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THE 2-EPISTASIS OF FITNESS FUNCTIONS

M.T. IGLESIAS, V.S. PENARANDA, C. VIDAL AND A. VERSCHOREN

In this note about Genetic Algorithms (GA~), we study the 2-epistasis of a fitness
function over a search space. This concept is a natural generalisation of that of
epistasis, previously considered by Davidor in 1991 Suys and Verschoren in 1996 and
Van Hove and Verschoren in 1994 for example. We completely characterise fitness
functions whose 2-epistasis is minimal: these are exactly the second order functions.
The validity of 2-epistasis as a measure of hardness with respect to genetic algorithms
is checked over some classical laboratory functions. Finally, we obtain an upper bound
of the maximal value of the 2-epistasis when we restrict attention to non-negative
functions.

INTRODUCTION

In spite of the great applicability of genetic algorithms to optimise functions, some-
times this task may be quite difficult. In fact, it remains an open problem to completely
characterise functions difficult to optimise by a genetic algorithm.

Nevertheless, it is known that there are several factors which may contribute to this
difficulty, such as the order of the function, for example. Recall that fc-order functions
(over binary strings) are those which are a linear combination of simple functions which
only depend on k bits. To give an example, the twin peaks problem is extremely difficult
to optimise by a genetic algorithm and it appears that the underlying "camel functions"
have high order: if they are defined over strings of length £, their order is I (respectively
£ — 1) if £ is even (respectively, odd).

The epistasis of a fitness function should also be taken into account as a potential
indicator for hardness with respect to genetic algorithms. Within biology, this notion
refers to linkage between genes, whereas in the context of search landscapes, it deals with
the presence of links (or interactions) between separate bits in the codified version of the
data to be optimised. In general, problems with few interactions appear to be the easier
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ones to solve. The epistasis measure computes the least squares distance of a fitness
function to the class of first order (or linear) functions. These are of the form

/ : {0,1}< -> R : s^

and are clearly free from interactions between variables (they are "epistatically free").
Note that the camel functions, already mentioned above, are exactly those for which
(normalised) epistasis is maximal, (see [12], for example).

Neither of the previous factors is by any means sufficient to predict the "hardness"

of a function; that is, its intrinsic difficulty to be optimised by a genetic algorithm.
Nevertheless, jointly they provide a good estimation of the hardness of particular classes
of fitness functions.

It has been shown in [4, 7, 10], that there exists a strong correlation between
epistasis, order and hardness for certain large classes of functions, in particular for those
that may be described by a limited number of control parameters. Royal Road and
template functions (studied in sections 3 and 4) are of this type.

This apparent correlation for low-order functions does not suffice to explain the
hardness of high-order functions. Actually, epistasis can separate first order functions
from higher order functions but, even though A;-th order functions have lower epistasis
than k + 1-th order functions, epistasis cannot reliably differentiate between different
higher orders of interaction. This motivated us to generalise the concept of epistasis to
so-called 2-epistasis and to show how this notion complements the information provided
by the "classical" one.

For the reader's convenience, we briefly recollect some material from [1, 3, 6, 9, 12],
in order to make our exposition somewhat more self-contained. More precisely, we include
some background about Davidor's notion of epistasis and about Walsh coefficients. We
recall how the Hyperplane Average Theorem allows to determine these, and how to
calculate the normalised epistasis. In the second section we introduce a new estimator of
the difficulty of fitness functions, which should be considered as a complement of classical
normalised epistasis defined in [12]. It will be referred to as normalised 2-epistasis. The
remainder of this section will be devoted to establish the relation between the functions
with zero normalised 2-epistasis (that is, as we shall see, functions of order 2) and their
Walsh coefficients. The third section is devoted to measuring the difficulty of a few
particular laboratory functions (more examples can be found in [11]). In the fourth,
we present some experimental results which allow us to observe to an extent 2-epistasis
relates to hardness for particular classes of functions.

Three technical appendices are included. In the first one, we provide detailed proofs
of some auxiliary results used in section 2. The second appendix deals with the (rather
lengthy) calculations needed for the examples in section 3. In the last appendix, we take
a first look at the theoretical maximal value of the normalised 2-epistasis of a positive-
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valued fitness function.

1. P R E L I M I N A R I E S

In this section, we summarise (without proof) some basic results on epistasis and

Walsh transforms. Throughout, we denote by fi = {0 ,1} ' (or Qe if ambiguity may arise)

the set of length £ binary strings. We shall frequently identify a string s = st-i... Siso 6 fi

with its numerical value JZ Sj2*.

As already pointed out in the introduction, epistasis essentially measures the amount

of dependency between bits in strings to which a fitness function is applied. The first

quantitative approach to this concept is due to Davidor [1] and is based on the hypothesis

that, if a function has low epistasis, it should be processed more efficiently by a genetic

algorithm, whereas if it has high epistasis, the search space has too little structure to

efficiently guide the search process. Starting from these principles, Davidor tries to

predict the amount of nonlinearity present in a given problem. Quantifying this should

then provide an estimate of the suitability of the problem to be processed efficiently by

aGA.

As shown in [12], Davidor's definition of the epistasis of a string s = s*_i...

with respect to a fitness function / : Q —¥ R may be given by

et{a) = f(s) - Y< [2 £ £ f(t) + {I -
L o$i<t ten'' ten

with

(1) . fif = {ten-,ti = Si},

and the global epistasis of / is defined as

/
»en

As in [12, 14], define the 2/-dimensional vectors

e = t(et(00...0)el(QO..A) . . .

and

as well as the matrix E f = (e^), with ee
at = 2~'(£ + 1 - 2d' t ) for any 0 ^ s, t ^ 2' - 1,

where dl
st is the Hamming distance between s and t; that is, the number of bits in which

the binary representation of s and t differ. This matrix satisfies e = f - E/f, hence
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£tU) — llell- Since for any a € R, a ^ 0, the functions / and af should intuitively have
the same epistasis, the authors of [12] define so-called normalised epistasis as

(2) et{f) - ee^pjij - — - 1 - Yi-^T-

where I< denotes the 2'-dimensional identity matrix and G< = 2l Ee e M2< (Z) (the set
of 2^-dimensional matrices with integer coefficients). A useful property of the matrix G*
is that it may be recursively constructed by

[•>) ^*t+i - r T T „ TT l ,

where Go = (1) and
A ... I

eM2l(Z).

The effective calculation of normalised epistasis of a function is often rather complicated,
but, as shown in [9], may be simplified by using Walsh coefficients.

F o r a n y s t r i n g t £ fi, the Walsh function tpt is g iven b y ^t(s) = ( — l ) 3 t , w h e r e
s • t denote the scalar product of s and t. The Walsh functions, which form a ba-
sis for the vector space of real valued functions on fi, may be collected in the matrix
V< = (ipt(s))t t e n e M2t(Z) which satisfies

for all (. ̂  0, (see [9] for details). For practical reasons, it is usually more comfortable to
work with W< = 2-V2Vt. It is easy to see that Wj = It and

The Walsh transform w of / is denned by w = W/f and the components W{ = Wi(f),

the Walsh coefficients of / , are (up to a factor 2~ll2) the coordinates of / with respect

to the basis {ipt, t e fi}, (see [3], for example).

The function / is recovered from its Walsh coefficients as

(4) f =

Moreover,

(5)

In order to calculate normalised epistasis in terms of Walsh coefficients, the authors of
[9] consider the diagonal matrix Hi, whose only non-zero entries du have value 1 and are
situated at t = 0 and t = 2', 0 < i < £, and they prove:
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PROPOSITION 1 . 1 . ([9]) For all I ^ 0, W^E/W, = D,.
This result, together with (2), (4) and (5) then yields:

PROPOSITION 1 . 2 . ([9]) Ifw0, • • • , w2i-i are the Walsh coefficients of a fitness
function f, then the normaHsed epistasis e j ( / ) of f is given by

Walsh coefficients may also be calculated through the Hyperplane Average Theorem
which allows the average value of a function over certain hyperplanes of fl (the schemata)
to be obtained. Formally, a schema describes a subset of strings with similarities in certain
bits. More precisely, adding a don't care symbol # to the alphabet {0,1} a schema is
defined to be just an element H = / i /_ i . . . ho of {0,1, # } ' , and it is obvious that the
schema H may be identified with the subset

H = {s<_!... so e n : Vj; ht # # = • Sj = hj}

of Q. For example, if i = 3, then H = 1 # # = {100, 101, 110, 111}.

For any schema H € {0,1, #}*, the Hyperplane Average Theorem [3] states that

(6)

where we denote by f{H) = l/\H\ J2*eH f(s) ^ne average fitness of H, by \H\ the cardi-
nality of H, by J(H) the set of all strings s such that s; = 0 if hi = # and by P(H) the
string in Q, determined by

1 if /ij = 1.

For example, if H = l #01# , then J{H) = # 0 # # 0 and 0{H) = 10010.

As an application, using this and so-called "partition coefficients" (see [3] for details),
one easily calculates the order zero Walsh coefficient

(7) w0 =

the first order Walsh coefficients

(8) w2i=2l'2f{Hi)-w0,

and the second order Walsh coefficients

(9) w2i+2k = 2l/2 }{Hik) - wt - w2k - w0,

i k i

where # = # . . . # 0 # . . . # and tftt = # . . . # 0 # . . . # 6 # . . . # .

We conclude this section with the following:
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DEFINITION 1.3: A function is of order k ^ 1, if it is of the form

i ^ + E 9i1iAt>ii,sil) + ---+

From now on, we shall restrict ourselves to the case k = 2.

2. 2-EPISTASIS AND ITS MATRIX REPRESENTATION

In this section, we introduce 2-epistasis as a "natural" generalisation of Davidor's
notion of epistasis and we characterise the functions with zero 2-epistasis by means of
their order or their Walsh coefficients. We shall need the previously defined subset Qi(a)
and a,b e {0,1} and for any 0 < i < k < t, the analog

n# = {t£tt;U= a, tk = 6},

as well as the associated averages

ten

ten?

DEFINITION 2.1: The 2-epistasis of a string s e fl is defined to be

fiA»i>»k)-(t-2) E /fW-

NOTE. The generalisation of this concept to A;-epistasis (k € N) can be found in [8]. The
general case is much more technical, so we preferred to stick to the more intuitive case
k = 2, in the present note.

Considering the vector

b< = '(r«(00... 0) ei(00... 1) . . . £t(U . . . 1))

and the (symmetric) matrix Bt € M2t(Q) whose generic component <4 is

it is easy to see that

b« = f-B*f.

We refer to the reader to Appendix A for algebraic properties of the matrix B<.
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DEFINITION 2.2: The global 2-epistasis of / is given by

= INI-
Just as for ordinary epistasis, we want 2-epistasis to act as a measure of interactions

between genes and as this should, of course, be independent of scaling factors, this leads
us to:

DEFINITION 2.3: The normalised 2-epistasis of a function / : fi -> R is

f l 0 1

(10)
As we prove in Corollary A.3, the symmetric matrix Bt is idempotent. Hence it is

an orthogonal projection, and this implies that 0 ^ ej(/) < 1.
Since

Vt(f)?t(f) = i -
2'l|f||2

where %(/) = 'f(2'B^f, it follows that minimal and maximal values of e*t{f) corre-
spond to maximal and minimal values of %(/) respectively, where, of course, 0 < 7?/(/)
^ 2*|| f ||2. In particular, for fitness functions / with ||f|| = 1, we have 0 ^ %(/) ^ 2e.

On the other hand, as a direct consequence of the algebraic properties summarised
in Appendix A, 0 and 1 are the eigenvalues of B* and so, denoting by V̂ 0 and V̂ 1 the
eigenspaces in R2' corresponding to the eigenvalues 0 and 1, clearly R2' = V^ © V/.

Moreover, as V? = ker(B/) and V? = lm(Bt), we have dim Vt° = 2' - \[ J - i - 1 and

dim Ve
l = (e\ +1 + 1 and so, ej( /) = 0 (respectively ej(/) = 1) if and only if/ e V}

(respectively / G V(°).

As in the classical case (and in order to characterise functions with e\(f) = 0), we
are interested in expressing normalised 2-epistasis in terms of Walsh coefficients. So, let
us consider the diagonal matrix D< 6 M.-H (Z) whose only non zero entries dtt have value

* i < k < t. So, Dj = It for i = 0,1,2 and1 and are situated at t = 0, 2*, 2' +
/ I

fS —
u3 _

0
0
0
0
0
0

Vo

2*,

0
1
0
0
0
0
0

0

for

0
0
1

0
0
0
0
0

0s

0

0
0
1
0
0
0
0

0
0
0
0
1

0
0
0

<k

0

0
0
0
0
1

0
0

<

0
0
0
0
0
0
1

0

L

0

0
0
0
0
0
0
0

for example.
A straightforward induction argument then shows that:
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PROPOSITION 2 . 4 . For any i^O,

where Dt-i is the diagonal matrix introduced in the previous section.

Using (12), given in Appendix A, and the recursive description of the Walsh matrix

Wt, it now easily follows:

PROPOSITION 2 . 5 . For any £ ^ 0, we have:

(11) W£B,W, = De.

Finally, (4), (5) and proposition 2.5 yield:

PROPOSITION 2 . 6 . If wo,• • •, uty-i are the Walsh coefficients of a function f,

then the normalised 2-epistasis of f is given by:

W0 + Ho^t« W
2i

Let us now show that the minimal value e*t(f) = 0 occurs exactly when / is of the

form

9ik(Si,Sk),
I

for some real-valued functions <?,-, and gik which only depend on one and two bits, respec-

tively, that is, if / is of order 2.

First, recall that it has been proven in [13] that for any 2-order function, all of the

Walsh coefficients wt vanish, whenever t ^ 0, 2', 2* + 2* (0 < i < k < £).

Conversely:

PROPOSITION 2 . 7 . If f is a function whose Walsh coefficients wt are zero for

t / 0, 2', 2{ + 2k, with 0 ^ i < k < £, then f is of order 2.

PROOF: Consider the vectors w'1) and w^2^ given by

vt if t = 0, 2' (0 < i < £)
wt"' = \

0 elsewhere
v

and

(2) _ iWt if * = 2* + 2* (0 < i < k <

0 elsewhere.
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Then w = w^1' + w' 2 ' and, as f = W*w, we obtain:

f(s) = (W«w), = 2" ' / 2 (Viw) , = 2~t/2 (V/w<1»)s + 2 - ' / 2 (V,w<2')5

ten ten

Putting

ft : {0,1} -> R : 8i M

and

ftt : {0,1}2 -> R : (*,

it indeed follows that

f(s) = Yl Si{si) + XI 9ik(si,sk).

From the previous result it now directly follows:

THEOREM 2 . 8 . For any function f : fi —• R, t i e following assertions are equiv-
alent :

1. all of its Walsh coefficients wt with t^Q, 2\ 2' + 2j (0 < i < j < I) have

value zero;

2. t i e function f is of order 2;

3. rtu) = o.
We have just pointed out that, i*e(f) = 0 if and only if / € V/. In particular, for

£ = 2, we have dimVj1 = 4 and so V£ = R4, hence, for any f 6 R4, we clearly have

% ( / ) = 41| f ||2. On the other hand, for I > 2, consider the vector 'v2 = (1,0,0,1) € R4

and let us define recursively the vectors

If / is the fitness function corresponding to v< then, by a straightforward induction

argument, it easily follows that rji(f) = 2e | |v/||2.

The next result yields an explicit basis for Vt
l:

PROPOSITION 2 . 9 . For any positive integer I, the columns of the matrix Wt

situated at positions s = 0, 2', 2i + 2k, with 0 ^ i < k < £, form a basis for Vt
l.

P R O O F : Denote by {et; 0 ^ t < 2'} the canonical basis of R2' and consider the
vectors w , = Wte3, for s = 0, 2\ 2' + 2*, (0 ^ i < k < £). The set of these is clearly

independent and, as its cardinality is ( I + £ + 1, it only remains to prove that each of
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these w5 belongs to the vector space V^1, that is, that B<ws = w5. But this immediately

follows from:

ws = W , e s = W , D , e s = W(BiWeWees = Wti>(Wtws = Btws.

3. 2-EPISTASIS OF SOME INTERESTING FUNCTIONS

In the present section we calculate the normalised 2-epistasis of some functions that
appear frequently in the theoretical study of genetic algorithms. The first one is the Dirac
function for which the search of the global optimum is, essentially, a random search —
an extremely hard function to optimise. The second example consists of the so-called
"camel" function. As we already mentioned in the introduction, the interest of this type
of function lies in its high order together with the fact that its "classical" normalised
epistasis is maximal. Finally we consider generalised Royal Road and template functions,
both depending on two parameters. This dependency permits us to observe the different
behaviour of the genetic algorithms in terms of these parameters.

3.1. DIRAC FUNCTION. Let us consider the Dirac function / = <50, that is, f(t) = 6to,
whose vector representation is $o = *(1> 0,..., 0). Since tpo(t) = 1, for all t e Q, it follows
that w = WeS0 = 2~'/2 «(1,.. . , 1) and so:

~,,r v , W0 + Ho$i« ^2' + H
et(6o) ~ * H

-i_i±£±fi)
2« '

3.2. CAMEL FUNCTION. The camel function c : f2 -»• R is defined by c(0. . .0)
= c ( l . . . 1) = 1 and c(t) = 0 for all other strings t G fi. Clearly, c = <50 + ^2'-i a n d
so, c = ' (1 ,0 . . . ,0 ,0) + ' (0,0, . . . ,0 ,1) = '(1,0,. . . ,0 ,1) . As w = W/C, for any string
s £ Q, we have

ws = 2-«2(ip0...0(s) + ^...i(s)) = 2 -" 2 ( l + ( - l ) -W),

where u(s) is the number of bits in s with value 1. In particular, w0 — 21~(' /2), w2> = 0,

for 0 ^ i < £, and w2
i+2* = 21~( ' /2 ) = w0, for any pair 0 < i < k < L So,

3.3. GENERALISED ROYAL ROAD FUNCTIONS. For any pair of positive integers
m ^ n we consider the generalised Royal Road functions K^, defined in [10] through the
schemata

an,m _
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where 0 ^ p < 2n~m (p e Z). The value of #£, applied to a string s £ ft = {0,1}2" is

given by

Note that R% is the function Ri originally denned in [2].

LEMMA 3 . 1 . ([7]) The function R^, is a 2m-order function.
2*» —m _ i

PROOF: It suffices to note that R^(s) — £ Pi(s)> where, for each 0 < j < 2"~m,
j=0

w e h a v e

j 2 m if Sj.2m =••• = s y + 1 ) . 2 m _ i = 1
Pj(a) = \ n , .

I 0 otherwise. n

From (13), (15) and Corollary B.2, it now easily follows:

PROPOSITION 3 . 2 . The normalised 2-epistasis of the generalised Royal Road
functions is given by:

22 m o2m—1 O">-1 i
~ ~ ~

2n-m + 22"1 - 1
3.4. TEMPLATE FUNCTIONS. Template functions calculate the fitness of a string of
length £ by sliding a fixed string t of length n ^ £ (the template) over it. Each time
an occurrence of t in s is found, a fixed amount a is added to the fitness of s. For
convenience's sake, we shall assume throughout that a = 1 and that t is the length n
string 1 • • • 1. So, the template functions depend only on the parameters £ and n and will
be denoted by T?. For example, I?( l ' ) . = 7? (11 . . . 11) = £-1 and T/(01110... Oil) = 1.

LEMMA 3 . 3 . ([7]) The function T? has order n.
l-n

P R O O F : We may write 7J*(s) = XI r j ( s ; . • • • > Sj+n-i), where, for j = 0, ...,£- n,

0 elsewhere.

D
PROPOSITION 3 . 4 . The normalised 2-epistasis of the template function T?,

£*t(Tp), is given by

(a) if£ < 2n,

2'-"(3(£ - n) - 1) + 2

_ nJ2 (<-r1)[2/3(2.2n ( r ) [2 /3(2(^ - n) + 1) + (f-") + 2/3(2(1 - n) + l)(2n -
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(b) if I > 2n,

2H - n) - 1) + 2'-2n(2 + {£- 2n)(l - 2n - 1))

,«-2n (TH2/3(2 n + *) + (a)l + V3(2)(2n ~ 1)(^ ~ 2")
' - n) - 1) + 2'-2n(2 + (£- 2n)(e -2n- 1))'

We again refer to the reader to Appendix B, for details.

4. EXPERIMENTAL RESULTS

The main purpose of this section is to show that 2-epistasis is a nice indicator of the
hardness of certain fitness functions with respect to optimisation by a genetic algorithm.
As a measure of this hardness, we use the number of generations needed to converge to
the optimum.

E X A M P L E 4 .1 . Let us first consider the Dirac function So, for which the genetic algo-
rithm essentially reduces to random search, and the camel function c = So + <J2<_1, one of
the functions where the maximal value of the classical epistasis is reached.

We use a Simple Genetic Algorithm, with linear ranking as the selection method,
crossover rate pc = 0.125 and mutation rate pm = 0.01. The algorithm runs 20 times over
strings of length 10, 11, 12 and 13 and stops if the number of generations is greater than
5000 or when the 90% of the population consists of individuals for which the function
takes the maximal value. The results show that e* describes properly the difficulty of
these functions and has a better correlation than e* with the number of generations GN.

E X A M P L E 4.2. Next, let us compare the hardness of generalised Royal Road functions
and template functions. Recall the nice correlation [10] between the (high) epistasis and
the hardness of the functions R^ (over length 64 strings).

In table 2, we use those results and compare them with the results obtained by
executing a genetic algorithm over the template functions denned on fi = {0,1}64, with
the same characteristics as used in [10]: selection by linear ranking, one point crossover
with probability pc = 0.7 and mutation rate pm = 0.001. The genetic algorithm stops
if half of the population consists of strings for which the function reaches its maximum.
Let us point out the nice correlation between the values of GN, £g4 and ej^. (Note that
we compare pairs of functions with the same order).

5. CONCLUSION

In this paper we introduced 2-epistasis and show how its calculation may greatly be
simplified through the use of Walsh transforms. It appears, as shown by experimental ev-
idence, that normalised 2-epistasis is a good complement of classical normalised epistasis
to measure the hardness of specific classes of fitness functions.
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strings' length

£ = 1 0

£ = 11

£ = 1 2

£ = 13

GN
e*
i*

GN
£*

GN

£•*

i*

GN

e*

?

So

932

0.9892

0.9453

1152
0.9941

0.9672

2475
0.9968
0.9807

3101

0.9982

0.9887

c

514

0.9980

0.9101

789

0.9990

0.9453

1564

0.9995
0.9672

2318
0.9997

0.9807

Table 1: Comparison of functions <5o and c.

A. PROOFS OF SOME AUXILIARY RESULTS

In this appendix we include some properties of the matrices introduced in section
2, needed to prove Theorem 2.8. To simplify calculations, we work with the matrix
A, = 2'B, 6 M2'(Z). If 0 ^ s,t < 2l or 2< < s,t < 2 / + 1 , we have that d^ 1 = djt, and
so, the (s,£)-entry a'j"1 of the matrix A^+x is given by:

y
= 4 (£ ~ d ' ' ) - 2(1 - 2)(£ - dj,) [£ + 1 - 2dit]

where gl
st denotes the generic component of G( defined in section 1. On the other hand,

for s € {0, . . . , 2l - 1} and t € { 2 ' , . . . , 2t+l - 1}, d^1 = de
tt + 1, hence, similarly,

<ttl = <&-

(12)

A straightforward induction argument then yields:

PROPOSITION A . I . For any £ ̂  0 we have:

A, + G< A / - G ,

The proof of the next properties of At may be found in [11].

PROPOSITION A.2 .
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function

*&

R\

7?4

K\

TL
Rt

R$

GN

37

41

68

46

164

63

> 1200

99

> 1200

> 1200

0

0

0.0285

0.0147

0.3548

0.2134

0.9391

0.8505

0.9997

0.9985

?64

0

0

0

0

0.1612

0.0714

0.8327

0.6788

0.9978

0.9925

Table 2: Comparison of generalised Royal Road and template functions.

2. A2 = 2'A,.

Note that the eigenvalues of A/ are 0 and 2l. Hence:

COROLLARY A. 3 . For any positive integer £, the matrix B( is idempotent and
its eigenvalues are 0 and 1.

B. SOME EXAMPLES REVISITED

The main purpose of this section is to present the (technical) calculation of the
second order Walsh coefficients of the more complicated examples of Section 3.

B. I . GENERALISED ROYAL ROAD FUNCTIONS. Denote by |cr£>m| the cardinality of
a%<m, then |cr£-m| = 22"-2m for any 0 < p < 2n~m and the average fitness of fi = # . . . #
is given by

sen

22 <*

_ _J_ 2n-m 2»n 22"-2"1
 = 2n~2>"

Taking into account that by (7), w0 = 22"/2.R£,(fi), we obtain

(13) wo = 22"/2 2 n - 2 m = 2n + 2 n"1-2 m = 2 " - " ,
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PROPOSITION B . I . For any i,k e {( ) , . . . , 2 " - 1}, w2i = - w and

f w if (j - l ) - 2 m ^i,k< j - 2 m , for some j e{l,...,2n-m},

10 eise where.
i
I

PROOF: Let us consider the schema Hi — # . . . # 0 # . . . # and let j be the positive
integer such that (j - 1) • 2m ^ i < j • 2m. Then, obviously, cr^m_j n Hi = 0 and
|<7£'m n Hj| = 22"-2"1-1, for any 0 ̂  p < 2n~m with p ̂  2 n " m - j . So, for all 0 ̂  i < 2",
the average fitness of schema Hi is:

( E

= 2-2"" (2n - 2m)

and, by (8),

w2i
 = 2 ' Rm(Hi) — WQ = —u).

In order to obtain the value of tu2t+2* (0 < i < k < 2") let us consider the schema

k i

#* = #...#6#...#6#...#
and split the proof in two cases.

CASE 1. Let us suppose that there exists some j e { l , . . . , 2 "~ m } with (j — 1) - 2m

^ i < k < j • 2m. In this case Hik D a^m_j = 0 and \a^'m (1 Hik\ = 22"~2m~2, for any
0 < p < 2n~m with p ̂  2"~m - j . Then,

_ * rtn-m _. 1\omo2"-2m-2
^ 2

(14) = 2"2m (2n - 2ro)

and hence one easily sees that 1/̂ +2* = w, as wanted.

CASE 2. Now suppose that there is no j € { 1 , . . . ,2"~m} with (j —l)-2m ^ i < k < j-2m.
A similar reasoning as in case 1 leads to K,(Hik) = 2-2m(2n - 2m+1) and u;2i+2t = 0.

D
COROLLARY B . 2 . For my 0 ^ i < k < 2", we have:
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l- 1^ ™2<+2* — l \ 2 ) U •
0^i<k<2"

P R O O F : The first assertion is obvious. To prove the second one, we write

E <4+2* = x: E
n

Now, Proposition 3.2 of section 3 is a direct consequence of results stated above and
the fact that the norm of the vector H%,, calculated in [10], is given by

(15) | | iC | | 2 = 2 n - m (2"- m + 22"" - 1) ui2.

B.2. WALSH COEFFICIENTS OF TEMPLATE FUNCTIONS. In order to obtain the nor-
malised 2-epistasis of the template functions we use the value of the norm of the vector
T?, calculated in [4].

PROPOSITION B . 3 . ([4]) For any pair of positive integers I ^ n, we have:

/ if £^2n,

if I > 2n.

The Walsh coefficients w0, w2i, calculated in [5], are given by

(16) w0 = [t - n + i)2('-2">/2,

{-2<'-2n>/2 (* + 1) if 0^i<£-n

_2«-an)/2 (^ _ „ + i) if e-n^i<n if
_2«-2n)/2 y _ j) i f n ^ i < g

and

{
_2«-2n)/2 n if n^i<e-n \it^2n
_2d-2n)/2 y _ j) i f e-n^i<e

t-i
hence, for any pair of integers £ ^ n, the value of Fi = JZ ^ i s g i v e n by (see [5] for

t=0

details)

f ^ { ( ^ ^ - n + 1 ) ( 2 ( ^ - " ) + 1)} if ^ 2n,
if / > 2n.

It thus only remains to calculate ro2i+2* (0 ^ i < k < £ )•
Now, using lemma 3.3 we obtain that

(17) w = W,T? = W , ( E T , ) = E W , r,,
\j=0 ' >=0
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where the vector Tj corresponds to the function TJ, for all j . Denoting by W(T;.)
= W( Tj — (iO(Tj.)o,t/;(T>)i,... ,tO(r,)2'-i) the Walsh vector of T,, it follows from (7), that

So, we have to calculate the first order Walsh coefficients of r, (0 ^ j ' ^ £ — n). In order
to do this, denote by Aj the subset consisting of n consecutive indices, starting in j , that
is, A, = {j,j + l,...,j + n- 1}.

Fix an index i (0 ^ i < £), and consider the schema % = # . . . # 0 # . . . # .
If i 6 Aj (for any j) then Tk(Hi) = 0 and, by (8), we have

(18) w{Tk)2i = 2</2 T i ( f t ) - w{Tk)0 = 0 - 2

On the other hand, if i <£ A,, then T5(Hi) = l/(2<~1) ^ TJ(S) = l / (2 ' - 1 )2 ' - " - 1 = 2""

and so

(19) w{Tj)2i = 21'* Tj{Hi) - w{Tj)Q = 2 ' / 2 2 - n - 2 ' - 2 " / 2 = 0.

Now, by (9), (18) and (19), it is easy to prove that

1. if {i,k} c A, then Tj{Hik) = 0, w(Tj)2i = w(Tj)2k = -2^~2n^2 and

2. if i t Aj, k € A, then 7j(ff«) = 0, w(Tj)2i = -2( '-2")/2, W ( T . ) 2 * = 0 and
u'(T,)2i+2* = 0.

3. if {i, k} DAj = 0 then ^(H*) = 2"n, w{Tj)2i = io(r))2* = 0 and u)(Tj)2i+2t
= 0.

So, it directly follows, from (17), that the Walsh coefficient w2x+2k of T" is

Finally, we need to determinate how many sets Aj contain {i, k). These numbers are
reflected in tables 3 and 4.

We may now prove:

PROPOSITION B . 4 . Tie value of T2= J2 w\i+2k for the template function
0<i<k<t

T? is:
1. if I ^ 2n
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i e

i e

i e

i e

i e

i e

i e

i e

i e

i e

{o,...

{o,...
{i-n

{e-n
{n,...

Table

{o,...
{0,...

{e-n

Position of

,l-n-l},

J-n-l},

,i-n-l},

, . . . ,n - l} ,

, . . . ,n - l} ,

,t-2},ke

the index

fee {i + i,
fe e {£ - n,

fee {n,...,

fee {i + l,

fee {n,...

{i + 1,...,

3: Second order Walsh

Position of

,n-1} , ke
,n- 1}, fe e
J-n-1},

, . . . , € - 2 } ,

the index

fe e {i + l,

fc e {i + i,

...,£-

. . . , n -

i + n —

. . . , n -

' - 1 }
e-i}

n -

- 1 }

1}

1}

coefficients

n-1}

n-1}

..,£-

n -

1}

1}

Number of sets

i + 1

i + 1

n — k + i

e-n + i

e-k
e-k

of 7? (£< 2n).

1}

Number of sets

i + 1

n — k + i

n— k + i

e-k

Table 4: Second order Walsh coefficients of T? (£ ^ 2n).

2. if P. > 2n

PROOF: Let us consider the case I < 2n. Then,

= E E
l-n-1l-n-1 l-n-1 n-1

:=0 *=t+l «=0 *=/ -n
l—n—li+n—1 n—1 n—1

»=0 *=n i=l-n k=i+l

n-1 t-l 1-2 l-l

t=<—n t=n
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It is not difficult to prove that:

/-n-1 n-1 n-1 l-

t=0 fc=/-n id-nfcai ^ 't=0 k=l—n i=l—n k=n

and

n-1 n-1

i=£-n fc=i+

So,

One proves similarly that the results holds if I ^ 2n ([11]). D

Finally, from the above proposition together with the expressions of 1177*11, ui0 and
Fi we directly obtain Proposition 3.4.

C. MAXIMAL VALUE

Our next goal is to find the maximal value of the normalised 2-epistasis i*(.
We have already mentioned that i*t ^ 1. However, if £ > 2 and if we restrict to

positively valued fitness functions / with || f || = 1, then we claim that the "theoretical"
maximal value cannot be reached. In fact, the maximal value of e*t(f) is 1 - 22"', as we
shall prove later.

In order to show this, for any function / : £2* —• R with corresponding vector
'f = (f0,. . . ,f2 '_i) € R2', let us denote by / ° , / 1 : £2<_i -*• R the functions whose
corresponding vectors in R2 are:

(20) 'f° = (f0 • • • fc-.,), 'f1 = (£*-, • • • fc.O.

Let us also consider the functions:

(21) 9+ = f0 + f\g- = !°-fl

and the form 7<(/) = *f Gt f.
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As the matrices G< and At verify the recursive formulas (3) and (12), respectively,
it follows that

" V * f > ^A/_x - G,_x A,_, + G,_J Vf V
= *(f ° + f x)A*_i(f ° + f *) + *(f ° - f ^ G ^ f ° - f1)

(22) = 77,_1(ff
+) + 7*-i(<T)-

We may now prove:
PROPOSITION C . I . For any £ > 2 and any positively valued fitness function f

with ||f|| = 1, we have

rt{f) ^ i - ^ .
P R O O F : Note that the assertion is equivalent to showing that %(/) ^ 4. Note also

that if I = 2 and || f || = 1, then %( / ) = 4 as we just mentioned. So it only remains to
prove that %(/) ^ 4 for £ > 2.

Since / only takes non-negative values, ' f^f 1 > 0. Moreover, | |g+ | | ^ 1 as || f || — 1.
Now, assume that, for some positive integer I > 2, %(/) < 4, for a fitness function /
verifying the hypothesis of the proposition. Putting g = <7+/||g+||, with corresponding
(normalised!) vector g (||g|| = 1), we obtain:

) ( + ) < ( + )

^ Ve-i{9+) + li-x{9~) = Vi{f) < 4.

Iterating this procedure, we find some positive fitness function / over Q = {0,1}2 with
|| f || = 1 and %(/) < 4. But this is impossible, of course.

This contradiction proves the assertion. D

Now, by using (3) in a similar way as we used (12) in order to obtain (22), one easily
sees that the forms 7/ and ty verify the relation:

(23) li(f)='yt-i(9+) + vt-l(g-),

where vt(f) =(fU<f.
Following the guidelines established in (20), for any function / : Cle -> R with vector

ff = (f0,..., f2'-i) € R2' let us denote by /0 0, / 0 1 , / 1 0 , / " : fi^_2 -> R the functions with
corresponding vectors

<f °° = (f0 • • • f*- , . !) , *f01 = (f2,-2 • • • fe-t.O,

' f = (f2«-i • • • f2<->+2'-2-l). 'f = (f2<-i+2'-2 • ' • f2'-l)

and, in a similar way as in (21), let us denote by g++, g+~, g~+ and g~~ the functions
defined over Q.t-2'.

g++ = (9+)°+(9+y=r+r+r+/",
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Let us now characterise positively valued fitness functions / whose corresponding
vector in R2' is normalised and i*t(f) = 1 —l/2'~2, or equivalently, Tjt(f) = 4. We already
pointed out that the minimal value rjt(f) = 4 is reached for any fitness function if £ = 2
(see proof of proposition C.I). Now, let be t > 2 and define the vectors

and

w =

By using that W 2 = 1/ and proposition 2.5, respectively proposition 1.1, the expres-
sion of T)i-i(g+), respectively ji~\(g~), may be rewritten as:

m-i(9+) = tg+A^_1g+ = 2'"1 tg+B,_1g+ = 21-1 tw+D,_1w+

respectively

= 2 ' - l tg-E<_ig- = 2'"1 ( w - D , _ l W -

(24)

Now, taking into account that ~/i-i(g~) ^ 0 and that

= II g+ll2 mi (ji^ji) > 4 4,

it directly follows that the minimal value oir)t{f) = rjt-i{9+) + li-i(9~) = 4 occurs when
r]i-i(g+) — 4 and j[-i(g~) = 0, which is impossible if | |g+|| > 1.

We now obtain:

PROPOSITION C . 2 . Let f be a non negatively valued Gtness function whose
corresponding vector f e K2' is normalised and has the property that | |g+|| = 1. Then,

n\ /o\

1. if I = 3, ej(/) = 1 - (1/2'"2) if, and only if, f = 1/2

2. if I > 4, then ej(/) < 1 - (1/2'-2).

PROOF: TO prove the first statement note that if I = 3, by (24) we find that the
only one non-zero Walsh coefficient of w~ is w^, as 7/_i(<7~) = 0. On the other hand,

0
0
1
0
1
1

o)

orf = 1/2

1
1
0
1
0
0

V)

(25) = o
*=0 *=0
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as ||g+|| = ||f|| = 1. Of course, (25) is equivalent to

(26) fjtf2'->+fc = 0, for all 0 ^ k < 21'1,

as / is positively valued.
Moreover, for £ = 3 and w~ = W2g~, with ||g~|| = | |g+|| = 1, a straightforward

calculation yields that w^ = ±1 and so, w~ = ±'(0,0,0,1). Hence,

Note that, as all of the components of g = f° — fx are non-zero and / ^ 0, from
(26) we indeed deduce that

' f = ( i , 0 , 0 , i , 0 , i , i , 0 ) or ^ = ( 0 , 1 , 1 , 0 , 1 , 0 , 0 , 1 ) .

In order to prove the second assertion, let us now first consider £ — 4 and then argue
by induction on I.

We shall use the following recursive relations of rji which can be easily obtained from
(22) and (23):

(27) r,t(f) = Vi-i(9+)

and

(28) mif) = m-2(g+

We are interested in fitness functions satisfying 774 (/) = 4. Using the recursive formula
of T}i given in (27), the same argument as used in case £ = 3 yields r]3(g

+) = 4 and so
72(5" +) = v2{g~ ~) = 0. Then, obviously, g+ is one of the vectors given in the first part
of proposition, that is,

'g + = |(1,0,0,1,0,1,1,0) or 'g + = i(0,1,1,0,1,0,0,1).

Consider first the case *g+ = \ (1,0,0,1,0,1,1,0). As 72(<T+) = 0 (that is, g' +

E V°), it is easy to prove that g~+ is a multiple of vector (1 , -1 , -1 ,1) . For this reason,
g - = ±'(1/2,0,0,1/2,0, -1 /2 , -1/2,0) and g" " = ±'(1/2,1/2,1/2,1/2). In both cases
V2(9~~) = 'g~~ U2g~~ = 4 and so, the minimal value of 774 will be never reached, that
is, 774 > 4. In a similar way, if *g+ = (0,1/2,1/2,0,1/2,0,0,1/2), we obtain the same
values for the vector g~ ~. This finishes the proof if £ — 4.

For £ > 4, iterating the procedure given in (28), we obtain

vtif) = vi-i(g+) + 71-1(9-)

= m-2(g++) +11-2(9+-) + n-i(g-)

= Vt-3(g+++) +

fc=l
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as 774 > 4 and ji-t ^ 0, for all k. D

We finish with two still unanswered questions: (1) what is the maximal value for
i}(f), if I ^ 4? and (2) can one characterise the fitness functions which yield this
maximum in a similar way as for I — 3?
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