decision variable vector v and its upper/lower bounds γ± are defined as (with
� � 0 ∈ Rm to replace the m-dimensional +∞ numerically):

v =
[

θ̇

y

]
, γ+ =

[
ξ+
�

]
, γ− =

[
ξ−
−�

]
∈ Rm+n
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y ∈ Rm is a dual decision variable vector defined for equality constraint (16), � is sufficiently large
to replace +∞

M =
[

W −JT

J 0

]
, q =

[
z

−ṙ

]
∈ Rm+n

The LVI problem (21) is equivalent to the system of piecewise linear equations:69, 99, 107, 114, 130, 150–155

P� (v − (Mv + q)) − v = 0 (22)

where P�( . ) is a projection operator from space Rm+n onto set � which are defined to be the same
as in the DNN case (except for γ+ and γ−).

6.6. LVI-PDNN solver
To improve the efficacy of the online solution of QP (15)–(17), an LVI-PDNN is presented in refs.
[67, 99] as the QP real-time solver, which is designed based on LVIs.151, 152, 154, 155 To solve LVI
(22) as well as QP (15)–(17), from refs. [55, 69, 114, 123, 156], the following dynamic equation of
LVI-PDNN is obtained:100

v̇ = c
(
I + MT

)
(P� (v − (Mv + q)) −v) = 0 (23)

6.7. S-LVI-PDNN solver
By removing the scaling term

(
I + MT

)
of LVI-PDNN (23), the simplified model (S-LVI-PDNN) is

obtained:100

v̇ = c (P� (v − (Mv + q)) − v) (24)

7. Discussion
Table II summarizes the basic information for different references where the redundancy resolution
problem was formulated as a QP problem solved by different types of RNNs.

8. Conclusion
RNNs exhibits many advantages as QP real-time solvers as outlined below:

1. Path-following task: In almost all references, the path-following task was completed satisfactorily
even in the cases where the solution is not repetitive or the joint limits were violated to a certain
extent.

2. Repetitive motion planning: In refs. [67, 99, 110, 111], it was shown that the solution becomes
repetitive when exploiting the drift-free criterion.

3. Joint limits avoidance: In refs. [67, 110, 111, 114], it was shown that, with joint limits considered
in the problem formulation, the respective joint variables are kept within their limits during the
simulation

4. Computation time: In ref. [111], the upper bound of the computation time of the LVI-PDNN
is approximately 1.45 × 10−3 s and 9 × 10−3 s for solving the VRMP and ARMP schemes,
respectively. In ref. [110], the simulations based on the VRMP and ARMP schemes solved by
the S-LVI-PDNN are applied on the 3 DOF planar arm for the same path tracking task. The
maximum computation time is 2 × 10−4 s for the VRMP scheme and 5 × 10−4 s for the ARMP
scheme which is still very small, indicating that both the VRMP and ARMP schemes solved by
the LVI-PDNN or the S-LVI-PDNN are efficient for real-time motion planning and control and
are applicable in practical applications.

5. Convergence: As QP real-time solvers, the aforementioned neural networks all have piecewise
linear dynamics and could globally exponentially converge to the optimal solution of strictly
convex QPs.
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Table II. Summary of the formulations and RNN solvers used in different references.

Reference RNN solver Formulation Manipulator Max position error (m)a

[55] Lagrangian Velocity level PA-10 < 10−4

[121] PDNN Velocity level 4 DOF Not applicableb

PA-10

[113] DNN Velocity level 5 DOF < 2 × 10−16

PA-10 < 6 × 10−8

[114] DNN Acceleration level PUMA 560 < 1.5×10−4

[122] DNN Bi-criteria PA-10 < 3 × 10−7

[99] LVI-PDNN VRMP PUMA 560 < 4 × 10−8

[124] S-LVI-PDNN VRMP PA-10 < 2×10−6

[67] LVI-PDNN VRMP PA-10 < 1.5 × 10−7

[100] DNN VRMP 4 DOF Not applicablec

LVI-PDNN
S-LVI-PDNN

[110]d S-LVI-PDNN ARMP 3 DOF < 2.5×10−3

4 DOF < 5×10−5

5 DOF < 3.5×10−4

[111] LVI-PDNN VRMP PA-10 < 1.5 × 10−7

ARMP < 1.5 × 10−3

[148] LVI-PDNN ARMP Dual PA-10 < 8×10−4e

Perturbed LVI-PDNNf < 10−3

a The values of position error given in the table should be considered as an indication of the performance of the scheme used in the
respective reference, not as a measure to compare the relative performance of the schemes employed in different references owing to
the fact that these results are produced based on different setups for example, different manipulators, different workspace paths, etc.
b The main aim in ref. [121] was reducing the architecture complexity of the neural network and minimizing the joint velocity
c The main aim in ref. [100] was comparing between DNN, LVI-PDNN, S-LVI-PDNN used as neural network solvers for the
redundancy resolution problem based on QP formulation and showing their efficacy in solving the joint angle drift problem. Table
I shows the number of operations to be performed by DNN (20), LVI-PDNN (23) and S-LVI-PDNN (24) per iteration for the same
QP-solving and redundancy resolution purposes. The computational cost of the DNN is the highest among the three neural-network
solvers, while the S-LVI-PDNN has the lowest structural and computational complexity.100

d In ref. [110], in addition to the results indicated in the table, for further verification, the ARMP scheme is performed on a six-link
planar manipulator. The experiment has demonstrated the physical realizability of the ARMP scheme and the corresponding S-LVI-
PDNN solver on the drift-free motion planning and control of the manipulator. Simulations based on PUMA 560 and PA10 were
also performed. As synthesized by the ARMP scheme, tracking tasks are completed well, all joint trajectories are closed and all joint
variables are kept within their limits.
e In ref. [148], simulations were conducted for the dual PA10 manipulators to track three different trajectories. The maximum
position error among all trajectories was less than 8×10−4 m. In this case, the QP problem has been solved using the standard
LVI-PDNN (23).
f In ref. [148], considering the differentiation error and the implementation error, a perturbed LVI-PDNN has been proposed to solve
the QP problem [compare with the standard LVI-PDNN indicated in (23)].

v̇ = c
(
I + MT + �D

)
(P� (v − (Mv + q)) − v) + �S, (25)

where �D ∈ R(2n+2m)×(2n+2m) and �S ∈ R(2n+2m) denote the differentiation error matrix and the implementation error vector,
respectively. Only one trajectory was tested in this case.

On the other hand, the below points need to be considered:

1. End-effector orientation: In refs. [55, 100, 113, 114, 122], only the end-effector positioning is
considered, whereas in many real-life applications, it is important to consider the end-effector
orientation as well.

2. Simulation versus Experimental Results: Most references depend on computer simulation rather
than experimental results. Experimental results might differ from simulation results due to the
inconstancy between the real environment and the simulated one.

3. Joint limits: In some formulations, joint velocity limits and/or joint acceleration limits are not
considered when solving the IK problem.
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