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Abstract

In this paper, we study the existence of positive solutions for the one-dimensional
p-Laplacian differential equation,

(φp(u
′(t)))′ + q(t) f (t, u(t), u′(t))= 0, t ∈ (0, 1),

subject to the multipoint boundary condition

u′(0)=
n∑

i=1

αi u
′(ξi ), u(1)=

n∑
i=1

βi u(ξi ),

by applying a monotone iterative method.
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1. Introduction

In this paper, we will consider the positive solutions to the p-Laplacian boundary
value problem

(φp(u
′(t)))′ + q(t) f (t, u(t), u′(t))= 0, t ∈ (0, 1), (1.1)

u′(0)=
n∑

i=1

αi u
′(ξi ), u(1)=

n∑
i=1

βi u(ξi ), (1.2)
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where φp(s)= |s|p−2s with p > 1, ξi ∈ (0, 1) with 0< ξ1 < ξ2 < · · ·< ξn < 1, and
αi , βi , f, q satisfy:

(H1) 0≤ αi , βi < 1 (i = 1, 2, . . . , n) satisfy 0≤
∑n

i=1 αi ,
∑n

i=1 βi < 1;
(H2) f (t, x, y) ∈ C([0, 1] × [0,+∞)× R→ [0,+∞)), q(t) is a nonnegative conti-

nuous function defined on (0, 1) and q(t) 6≡ 0 on any subinterval of (0, 1). In
addition,

∫ 1
0 q(t) dt <+∞.

Here, a positive solution of (1.1) and (1.2) means a solution u∗ satisfying u∗(t) > 0,
0< t < 1.

The existence and multiplicity of positive solutions for linear and nonlinear
multipoint boundary value problems have been widely studied by many authors
(see [1–6, 8] and the references therein). However, there are not many papers which
are concerned with the computational methods of these problems. Then the question
arises: “How can we find the solutions when their existence is known?”

More recently, when under the assumption that f is allowed to depend only on t and
u but not on u′, Ma et al. [7] proved the existence of positive solutions of a multipoint
p-Laplacian boundary value problem via a monotone iterative technique.

So, motivated by all the works above, we investigate here the iteration and existence
of positive solutions for the multipoint boundary value problem with p-Laplacian (1.1)
and (1.2), which will extend all the previous research. We do not require the existence
of lower and upper solutions. By applying monotone iterative techniques, we construct
some successive iterative schemes to approximate the solutions in this paper.

2. Preliminaries

In this section, we give the preliminaries and some definitions.

DEFINITION 2.1. Let E be a real Banach space. A nonempty closed set P ⊂ E is said
to be a cone provided that:
• au + bv ∈ P for all u, v ∈ P and all a ≥ 0, b ≥ 0; and
• u,−u ∈ P implies u = 0.

DEFINITION 2.2. The map α is said to be concave on [0, 1], if

α(tu + (1− t)v)≥ tα(u)+ (1− t)α(v)

for all u, v ∈ [0, 1] and t ∈ [0, 1].

Let E be the Banach space C1
[0, 1] endowed with the norm

‖u‖ :=max
{

max
0≤t≤1

|u(t)|, max
0≤t≤1

|u′(t)|

}
.

We denote E+ = C1
+[0, 1] = {u ∈ E | u(t)≥ 0, t ∈ [0, 1]}, and define the cone P ⊂ E

by

P = {u ∈ E | u(t) ≥ 0, u is concave and nonincreasing on [0, 1]}.

Throughout, it is assumed that (H1) and (H2) hold.
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LEMMA 2.1. Suppose that y ∈ C1
[0, 1] with (φp(y′(t)))′ ∈ L1

[0, 1] satisfies

−(φp(y
′(t)))′ ≥ 0, t ∈ (0, 1),

y′(0)=
n∑

i=1

αi y′(ξi ), y(1)=
n∑

i=1

βi y(ξi ).

Then, y(t) is concave and y(t)≥ 0, y′(t)≤ 0 on [0, 1], that is, y ∈ P.

The proof is very easy since 0≤
∑n

i=1 αi ,
∑n

i=1 βi < 1, so we omit it here.
For all x ∈ C1

+[0, 1], suppose that u is a solution of the problem (1.1) and (1.2).
Then

u′(t) = φ−1
p

(
Ax −

∫ t

0
q(s) f (s, x(s), x ′(s)) ds

)
,

u(t) = Bx −

∫ 1

t
φ−1

p

(
Ax −

∫ s

0
q(r) f (r, x(r), x ′(r)) dr

)
ds,

where Ax , Bx satisfy the boundary conditions, that is,

φ−1
p (Ax ) =

n∑
i=1

αiφ
−1
p

(
Ax −

∫ ξi

0
q(s) f (s, x(s), x ′(s)) ds

)
,

Bx =

n∑
i=1

βi

[
Bx −

∫ 1

ξi

φ−1
p

(
Ax −

∫ s

0
q(r) f (r, x(r), x ′(r)) dr

)
ds

]
.

Hence,

u(t) = −

∑n
i=1 βi

∫ 1
ξi
φ−1

p (Ax −
∫ s

0 q(r) f (r, x(r), x ′(r)) dr) ds

1−
∑n

i=1 βi

−

∫ 1

t
φ−1

p

(
Ax −

∫ s

0
q(r) f (r, x(r), x ′(r)) dr

)
ds

where Ax satisfies (2.1).

LEMMA 2.2. For all x ∈ C1
+[0, 1], there exists a unique Ax with

Ax ∈

[
−

φp(
∑n

i=1 αi )

1− φp(
∑n

i=1 αi )

∫ 1

0
q(s) f (s, x(s), x ′(s)) ds, 0

]
satisfying (2.1).

The proof is similar to [7, proof of Lemma 2.2], so we omit it here.
For any x ∈ C1

+[0, 1], let Ax be the unique constant satisfying (2.1) corresponding
to x . Then we have the following lemma.
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LEMMA 2.3. Ax : C1
+[0, 1] → R has the following properties:

(a) Ax : C1
+[0, 1] → R is continuous about x;

(b) if f (t, x, y) is nondecreasing about x and nonincreasing about y on [0, 1] ×
[0,+∞)× (−∞, 0], then Ax is nonincreasing on P.

The proof is similar to [7, proof of Lemma 2.3], so we omit it here.

3. Main results

For notational convenience, we denote

A =
(1−

∑n
i=1 βi )φ

−1
p (1− φp(

∑n
i=1 αi ))

(1−
∑n

i=1 βiξi )φ
−1
p (
∫ 1

0 q(s) ds)
.

We will prove the following existence results.

THEOREM 3.1. Assume that (H1) and (H2) hold, and there exists a > 0 such that:

(S1) f (t, x1, y1)≤ f (t, x2, y2) for any 0≤ t ≤ 1, 0≤ x1 ≤ x2 ≤ a, −a ≤ y2 ≤ y1
≤ 0;

(S2) max0≤t≤1 f (t, a,−a)≤ φp(a A);
(S3) f (t, 0, 0) 6≡ 0 for 0≤ t ≤ 1.

Then the boundary value problem (1.1) and (1.2) has two positive nonincreasing,
concave solutions w∗ and v∗ such that

0<w∗ ≤ a, −a ≤ (w∗)′ ≤ 0

and lim
n→∞

wn = lim
n→∞

T nw0 = w
∗, lim

n→∞
(wn)

′
= lim

n→∞
(T nw0)

′
= (w∗)′,

where w0(t)= a − at
1−

∑n
i=1 βi

1−
∑n

i=1 βiξi
, 0≤ t ≤ 1,

and

0< v∗ ≤ a, −a ≤ (v∗)′ ≤ 0

and lim
n→∞

vn = lim
n→∞

T nv0 = v
∗, lim

n→∞
(vn)

′
= lim

n→∞
(T nv0)

′
= (v∗)′,

where v0(t)= 0, 0≤ t ≤ 1,

where

(T u)(t) = −

∑n
i=1 βi

∫ 1
ξi
φ−1

p (Au −
∫ s

0 q(r) f (r, u(r), u′(r)) dr) ds

1−
∑n

i=1 βi

−

∫ 1

t
φ−1

p

(
Au −

∫ s

0
q(r) f (r, u(r), u′(r)) dr

)
ds. (3.1)
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The iterative schemes in Theorem 3.1 are

w0(t)= a − at
(1−

∑n
i=1 βi )

(1−
∑n

i=1 βiξi )
, wn+1 = Twn = T nw0, n = 0, 1, 2 . . .

and v0(t)= 0, vn+1 = T vn = T nv0, n = 0, 1, 2 . . . .

They start off with a known linear function and the zero function, respectively.

PROOF. We define an operator T : P→ E by (3.1). Then, from the definition of T ,
we deduce that, for each u ∈ P , there exists T u ∈ C1

[0, 1] which is nonnegative and
satisfies (1.2). Moreover, by Lemma 2.1 we have that T u is concave, that is, T u ∈ P ,
and (T u)′(t)≤ 0 on [0, 1]. So, T : P→ P .

The continuity of T is obvious. Now, we prove that T is compact. Let �⊂ P be a
bounded set. It is easy to prove that T (�) is bounded and equicontinuous. Then the
Arzelà-Ascoli theorem guarantees that T� is relatively compact, which means that T
is compact. Then, T : P→ P is completely continuous, and each fixed point of T in
P is a solution of (1.1) and (1.2).

For any ui ∈ P(i = 1, 2) with u1 ≤ u2 and u′1 ≥ u′2, let Aui (i = 1, 2) be two
constants decided in (2.1) corresponding to ui ∈ P(i = 1, 2), then by (S1) and
Lemma 2.3 we have Au1 ≥ Au2 . From the definition of T , we can easily get T u1 ≤

T u2.
We denote

P̄a = {u ∈ P | ‖u‖ ≤ a}.

Then, in what follows, we first prove that T : P̄a→ P̄a . If u ∈ P̄a , then ‖u‖ ≤ a, and

0 ≤ u(t)≤ u(0)= max
0≤t≤1

|u(t)| ≤ ‖u‖ ≤ a,

−a ≤ −‖u‖ ≤ − max
0≤t≤1

|u′(t)| = u′(1)≤ u′(t)≤ 0.

So by (S1) and (S2)

0≤ f (t, u(t), u′(t))≤ f (t, a,−a)≤ max
0≤t≤1

f (t, a,−a)≤ φp(a A), for 0≤ t ≤ 1.

In fact,

‖T u‖ = max
{

max
0≤t≤1

|(T u)(t)|, max
0≤t≤1

|(T u)′(t)|

}
= max {(T u)(0),−(T u)′(1)}.

https://doi.org/10.1017/S1446181108000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181108000205


556 B. Sun, X. Zhaob and W. Gea [6]

By (3.1) and Lemma 2.2,

(T u)(0)

=−

[ n∑
i=1

βi

∫ 1

ξi

φ−1
p (Au −

∫ s

0
q(r) f (r, u(r), u′(r)) dr) ds

][
1−

n∑
i=1

βi

]−1

−

∫ 1

0
φ−1

p

(
Au −

∫ s

0
q(r) f (r, u(r), u′(r)) dr

)
ds

≤

[ n∑
i=1

βi

∫ 1

ξi

φ−1
p

(
φp(

∑n
i=1 αi )

1− φp(
∑n

i=1 αi )

∫ 1

0
q(s) f (s, u(s), u′(s)) ds

+

∫ 1

0
q(r) f (r, u(r), u′(r)) dr

)
ds

][
1−

n∑
i=1

βi

]−1

+

∫ 1

0
φ−1

p

(
φp(

∑n
i=1 αi )

1− φp(
∑n

i=1 αi )

∫ 1

0
q(s) f (s, u(s), u′(s)) ds

+

∫ 1

0
q(r) f (r, u(r), u′(r)) dr

)
ds

≤

[(
1−

n∑
i=1

βiξi

)
φ−1

p

(∫ 1

0
q(s) f (s, u(s), u′(s)) ds

)]

×

[(
1−

n∑
i=1

βi

)
φ−1

p

(
1− φp

( n∑
i=1

αi

))]−1

≤ a A

[(
1−

n∑
i=1

βiξi

)
φ−1

p

(∫ 1

0
q(s) ds

)]

×

[(
1−

n∑
i=1

βi

)
φ−1

p

(
1− φp

( n∑
i=1

αi

))]−1

= a,

and

−(T u)′(1) = φ−1
p

(
−Au +

∫ 1

0
q(s) f (s, u(s), u′(s)) ds

)
≤ φ−1

p

(
φp(

∑n
i=1 αi )

1− φp(
∑n

i=1 αi )

∫ 1

0
q(s) f (s, u(s), u′(s)) ds

+

∫ 1

0
q(s) f (s, u(s), u′(s)) ds

)
≤ a A

φ−1
p (
∫ 1

0 q(s) ds)

φ−1
p (1− φp(

∑n
i=1 αi ))

≤ a.
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Thus, we obtain that

‖T u‖ =max {(T u)(0),−(T u)′(1)} ≤ a.

Hence, we assert that T : P̄a→ P̄a .

Let

w0(t)= a − at
1−

∑n
i=1 βi

1−
∑n

i=1 βiξi
, 0≤ t ≤ 1,

so then w0(t) ∈ P̄a . Let w1 = Tw0, so then w1 ∈ P̄a . We denote wn+1 = Twn =

T nw0, n = 0, 1, 2 . . . . Since T : P̄a→ P̄a , we have wn ∈ T P̄a ⊆ P̄a, n = 1, 2, . . . .
Since T is completely continuous, we assert that {wn}

∞

n=1 is a sequentially compact
set.

Since

w1(t) = Tw0(t)

= −

[ n∑
i=1

βi

∫ 1

ξi

φ−1
p

(
Aw0 −

∫ s

0
q(r) f (r, w0(r), w

′

0(r)) dr

)
ds

]

×

[
1−

n∑
i=1

βi

]−1

−

∫ 1

t
φ−1

p

(
Aw0 −

∫ s

0
q(r) f (r, w0(r), w

′

0(r)) dr

)
ds

≤

[ n∑
i=1

βi

∫ 1

ξi

φ−1
p

(
φp(

∑n
i=1 αi )

1− φp(
∑n

i=1 αi )

∫ 1

0
q(s) f (s, w0(s), w

′

0(s)) ds

+

∫ 1

0
q(r) f (r, w0(r), w

′

0(r)) dr

)
ds

][
1−

n∑
i=1

βi

]−1

+

∫ 1

t
φ−1

p

(
φp(

∑n
i=1 αi )

1− φp(
∑n

i=1 αi )

∫ 1

0
q(s) f (s, w0(s), w

′

0(s)) ds

+

∫ 1

0
q(r) f (r, w0(r), w

′

0(r)) dr

)
ds

≤ a A
(1−

∑n
i=1 βiξi )φ

−1
p (
∫ 1

0 q(s) ds)

(1−
∑n

i=1 βi )φ
−1
p (1− φp(

∑n
i=1 αi ))

− t Aa
φ−1

p (
∫ 1

0 q(s) ds)

φ−1
p (1− φp(

∑n
i=1 αi ))

= a − at
1−

∑n
i=1 βi

1−
∑n

i=1 βiξi
= w0(t), 0≤ t ≤ 1,
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and

w′1(t) = (Tw0)
′(t)

= φ−1
p

(
Aw0 −

∫ t

0
q(s) f (s, w0(s), w

′

0(s)) ds

)
≥ φ−1

p

(
−

φp(
∑n

i=1 αi )

1− φp(
∑n

i=1 αi )

∫ 1

0
q(s) f (s, w0(s), w

′

0(s)) ds

−

∫ t

0
q(s) f (s, w0(s), w

′

0(s)) ds

)
≥ φ−1

p

(
−

1
1− φp(

∑n
i=1 αi )

∫ 1

0
q(s) f (s, w0(s), w

′

0(s)) ds

)

≥ −a A
φ−1

p (
∫ 1

0 q(s) ds)

φ−1
p (1− φp(

∑n
i=1 αi ))

= −a
1−

∑n
i=1 βi

1−
∑n

i=1 βiξi
= w′0(t), 0≤ t ≤ 1,

so

w2(t)= Tw1(t)≤ Tw0(t)= w1(t), 0≤ t ≤ 1,

w′2(t)= (Tw1)
′(t)≥ (Tw0)

′(t)= w′1(t), 0≤ t ≤ 1.

Hence, by the induction,

wn+1 ≤ wn, w′n+1(t)≥ w
′
n(t), 0≤ t ≤ 1, n = 0, 1, 2 . . . .

Thus, there exists w∗ ∈ P̄a such that wn→ w∗. Applying the continuity of T and
wn+1 = Twn , we get Tw∗ = w∗.

Let v0(t)= 0, 0≤ t ≤ 1, so then v0(t) ∈ P̄a . Let v1 = T v0, so then v1 ∈ P̄a . We
denote vn+1 = T vn = T nv0, n = 0, 1, 2 . . . . Since T : P̄a→ P̄a , we have vn ∈ T P̄a
⊆ P̄a , n = 1, 2, . . . . Since T is completely continuous, we assert that {vn}

∞

n=1 is a
sequentially compact set.

Since v1 = T v0 = T 0 ∈ P̄a ,

v1(t)= T v0(t)= (T 0)(t)≥ 0, 0≤ t ≤ 1,

v′1(t)= (T v0)
′(t)= (T 0)′(t)≤ 0, 0≤ t ≤ 1.

So,

v2(t)= T v1(t)≥ (T 0)(t)= v1(t), 0≤ t ≤ 1,

v′2(t)= (T v1)
′(t)≤ (T 0)′(t)= v′1(t), 0≤ t ≤ 1.

Therefore, it is similar to the earlier arguments and, by induction,

vn+1 ≥ vn, v′n+1(t)≤ v
′
n(t), 0≤ t ≤ 1, n = 0, 1, 2 . . . .
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Hence, there exists v∗ ∈ P̄a such that vn→ v∗. Applying the continuity of T and
vn+1 = T vn , we get T v∗ = v∗.

If f (t, 0, 0) 6≡ 0, 0≤ t ≤ 1, then the zero function is not the solution of
(1.1) and (1.2). Thus, max0≤t≤1 |v

∗(t)|> 0, and we have v∗ ≥min{t, 1− t}
max0≤t≤1 |v

∗(t)|> 0, 0< t < 1.
It is well known that each fixed point of T in P is a solution of (1.1) and (1.2).

Hence, we assert that w∗ and v∗ are two positive nonincreasing, concave solutions of
the problem (1.1) and (1.2).

The proof is completed. 2

The following corollaries follow easily.

COROLLARY 3.1. Assume that (H1), (H2), (S1) and (S3) hold, and there exists a > 0
such that:

(C3.1) lim`→+∞ max0≤t≤1( f (t, `,−a)/`p−1)≤ φp(A) (in particular,
lim`→+∞ max0≤t≤1( f (t, `,−a)/`p−1)= 0).

Then the boundary value problem (1.1) and (1.2) has two positive, concave solutions
w∗ and v∗, and all other conclusions of Theorem 3.1 hold.

COROLLARY 3.2. Assume that (H1), (H2) and (S3) hold, and there exist 0< a1
< a2 < · · ·< an such that:

(C3.2.1) f (t, x1, y1)≤ f (t, x2, y2) for any 0≤ t ≤ 1, 0≤ x1 ≤ x2 ≤ ak , −ak ≤ y2
≤ y1 ≤ 0, k = 1, 2, . . . , n;

(C3.2.2) max0≤t≤1 f (t, ak,−ak)≤ φp(ak A), k = 1, 2, . . . , n.

Then the boundary value problem (1.1) and (1.2) has 2n positive, concave solutions
w∗k and v∗k such that:

0<w∗k ≤ ak, −ak < (w
∗

k )
′
≤ 0,

and lim
n→∞

wkn = lim
n→∞

T nwk0 = w
∗

k , lim
n→∞

(wkn )
′
= lim

n→∞
(T nwk0)

′
= (w∗k )

′,

where wk0(t)= ak − ak t
1−

∑n
i=1 βi

1−
∑n

i=1 βiξi
, 0≤ t ≤ 1,

and

0< v∗k ≤ ak, −ak < (v
∗

k )
′
≤ 0,

and lim
n→∞

vkn = lim
n→∞

T nvk0 = v
∗

k , lim
n→∞

(vkn )
′
= lim

n→∞
(T nvk0)

′
= (v∗k )

′,

where vk0(t)= 0, 0≤ t ≤ 1,

with (T u)(t) defined in the same way as in (3.1).
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The iterative schemes in Corollary 3.2 are

wk0(t) = ak − ak t
1−

∑n
i=1 βi

1−
∑n

i=1 βiξi
, wkn+1 = Twkn

= T nwk0, k = 1, 2 . . . , n = 0, 1, 2 . . .

and vk0(t)= 0, vkn+1 = T vkn = T nvk0, k = 1, 2 . . . , n = 0, 1, 2 . . . .

They start off with known linear functions and zero functions respectively.

COROLLARY 3.3. Assume that (H1), (H2), (C3.2.1) and (S3) hold, and there exist
0< a1 < a2 < · · ·< an such that

(C3.3) lim`→+∞ max0≤t≤1( f (t, `,−ak))/(`
p−1)≤ φp(A), k = 1, 2, . . . , n (in

particular, lim`→+∞ max0≤t≤1( f (t, `,−ak)/`
p−1)= 0, k = 1, 2, . . . , n).

Then the boundary value problem (1.1) and (1.2) has 2n positive, concave solutions
w∗k and v∗k , and all other conclusions of Corollary 3.2 hold.
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