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Studying the causes and correlates of natural varia-
tion in gene expression in healthy populations

assumes that individual differences in gene expres-
sion can be reliably and stably assessed across time.
However, this is yet to be established. We examined
4-hour test–retest reliability and 10 month test–retest
stability of individual differences in gene expression
in ten 12-year-old children. Blood was collected on
four occasions: 10 a.m. and 2 p.m. on Day 1 and 10
months later at 10 a.m. and 2 p.m. Total RNA was
hybridized to Affymetrix-U133 plus 2.0 arrays. For
each probeset, the correlation across individuals
between 10 a.m. and 2 p.m. on Day 1 estimates
test–retest reliability. We identified 3,414 variable and
abundantly expressed probesets whose 4-hour test-
retest reliability exceeded .70, a conventionally
accepted level of reliability, which we had 80%
power to detect. Of the 3,414 reliable probesets,
1,752 were also significantly reliable 10 months later.
We assessed the long-term stability of individual dif-
ferences in gene expression by correlating the
average expression level for each probe-set across
the two 4-hour assessments on Day 1 with the
average level of each probe-set across the two 4-
hour assessments 10 months later. 1,291 (73.7%) of
the 1,752 probe-sets that reliably detected individual
differences across 4 hours on two occasions, 10
months apart, also stably detected individual differ-
ences across 10 months. Heritability, as estimated
from the MZ twin intraclass correlations, is twice as
high for the 1,752 reliable probesets versus all
present probesets on the array (0.68 vs 0.34), and is
even higher (0.76) for the 1,291 reliable probesets
that are also stable across 10 months. The 1,291
probesets that reliably detect individual differences
from a single peripheral blood collection and stably
detect individual differences over 10 months are
promising targets for research on the causes (e.g.,
eQTLs) and correlates (e.g., psychopathology) of indi-
vidual differences in gene expression.
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Oligonucleotide microarrays have made it possible to
study gene expression at the genome-wide level of the
transcriptome, which is the first step between the
genome and the many paths leading to the phenome.
Thousands of genome-wide expression (GWE) studies
have begun to chart gene expression at a species-wide
level across tissues and across development, and
within a species, to compare mean expression levels
for conditions (e.g., before and after administration of
a drug, Yuferov et al., 2005) and for groups (e.g.,
cases versus controls; Konradi, 2005; and inbred
strains of mice; Fernandes et al., 2004; Korostynski et
al., 2006).

More recently, GWE research has progressed from
studying average differences between groups to des -
cribe the extent of normal variation in gene expression
among healthy individuals (Eady et al., 2005; Radich
et al., 2004; Whitney et al., 2003). A large-scale study
of individual differences in genomewide gene expres-
sion across diverse populations is currently underway
(Nica & Dermitzakis, 2008). One direction for GWE
research is to study the causes (i.e., genetic, environ-
mental and epigenetic factors) and correlates (e.g.,
psychopathology) of these individual differences. For
example, human and animal research has moved
toward treating gene expression as a complex quanti-
tative trait and identifying DNA variation (quantitative
trait loci; QTLs) associated with individual differences
in gene expression (expression QTLs; eQTLs; Breitling
et al., 2008; Dixon et al., 2007; Emilsson et al., 2008;
Goring et al., 2007; Nica & Dermitzakis, 2008;
Rockman & Kruglyak, 2006; Stranger et al., 2007).

Individual differences research is more statistically
demanding than mean differences research. Means
analysis treats individual differences in gene expression
as an error term; in contrast individual differences
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research treats gene expression as a quantitative trait
and focuses on the variation of gene expression
between individuals. Reliability and long-term stability
— that is, maintenance of the rank order of individual
differences over time — is a prerequisite for analyses
of the causes and correlates of individual differences of
GWE. The most stringent test of reliability is the corre-
lation between individuals on separate measurement
occasions, called test-retest reliability. Usually test–
retest reliability is assessed over a few hours or few
days or at most over a few weeks. Test–retest stability
assesses the extent to which reliable individual differ-
ences are maintained over longer periods of time.
Test–retest reliability and stability are rooted in psy-
chometric research and assesses the extent to which
the rank order of individuals is maintained despite
momentary ‘state’ sources of variance.

Although biological (e.g., sex, tissue, age) and tech-
nical (e.g., sample processing) sources of variation have
been studied exhaustively by correlating GWE profile
estimates across microarrays (Bakay et al., 2002;
Dumur et al., 2004), we are not aware of research that
has investigated the test-retest reliability or stability of
individual differences in GWE — correlating gene
expression values for each probeset across individuals
whose RNA was obtained on more than one measure-
ment occasion — even though several studies have
obtained repeated blood samples (Calvano et al., 2005;
Radich et al., 2004; Whitney et al., 2003).

The purpose of the present study was to estimate
four-hour test-retest reliability and 10-month test–
retest stability for individual differences in gene
expression analyzed as quantitative traits, using
Affymetrix HG-U133 plus 2.0 expression arrays that
assess 54,675 probesets throughout the genome.
Although gene expression is tissue specific, we chose
to study peripheral blood, as although invasive, it is
the most accessible tissue for the large sample sizes
needed to power studies of individual differences.
Investigating human gene expression in the brain is
limited to the use of postmortem brain tissue, which is
not suitable for identifying subtle gene expression
effects in large human samples. Moreover, a surprising
degree of similarity between gene expression in blood
and brain has been reported, although the validity of
using blood as a surrogate for the brain will depend
on the context of the research (Gladkevich et al.,
2004; Mohr & Liew, 2007; Nicholson et al., 2004;
Pahl, 2005; Sharp et al., 2006). For many genes,
expression will be responsive to the environment, but
we did not attempt to control for environment
because a single uncontrolled measurement occasion
for collecting blood would be the most useful design
for large human samples, even though it is the most
difficult condition for achieving reliability.

Using whole blood obtained on four occasions, we
investigated, for the first time, test–retest reliability
and test-retest stability of individual differences in
GWE in order to identify a core of ‘reliably’ stable

transcripts that can be used to inform and evaluate
future substantive studies of the causes and correlates
of individual differences in GWE.

Materials and Methods
Sample

The sampling frame for this study was the Twins Early
Development Study (TEDS), a longitudinal study of
behavioral development in a representative sample of
twins born in 1994, 1995 and 1996 who have been
followed from infancy through adolescence (Oliver &
Plomin, 2007). From a sample of healthy 1,000 pairs
of 12-year-old monozygotic (MZ) twins, five pairs
were selected — four female pairs and one male pair.

Blood Collection

All 10 subjects visited the Institute of Psychiatry on
two occasions with a 10-month delay between each
visit. On each visit, venous blood samples were col-
lected at 10 a.m. and again at 2 p.m. using a standard
phlebotomy protocol in conjunction with the
PAXgene Blood RNA System (Becton & Dickinson,
Oxford), which allows the collection, stabilization and
transportation of a whole blood cellular RNA sample
in a closed evacuated system. For each subject, four
PAXgene blood tubes each containing 2.5mL of blood
were collected at each of the two occasions. In addi-
tion, 3mL blood in an EDTA tube was also collected
from each subject at 10am to assess differences in cell
sub-type compositions. All cell sub-type counts were
in the normal range and comparable across subjects.

Isolation of Total RNA From Whole Blood

Total RNA was isolated from the PAXgene blood
samples using the PAXgene Blood RNA Kit protocol
(PreAnalytiX GmbH, Feldbachstrasse, CH-8634
Hombrechtikon). Total RNA yield (µg) and purity
(260nm:280nm) were determined using a spectropho-
tometer. Integrity of ribosomal RNA (rRNA) bands
was confirmed by running 10µl of purified RNA on a
1.2% agarose gel.

cDNA and cRNA Synthesis, Labeling and Hybridization

Expression profiles were generated by hybridizing
cRNA derived from 5 g of total RNA to Affymetrix
U133 Plus 2.0 Arrays (Affymetrix, Santa Clara, CA)
in accordance with the Affymetrix Eukaryote One-
Cycle protocol with integrated globin reduction (see
Affymetrix GeneChip Globin-reduction Kit Handbook
and Affymetrix GeneChip Expression Analysis techni-
cal manual). The Affymetrix U133 Plus 2.0 Array has
been shown to be reliable (Robinson & Speed, 2007).

Total RNA was concentrated (GeneChip blood
RNA concentration kit; PN 900585) and 5 µg used to
generate first-strand cDNA synthesis with integrated
globin reduction using peptide nucleic acid (PNA)
oligonucleotides in order to block reverse transcription
of globin mRNA (GeneChip Globin-Reduction RNA
controls; PN 900586, GeneChip® Expression 3’
Amplification One-Cycle Target Labeling and Control
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Reagents; PN 900493). After second-strand cDNA syn-
thesis, biotinylated cRNA was generated, fragmented
and hybridized to Affymetrix U133 Plus 2.0 Arrays for
16 hours at 45°C in an Affymetrix hybridization oven
640. Arrays were then washed and stained on an
Affymetrix fluidic station 450 (protocol FS450_0001).

Microarray Analysis and Quality Control

Each array was scanned using an Affymetrix GeneChip
Scanner 3000 and GeneChip Operating Software
(GCOS) version 1.4 was used to obtain fluorescence
intensities. The data is MIAME compliant and is avail-
able to download at the Gene Expression Omnibus
website (http://www.ncbi.nlm.nih.gov/geo/) under the
accession number GSE14844.

The arrays were processed together using Robust
Multiarray Average (RMA; Irizarry et al., 2003),
implemented in the ‘affy’ package in the statistical
software environment R (http://www.r-project.org/), to
produce normalized, background-adjusted, perfect-
match, log-transformed probe set summaries.

Total RNA isolation, preparation, and microarray
hybridization experiments were processed in two
batches. In order to avoid introducing unwanted
batch effects, samples were split evenly across both
batches, with different samples being allocated to each
batch during the isolation, preparation and hybridiza-
tion steps.

In order to check RNA sample and microarray
experiment quality, quality control was performed in
three stages (see Affymetrix manual: data analysis fun-
damentals). First, the probe array images (.dat files)
were inspected for the presence of image artefacts
(e.g., high/low intensity spots). Second, using the R
package ‘affyQCReport’ (http://www.bioconductor.
org/packages/2.2/bioc/vignettes/affyQCReport/inst/doc
/affyQCReport.pdf) each array was examined and
compared for signal quality differences, average back-
ground intensity, scaling factor, percent present call
rate and 3’/5’ hybridization intensity ratios. Finally,
probe-level model fitting was performed using the
Bioconductor package ‘affyPLM’ (http://www.biocon-
ductor.org/packages/2.3/bioc/html/affyPLM.html) to
assess relative Log expression (RLE) values and
unscaled standard errors (NUSE). Following quality
control assessment, four arrays were found to be out-
liers (TD36282 at 2 p.m. from Day 1, and TD19901 at
10 a.m., TD23462 at 10 a.m. and TD36282 at 10 a.m.
from Day 2) and were excluded.

After normalization and probeset summarization
with RMA, the signal intensities for the 54,675 probe-
sets were highly similar across the 36 arrays, with
Pearson correlations ranging from 0.966 to 0.996
between arrays. Such ‘profile’ correlations between
arrays are largely an indication of technical quality
because they reflect the characteristic profile of
expression across genes on the array.

Although it is possible that low-signal probesets
(low abundance transcripts) may detect individual dif-
ferences reliably and stably, we present results only for

probesets that are detectable above background noise.
Low intensity probesets that were called absent in
50% of arrays by the MAS5 algorithm were dis-
carded, leaving 25,864 probesets per array. Results are
robust to different definitions of low intensity probe-
sets (data not shown).

Statistical Analysis

Test–retest reliability. Four-hour test–retest reliability
of individual differences in gene expression was
assessed by calculating Pearson’s product-moment cor-
relation (r) of expression values across individuals
between 10 a.m. and 2 p.m. for each probeset.

Test–retest stability. 10-month test–retest stability of
individual differences in gene expression was assessed
by averaging the two 4-hour assessments on each mea-
surement occasion (original dataset and 10-month
follow-up dataset) and correlating expression values
across individuals between datasets for each probeset.

Heritability. MZ twin intraclass correlations were cal-
culated using the R package ‘psy’ to provide ‘upper
limit’ estimates for heritability of gene expression. An
ICC consistency estimate was calculated for Day 1 at
10 a.m. (five twin pairs), Day 1 at 2 p.m. (four twin
pairs) and Day 2 at 2 p.m. (five twin pairs), for each
probeset. An average of the three time points was used.
Day 2 at 10 a.m. was not used due to array exclusions.

Function and network analysis. A core analysis was
performed using Ingenuity Pathway Analysis (IPA) to
identify the top functions and pathways associated
with our dataset (right-tailed Fisher’s exact test with
Benjamini and Hochberg method for correction for
multiple testing). Affymetrix probeset IDs were used
as identifiers and the Human Genome U133 plus2
array was used as the reference set. Probesets were
annotated using Affymetrix’s NetAffx resource
(Annotation Release 27).

Results
Four-Hour Test–Retest Reliability of Individual Differences 
in Gene Expression

As mentioned above, one array was dropped; the other
nine individuals were available for analysis. For each
probeset, the Pearson product–moment correlation (r)
across the nine individuals between 10 a.m. and 2 p.m.
estimates test–retest reliability of individual differences
in gene expression. We calculated 4-hour test–retest
reliability for each of the 25,864 probesets detectable
above background noise (‘present’ probesets). The
mean test–retest reliability was 0.338. Test–retest relia-
bility was statistically significant (r ≥ 0.55; p < .05,
one-tailed) for 9,238 (35.7%) of the 25,864 probesets;
1,293 (5.0%) would be expected to be significant by
chance alone. Raising the bar for test–retest reliability
to 0.70, which we could detect with 80% power (p =
.05, one-tailed) with our sample size of 10, 5,339
(20.6%) probesets met this criterion for reliability. See
Figure 1.
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It should be emphasized that test–retest reliability
focuses on detection of differences between individuals
and not just technical reproducibility. Test–retest relia-
bility will only exist if there are individual differences.
For this reason we explored the relationship between
test–retest reliability and variability. Because variance
increases with the mean, we used as an index of vari-
ability the coefficient of variation (CV), which is the
ratio of the standard deviation to the mean. CV was
calculated for each of the 25,864 probesets. The
median CV was 0.034, ranging from 0.002 to 0.42.
Selecting the most variable probesets using a median
split of CV (CV ≥ .034, N = 13,007), increases the
average test–retest reliability from .338 to .359.
Furthermore, a greater proportion of the 13,007 vari-
able probesets (3414, 26.3%) meet our criterion for
reliability (r > 0.70).

Four-Hour Test–Retest Reliability and Transcript Abundance

Low abundance of transcripts could be a source of
low reliability, even though transcripts of low abun-
dance may be of biological importance. We therefore
examined the relationship between test–retest reliabil-
ity and probeset signal intensity for the 25,864
‘present’ probesets in greater detail by correlating test–
retest reliability with the average probeset signal

across the 18 arrays. Across all 25,864 ‘present’
probesets, reliability was moderately correlated with
probeset signal intensity (r = 0.21, p < .001) indicating
that reliability is related to abundance even among
abundant transcripts.

Four-Hour Test–Retest Reliability of Individual Differences 
in Gene Expression 10 Months Later

We repeated the 4-hour test–retest reliability analysis
in the 10 month follow-up dataset to confirm the reli-
ability of the 3,414 probesets that detect individual
differences over a 4-hour period reliably. Due to the
exclusion of outlier arrays (see Materials and
Methods: Microarray Analysis and Quality Control
section) the number of paired arrays available for
analysis was seven.

We calculated 4-hour test–retest reliability for each
of the 25,864 ‘present’ probesets in the 10-month
follow-up dataset; the mean test-retest reliability was
0.474 and was statistically significant (r ≥ 0.55; p < .05,
one tailed) for 13,156 (50.9%) probesets.

Selecting variable probesets with a CV greater than
the median (CV ≥ .033) yields 13,054 probesets, of
which 5,174 (39.6%) met our criterion for reliability
(r > 0.70).

Of the 5,174 probesets that reliably detect indi-
vidual differences in gene expression over 4 hours in

Figure 1
Distribution of test–retest reliabilities for 25,864 ‘present’ probesets. The dotted line indicates a test–retest correlation of .55 (p < .05, 50% power),
the dashed line designates a test–retest correlation of .70 (p < .05, 80% power).
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the 10-month follow-up dataset, 1,752 (33.9%) reli-
ably detected individual differences over 4 hours 10
months earlier.

Ten-Month Stability of Individual Differences in Gene Expression

The purpose of this analysis is to determine the extent
to which the 1,752 probesets that reliably detect indi-
vidual difference in gene expression from a single
blood collection across a 4-hour period on two occa-
sions 10 months apart, also stably detect individual
difference in gene expression across 10 months.

In order to increase reliability, the expression level
of each probeset was, where available, averaged across
the two 4-hour assessments (10 a.m. and 2 p.m.) in
the original dataset and in the 10-month follow-up
dataset. For each averaged probe-set expression level,
the correlation across individuals between the original
dataset and the 10-month follow-up dataset was used
to estimate 10-month stability of individual differ-
ences in gene expression.

The test–retest 10-month stability was statistically
significant (r ≥ 0.55; p < .05, one-tailed) for 1,291
(73.9%) of the 1,752 probesets that showed reliable
individual differences across a 4-hour period on two
occasions, 10 months apart. The mean test–retest sta-
bility for the 1,752 probesets was 0.667. (See Figure 2.)

Raising the bar for test–retest stability to 0.70,
which we could detect with 80% power (p = .05, one-
tailed), 1,019 (58.2%) probesets met this criterion.

Reliability, Stability and Heritability

Reliability and stability of detection of individual dif-
ferences create a ceiling for heritability. A twin
intraclass correlation for the MZ twin pairs was calcu-
lated for each probeset as an ‘upper-limit’ estimate of
heritability. Although five MZ twin pairs only provide
power to detect correlations greater than 0.70 as sig-
nificant (p < .05), our goal is to examine ‘heritability’
estimates as a function of the reliability and stability
of individual differences in gene expression over time.

The average MZ twin ICC was 0.34 for all 25,864
‘present’ probesets. However, for the 3,414 ‘present
and variable’ probesets that detect individual differ-
ences in gene expression reliably, the average MZ twin
correlation was 0.60. Focusing on the 1,752 ‘present
and variable’ probesets that detect individual differ-
ences reliably on two occasions, 10 months apart, the
average MZ twin correlation increases to 0.68.
Turning to 10-month test–retest stability, heritability is
greatest for the 1,291 probesets that ‘stably’ reliably
detect individual differences in gene expression; the
average twin intraclass correlation is 0.76.

Figure 2
Distribution of 10-month stability correlations for individual differences in gene expression for 1,752 probesets that reliably detect individual differ-
ences in gene expression across a 4-hour period from blood collection on two occasions 10 months apart. The dotted line indicates test–retest
correlation of .55, the dashed line indicates a test–retest correlation of .70.
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The heritability of the 1,291 probesets that reliably
and stably detect individual differences in gene expres-
sion can be visualized by hierarchical clustering, using
1-R as the distance measure (where R represents the
profile correlations of the gene expression signal; see
Figure 3.) The five twin pairs can clearly be distin-
guished, indicating the pervasive heritability of gene
expression for these probesets.

Reliability, Stability and Function

The 1,291 probesets that reliably and stably detect
individual differences in gene expression over time
represent 775 Entrez genes which are distributed
widely across the genome (several transcripts are rep-
resented by multiple probesets on the arrays) and
expressed widely across tissues. Nearly all (88.8%) of
the genes are expressed in brain as well as blood
(Zhang et al., 2005).

No particular functional themes were identified.
Ingenuity Pathways Analysis (IPA) of the 1,291 probe-
sets was performed to obtain a high-level overview of
the general biology associated with their networks and
functions. 1,029 of the 1,291 probesets were mapped.
The top-associated IPA networks were connective
tissue disorders, inflammatory disease, skeletal and
muscular disorders, skeletal and muscular system
development and function, tissue development, and
cell-to-cell signaling and interaction. The top five mol-

ecular and cellular functions associated with the 1,291
probesets were cellular growth and proliferation, cell-
to-cell signaling and interaction, cell death, cell
signaling and molecular transport. This is similar to
the profile of the present probesets without reliable or
stable individual differences.

Our website (http://sgdp.iop.kcl.ac.uk/oleo/
meaburn/) lists details for the 1,291 probesets that
reliably and stably detect individual differences in gene
expression.

Discussion
When assessed at a single time point, GWE differs
between individuals. Some of these differences are due
to transient intra-individual differences in gene expres-
sion — that is, variance at time 1 that does not covary
with variance at time 2. Transitory differences in
GWE are expected because gene expression is labile
and state specific. However, the usefulness of GWE for
investigating individual differences — such as the
genetics of GWE or the relationship between GWE
and individual differences in outcomes measures —
depends on reliable individual differences.

Large samples are needed for individual differ-
ences research due to small expected effect sizes.
Assessing genomewide gene expression at a single time
point in uncontrolled circumstances is most practical
for individual differences research using large samples,

Figure 3
Hierarchical clustering across all 36 arrays for the 1,291 probesets that reliably and stably detect individual differences in gene expression. 
Five distinct branches can be seen, each representing a twin pair (pairs A to E).
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even though these are the most difficult conditions
for detecting individual differences reliably. Using
our microarray platform and tissue in our sample of
12-year-olds, we have shown that 26.2% of the
13,007 probesets that detect individual differences
above background noise reach our criterion of 0.70
for reliability detecting individual differences across
four hours, which we had 80% power to detect.
Furthermore, 51.3% of these probesets reliably detect
individual differences across four hours on a second
occasion, 10 months later, of which 73.7% stably
detect individual differences in gene expression across
10 months.

This represents 1,291 reliable and stable probesets
that can be used in GWE analyses of individual differ-
ences with a single collection of peripheral blood.

Researchers interested in the causes and correlates
of individual differences in GWE will profit from
focusing on these probesets that detect individual dif-
ferences reliably and stably. For example, our results
indicate that heritability estimates are much higher for
the 3,414 ‘variable, present and reliable’ probesets —
60% on average — as compared to 34% for all the
‘present’ probesets. Moreover, heritability is greatest
(76%) for those probesets that stably detect individual
differences over 10 months. Previous studies of heri-
tability of GWE did not take reliability or stability
into account and report heritability estimates of about
.30 (Cheung et al., 2003; Dixon et al., 2007; Emilsson
et al., 2008; Goring et al., 2007; Morley et al., 2004;
Stranger et al., 2007). We predict that these studies
would yield much higher heritability estimates for
probesets that show ‘reliably stable’ individual differ-
ences. It should be noted that our estimate of
heritability is an upper-limit based on the MZ correla-
tion alone which could be inflated by shared
environmental influences (Plomin et al., 2008). Much
larger studies of both MZ and DZ twins are needed to
provide more precise estimates of heritability.

Although the small sample size is a limitation of
our study, a sample size of 10 provides 80% power to
detect correlations of 0.70 (p = .05, one-tailed). In the
field of psychometry, test–retest reliability of 0.70 is
traditionally viewed as an acceptable level of reliability.

As mentioned, a limitation of our study is the rela-
tively uncontrolled circumstances of blood collection.
Reliability might be increased by controlling for, or
accounting for, variables such as distance traveled to
the laboratory, health, amount of sleep, food intake,
hormonal influence and mood. As such, our results
represent a ‘lower-limit’ of reliable and stable individ-
ual differences. It would be possible to increase the
number of probesets that detect reliable and stable
individual differences by obtaining blood on multiple
measurement occasions. However, because the average
reliability is only 0.338 for the ‘present’ probesets,
many repeated measurements would be required to
reach reliability for even 50% of the probesets.

In addition to this specific limitation, we recognize
the general limitations of high-throughput gene expres-
sion as assessed by microarrays such as platform
differences, difficulties in detecting low abundance
genes, and sensitivity and specificity (Draghici et al.,
2006; Wang et al., 2006). Another possible limitation
of our study is its use of whole blood rather than spe-
cific cell types such as leukocytes. Our rationale for
using whole blood was to avoid restricting our analy-
ses to those transcripts expressed in a particular cell
type and to avoid systematic effects on transcripts
during the invasive process of extracting lymphocytes
from blood. As a control measure, we used blood cell
counts to assess relative numbers of cell populations
and to control for infection status (Eady et al., 2005).

We also recognize that some of the 1,291 probesets
that we identify as showing reliable and stable individ-
ual differences will not necessarily be the same for
other tissues, other populations, different time points,
or other microarrays. In order to explore this issue
further, we searched for comparable datasets of rea-
sonable size (i.e., that have repeated measures of
peripheral blood, in healthy subjects with no drug
intervention and for which the CEL files are available)
in GEO (Barrett et al., 2007). A recently published
study using whole blood (Dusek et al., 2008) tested 21
individuals twice, separated by an eight-week period.
In our reanalysis of these data, after quality control
exclusions, 434 (33.6%) of the 1,291 probesets that
we identify as reliable and stable are also reliable in
the Dusek et al. study, demonstrating that at least a
proportion of the probesets we identify as showing
reliable and stable individual differences are confirmed
across samples and laboratories and can be used in
research on the causes and correlates of individual dif-
ferences in gene expression.

Our samples were closely matched for age but
were of mixed sex. However, of the 775 known genes
represented by the 1,291 probesets, one is located on
the Y chromosome and as the individual difference
here is sex, this probeset should be excluded. It is also
likely that some of the probesets located on the X
chromosome escape X-inactivation and so should also
be excluded. In a larger sample a linear mixed effects
model could be performed to account for factors such
as age and sex. No obvious functional or biological
themes were apparent in the 775 genes, but we might
predict that they represent genes that can tolerate a
large degree of stable variation in expression levels
without grossly affecting behavior or physiology.

Conclusions
From genome-wide gene expression arrays we have
identified probesets whose individual differences are
reliable over 4 hours and stable over 10 months.
Although the proportion of transcripts in which we
see reliable and stable individual differences is modest,
the result is that there are at least a thousand such
transcripts expressed in blood. Use of these transcripts
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is likely to improve the results of studies of the causes
and correlates of gene expression. Transcripts whose
expression is not stable over time are of course poten-
tially interesting in other ways, especially as an index
of environmental effects.

Acknowledgments
The Twins Early Development Study (TEDS) is sup-
ported by a program grant from the UK Medical
Research Council (Grant no. G0500079) and the US
National Institute of Child Health and Human
Development (Grant no. HD49861). The study was
approved by the Institute of Psychiatry/South London
and Maudsley Research Ethics Committee (CREC/06/
07-5) and informed consent was obtained from the
parents of the children.

References
Bakay, M., Chen, Y. W., Borup, R., Zhao, P., Nagaraju, K.,

& Hoffman, E. P. (2002). Sources of variability and
effect of experimental approach on expression profil-
ing data interpretation. BMC Bioinformatics, 3, 4.

Barrett, T., Troup, D. B., Wilhite, S. E., Ledoux, P.,
Rudnev, D., Evangelista, C., Kim, I. F., Soboleva, A.,
Tomashevsky, M., & Edgar, R. (2007). NCBI GEO:
Mining tens of millions of expression profiles —
Database and tools update. Nucleic Acids Research,
35, D760–D765.

Breitling, R., Li, Y., Tesson, B. M., Fu, J., Wu, C.,
Wiltshire, T., Gerrits, A., Bystrykh, L. V., de, H. G., Su,
A. I., & Jansen, R. C. (2008). Genetical genomics: spot-
light on QTL hotspots. PLoS Genetics, 4, e1000232.

Calvano, S. E., Xiao, W., Richards, D. R., Felciano, R.
M., Baker, H. V., Cho, R. J., Chen, R. O., Brownstein,
B. H., Cobb, J. P., Tschoeke, S. K., Miller-Graziano,
C., Moldawer, L. L., Mindrinos, M. N., Davis, R. W.,
Tompkins, R. G., & Lowry, S. F. (2005). A network-
based analysis of systemic inflammation in humans.
Nature, 437, 1032–1037.

Cheung, V. G., Conlin, L. K., Weber, T. M., Arcaro, M.,
Jen, K. Y., Morley, M., & Spielman, R. S. (2003).
Natural variation in human gene expression assessed in
lymphoblastoid cells. Nature Genetics, 33, 422–425.

Dixon, A. L., Liang, L., Moffatt, M. F., Chen, W., Heath,
S., Wong, K. C., Taylor, J., Burnett, E., Gut, I., Farrall,
M., Lathrop, G. M., Abecasis, G. R., & Cookson, W.
O. (2007). A genome-wide association study of global
gene expression. Nature Genetics, 39, 1202–1207.

Draghici, S., Khatri, P., Eklund, A. C., & Szallasi, Z.
(2006). Reliability and reproducibility issues in DNA
microarray measurements. Trends in Genetics, 22,
101–109.

Dumur, C. I., Nasim, S., Best, A. M., Archer, K. J., Ladd,
A. C., Mas, V. R., Wilkinson, D. S., Garrett, C. T., &
Ferreira-Gonzalez, A. (2004). Evaluation of quality-
control criteria for microarray gene expression analysis.
Clinical Chemistry, 50, 1994–2002.

Dusek, J. A., Otu, H. H., Wohlhueter, A. L., Bhasin, M.,
Zerbini, L. F., Joseph, M. G., Benson, H., &
Libermann, T. A. (2008). Genomic counter-stress
changes induced by the relaxation response. PLoS
ONE, 3, e2576.

Eady, J. J., Wortley, G. M., Wormstone, Y. M., Hughes, J.
C., Astley, S. B., Foxall, R. J., Doleman, J. F., & Elliott,
R. M. (2005). Variation in gene expression profiles of
peripheral blood mononuclear cells from healthy vol-
unteers. Physiological Genomics, 22, 402–411.

Emilsson, V., Thorleifsson, G., Zhang, B., Leonardson, A.
S., Zink, F., Zhu, J., Carlson, S., Helgason, A., Walters,
G. B., Gunnarsdottir, S., Mouy, M., Steinthorsdottir,
V., Eiriksdottir, G. H., Bjornsdottir, G., Reynisdottir, I.,
Gudbjartsson, D., Helgadottir, A., Jonasdottir, A.,
Jonasdottir, A., Styrkarsdottir, U., Gretarsdottir, S.,
Magnusson, K. P., Stefansson, H., Fossdal, R.,
Kristjansson, K., Gislason, H. G., Stefansson, T.,
Leifsson, B. G., Thorsteinsdottir, U., Lamb, J. R.,
Gulcher, J. R., Reitman, M. L., Kong, A., Schadt, E. E.,
& Stefansson, K. (2008). Genetics of gene expression
and its effect on disease. Nature, 452, 423–428.

Fernandes, C., Paya-Cano, J. L., Sluyter, F., D’Souza, U.,
Plomin, R., & Schalkwyk, L. C. (2004). Hippocampal
gene expression profiling across eight mouse inbred
strains: Towards understanding the molecular basis
for behaviour. European Journal of Neuroscience, 19,
2576–2582.

Gladkevich, A., Kauffman, H. F., & Korf, J. (2004).
Lymphocytes as a neural probe: Potential for studying
psychiatric disorders. Progress in Neuropsycho -
pharmacol Biological Psychiatry, 28, 559–576.

Goring, H. H., Curran, J. E., Johnson, M. P., Dyer, T. D.,
Charlesworth, J., Cole, S. A., Jowett, J. B., Abraham,
L. J., Rainwater, D. L., Comuzzie, A. G., Mahaney, M.
C., Almasy, L., MacCluer, J. W., Kissebah, A. H.,
Collier, G. R., Moses, E. K., & Blangero, J. (2007).
Discovery of expression QTLs using large-scale tran-
scriptional profiling in human lymphocytes. Nature
Genetics, 39, 1208–1216.

Irizarry, R. A., Bolstad, B. M., Collin, F., Cope, L. M.,
Hobbs, B., & Speed, T. P. (2003). Summaries of
Affymetrix GeneChip probe level data. Nucleic Acids
Research, 31, e15.

Konradi, C. (2005). Gene expression microarray studies
in polygenic psychiatric disorders: Applications and
data analysis. Brain Research Review, 50, 142–155.

Korostynski, M., Kaminska-Chowaniec, D., Piechota, M.,
& Przewlocki, R. (2006). Gene expression profiling in
the striatum of inbred mouse strains with distinct
opioid-related phenotypes. BMC Genomics, 7, 146.

Mohr, S., & Liew, C. C. (2007). The peripheral-blood
transcriptome: new insights into disease and risk assess-
ment. Trends in Molecular Medicine, 13, 422–432.

Morley, M., Molony, C. M., Weber, T. M., Devlin, J. L.,
Ewens, K. G., Spielman, R. S., & Cheung, V. G.
(2004). Genetic analysis of genome-wide variation in
human gene expression. Nature, 430, 743–747.

379Twin Research and Human Genetics August 2009

Reliability and Stability of Individual Differences in Gene Expression

https://doi.org/10.1375/twin.12.4.372 Published online by Cambridge University Press

https://doi.org/10.1375/twin.12.4.372


380 Twin Research and Human Genetics August 2009

Emma L. Meaburn, Cathy Fernandes, Ian W. Craig, Robert Plomin, and Leonard C. Schalkwyk

Nica, A. C., & Dermitzakis, E. T. (2008). Using gene
expression to investigate the genetic basis of complex
disorders. Humun Molecular Genetics, 17, R129–R134.

Nicholson, A. C., Unger, E. R., Mangalathu, R., Ojaniemi,
H., & Vernon, S. D. (2004). Exploration of neuroen-
docrine and immune gene expression in peripheral
blood mononuclear cells. Molecular Brain Research,
129, 193–197.

Oliver, B. R. & Plomin, R. (2007). Twins’ Early Develop -
ment Study (TEDS): A multivariate, longitudinal
genetic investigation of language, cognition and behav-
ior problems from childhood through adolescence.
Twin Research and Human Genetics, 10, 96–105.

Pahl, A. (2005). Gene expression profiling using RNA
extracted from whole blood: Technologies and clinical
applications. Expert Reviews in Molecular Diagnosis,
5, 43–52.

Plomin, R., DeFries, J. C., McClearn, G. E., & McGuffin,
P. (2008). Behavioral genetics (5th ed.). New York:
Worth Publishers.

Radich, J. P., Mao, M., Stepaniants, S., Biery, M., Castle,
J., Ward, T., Schimmack, G., Kobayashi, S., Carleton,
M., Lampe, J., & Linsley, P. S. (2004). Individual-spe-
cific variation of gene expression in peripheral blood
leukocytes. Genomics, 83, 980–988.

Robinson, M. D., & Speed, T. P. (2007). A comparison of
Affymetrix gene expression arrays. BMC Bioinformatics,
8, 449.

Rockman, M. V., & Kruglyak, L. (2006). Genetics of
global gene expression. Nature Reviews Genetics, 7,
862–872.

Sharp, F. R., Xu, H., Lit, L., Walker, W., Apperson, M.,
Gilbert, D. L., Glauser, T. A., Wong, B., Hershey, A.,
Liu, D. Z., Pinter, J., Zhan, X., Liu, X., & Ran, R.
(2006). The future of genomic profiling of neurologi-
cal diseases using blood. Archives of Neurology, 63,
1529–1536.

Stranger, B. E., Nica, A. C., Forrest, M. S., Dimas, A.,
Bird, C. P., Beazley, C., Ingle, C. E., Dunning, M.,
Flicek, P., Koller, D., Montgomery, S., Tavare, S.,
Deloukas, P., & Dermitzakis, E. T. (2007). Population
genomics of human gene expression. Nature Genetics,
39, 1217–1224.

Wang, Y., Barbacioru, C., Hyland, F., Xiao, W., Hunkapiller,
K. L., Blake, J., Chan, F., Gonzalez, C., Zhang, L., &
Samaha, R. R. (2006). Large scale real-time PCR valida-
tion on gene expression measurements from two
commercial long-oligonucleotide microarrays. BMC
Genomics, 7, 59.

Whitney, A. R., Diehn, M., Popper, S. J., Alizadeh, A. A.,
Boldrick, J. C., Relman, D. A., & Brown, P. O. (2003).
Individuality and variation in gene expression patterns
in human blood. Proceedings in National Academy of
Sciences USA, 100, 1896–1901.

Yuferov, V., Nielsen, D., Butelman, E., & Kreek, M. J.
(2005). Microarray studies of psychostimulant-induced
changes in gene expression. Addiction Biology, 10,
101–118.

Zhang, B., Kirov, S., & Snoddy, J. (2005). WebGestalt: An
integrated system for exploring gene sets in various
biological contexts. Nucleic Acids Research, 33,
W741–W748.

https://doi.org/10.1375/twin.12.4.372 Published online by Cambridge University Press

https://doi.org/10.1375/twin.12.4.372

