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Abstract

Penguins are flightless, so they are forced to walk while on land. In particular, they show
rather specific behaviours in their homecoming, which are interesting to observe and to
describe analytically. We observed that penguins have the tendency to waddle back and
forth on the shore to create a sufficiently large group, and then walk home compactly
together. The mathematical framework that we introduce describes this phenomenon,
by taking into account “natural parameters”, such as the eyesight of the penguins and
their cruising speed. The model that we propose favours the formation of conglomerates
of penguins that gather together, but, on the other hand, it also allows the possibility of
isolated and exposed individuals.

The model that we propose is based on a set of ordinary differential equations. Due to
the discontinuous behaviour of the speed of the penguins, the mathematical treatment (to
get existence and uniqueness of the solution) is based on a “stop-and-go” procedure. We
use this setting to provide rigorous examples in which at least some penguins manage
to safely return home (there are also cases in which some penguins remain isolated). To
facilitate the intuition of the model, we also present some simple numerical simulations
that can be compared with the actual movement of the penguin parade.
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1. Introduction

The goal of this paper is to provide a simple but rigorous mathematical model which
describes the formation of groups of penguins on the shore at sunset. The results that
we obtain are the following. First, we construct a mathematical model to describe the
formation of groups of penguins on the shore and their march towards their burrows;
this model is based on systems of ordinary differential equations with a number of
degrees of freedom which is variable in time. We show that the model admits a unique
solution, which needs to be appropriately defined. Then, we give some rigorous
mathematical results which provide sufficient conditions for a group of penguins to
reach the burrows. In addition, we provide some numerical simulations which show
that the mathematical model well predicts, at least at a qualitative level, the formation
of clusters of penguins and their march towards the burrows; these simulations are
easily implemented by images and videos.

It would be desirable to have empirical data about the formation of penguin clusters
on the shore and their movements, in order to compare and adapt the model to
experimental data, and possibly give a quantitative description of concrete scenarios.
The methodology used here is based on direct observations on site, strict interactions
with experts in biology and penguin ecology, mathematical formulation of the problem
and rigorous deductive arguments, and numerical simulations.

Here, we describe the elements which lead to the construction of the model,
presenting its basic features and also its limitations. Given the interdisciplinary flavour
of the subject, it is not possible to completely split the biological discussion from
the mathematical formulation. Note that the main mathematical equation is given in
formula (1.1), and the main information coming from live observations is presented
prior to this formula. Afterwards, the mathematical quantities involved in the equation
are discussed and elucidated. The existence and uniqueness theory for equation (1.1)
is presented in Section 2, and some rigorous mathematical results about this equation
are given in Section 3. Roughly speaking, these are the results which give sufficient
conditions on the initial data of the system and on the external environment for
the successful homecoming of the penguins, and their precise formulation requires
the development of the mathematical framework in (1.1). In Section 4 we present
numerics, images and videos which support our intuition and set the mathematical
model of (1.1) into a concrete framework that is easily comparable with the real-world
phenomenon.

Prior to this, we think it is important to describe our experience of the penguin
parade on Phillip Island, both to allow the reader who is not familiar with the event to
concretely take part in it, and to describe some peculiar environmental aspects which
are crucial in understanding our description (for instance, the weather on Phillip Island
is completely different from that in the Antarctic, so many of our considerations are
meant to be limited to this particular habitat). Also, our personal experience in this
bio-mathematical adventure is a crucial point, in our opinion, to describe how scientific
curiosity can trigger academic activities.
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1.1. Description of the penguin parade An extraordinary event in the state of
Victoria, Australia, is the march of the little penguins (Eudyptula minor) who live on
Phillip Island. At sunset, when it gets too dark for the little penguins to hunt for their
food in the sea, they return to their homes (which are small cavities in the terrain,
located some tens of metres from the water’s edge). What follows is the mathematical
description that came out of the observations on site at Phillip Island, enriched by the
scientific discussions we later had with penguin ecologists.

Watching the penguin parade on Phillip Island, it seemed to us that some simple
features appeared in a very unusual pattern followed by the little penguins. First of
all, they have a strong tendency to gather together in sufficiently large numbers before
starting their march home. They also have a tendency to march in a straight line,
compactly arranged in a cluster or group. To form this group, they move back and
forth waiting for others to join them, even going back to the sea if no other mate is
around.

If a little penguin remains isolated, some parameters in the model proposed may
lead to the individual coming to a complete stop. More precisely, in the model that we
propose, there is a term which makes the velocity vanish. In practice, this interruption
in the penguin’s movement is not due to physical impediments, but rather to the fact
that there is no other penguin in a sufficiently small neighbourhood: in this sense, at a
mathematical level, a quantified version of the notion of “isolation” leads the penguin
to stop.

Of course, from the point of view of ethology, it would be desirable to have further
noninvasive tests to measure how the situation that we describe is felt by the penguin
at an emotional level (at the moment, we are not aware of experiments like this in
the literature). Also, it would be highly desirable to have some precise experiments
to determine how many penguins do not manage to return to their burrows within a
certain time after dusk and stay either in the water or in the vicinity of the shore.

On the one hand, in our opinion, it is likely that rigorous experiments on site
will demonstrate that the phenomenon for which an isolated penguin stops is rather
uncommon, but not completely exceptional, in nature. On the other hand, our model
is general enough to take into account the possibility that a penguin stops its march,
and, at a quantitative level, we emphasize this feature in the figures of Section 4 to
make the situation visible. The reader who does not want to take into account the
stopping function in the model can just set this function to be identically equal to 1
(the mathematical formulation of this remark will be given after formula (1.9)). In this
particular case, our model still exhibits the formation of groups of penguins moving
together.

Though no experimental test has been run on the emotive feelings of penguins
during their homecoming, in the parade that we have seen live, it indeed happened
that one little penguin remained isolated from the others. Even though it was quite
fit, and no concrete obstacle was obstructing its motion, it became completely stuck
for half an hour, and the staff of the Nature Park had to go and provide assistance.
We stress again that the fact that the penguin stopped did not seem to be caused by
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any physical impediment (as confirmed to us by the Ranger on site), since no extreme
environmental condition was occurring, the animal was not underweight, and was able
to come out of the water and move effortlessly on the shore autonomously for about 15
metres, before suddenly stopping. For a short video (courtesy of Phillip Island Nature
Parks) of the little penguin parade, in which the formation of groups is rather evident;
see, for example, the file Penguins1.MOV, available at https://youtu.be/x488k4n3ip8.

The simple features listed above are likely to be a consequence of the morphological
structure of the little penguins and the natural environment. Little penguins are a
marine-terrestrial species. They are highly efficient swimmers, but possess a rather
inefficient form of locomotion on land (indeed, flightless penguins, like the ones on
Phillip Island, waddle rather than walk). At dusk, about 80 minutes after sunset,
according to the data collected by Rodrı́guez et al. [22], little penguins return ashore
after their fishing activity in the sea. Since their bipedal locomotion is slow and rather
goofy (not only from the human subjective point of view, but also in comparison to
the velocity or agility that is well known to be typical of predators in nature), and
since the easily recognizable countershading of the penguins is likely to make them
visible to predators, the transition between the marine and the terrestrial environment
may be particularly stressful for the penguins [17]. This fact is probably related to the
formation of penguin groups (see, for example, [7]). Thus, in our opinion, the rules
that we have listed may be seen as the outcome of the difficulty of the little penguins in
performing their transition from a more favourable environment to a habitat in which
their morphology turns out to be suboptimal.

At the moment, there seems to be no complete experimental evidence measuring
the subjective perceptions of the penguins with respect to their environments.
Nevertheless, given the swimming ability of the penguins and the environmental
conditions, one may well conjecture that an area of high potential danger for a penguin
is that adjacent to the shoreline, since this is a habitat which provides little or no shelter,
and it is also an area of reduced visibility. In fact, to protect the penguins in this critical
area next to the water’s edge, the rangers on Phillip Island implemented a control on
the presence of the foxes in the proximity of the shore, with the aim of limiting the
number of possible predators.

1.2. Comparison with the existing literature To the best of our knowledge, there
has been no specific mathematical attempt to provide a concise description of the
penguin parade. The mathematical literature on penguins has mostly focused on the
description of the heat flow in the penguins’ feathers [9], the numerical analysis to
mark animals for later identification [23], the statistics of the Magellanic penguins
at sea [24], the hunting strategies of fishing penguins [13], and the isoperimetric
arrangement of the Antarctic penguins to prevent the heat dispersion caused by
the polar wind and the crystal structures and solitary waves produced by such
arrangements [12, 20]. We remark that the climatic situation on Phillip Island is rather
different from that of the Antarctic, and given the very mild temperatures of the area,
we do not think that heat considerations should affect the behaviour and the moving
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strategies of the Victorian little penguins too much; their tendency to cluster seems
more likely to be a defensive strategy against possible predators.

Though no mathematical formulation of the little penguin parade has hitherto been
given, a series of experimental analyses has recently been performed on the specific
environment of Phillip Island. We recall, in particular, the work of Daniel et al. [7]
in which the association of the little penguins in groups was described by collecting
data spanning over several years, and the article of Chiaradia et al. [5] in which there
was a description of the effect of fog on the orientation of the little penguins (who
may actually not come back home in conditions of poor visibility). Further, Macintosh
et al. [18] and Reynolds et al. [21] presented a data analysis to show the fractal structure
in space and time for the foraging of the little penguins, in relation to Lévy flights and
fractional Brownian motions.

For an exhaustive list of publications focused on the behaviour of the little penguins
of Phillip Island, we refer to the website https://www.penguins.org.au/conservation/

research/publications/. This contains more than 160 publications related to the
environment of Phillip Island, with special emphasis on the biology of little penguins.

We recall that there is also a wide literature from the point of view of biology and
ethology focused on collective mathematical behaviours, also in terms of formation
of groups and hierarchies (see, for example, [3, 10, 19]). The mathematical literature
studying the collective behaviour of animal groups is also rather broad. We mention,
in particular, some works which analysed the local rules of interaction of individual
birds in airborne flocks [1], the self-organization from a microscopic to a macroscopic
scale [6], movements with a speed depending on an additional variable [4], and
different models on opinion formation within an interacting group [15].

We remark that our model is specifically tailored to the Phillip Island penguins.
Other colonies of penguins, such as those on St Kilda, exhibit behaviours different
from those on Phillip Island, due to the different environmental conditions (see, for
example, the scientific report by [14] for additional information on the penguin colony
on the St Kilda breakwater).

1.3. Mathematical formulation In this section we provide a mathematical
description of the penguin parade which was described in Section 1.1. The idea
of providing an equation for this parade is to prescribe that the velocity of a group
of penguins travelling in a line is influenced by the natural environment and by the
position of the other visible groups. Whenever a group is formed, the equation needs
to be modified to encode the formation of this new structure. The main mathematical
notation is described in Table 1.

Further, in order to translate the simple observations on the penguins’ behaviour
given in Section 1.1 into a mathematical framework, we propose the following
equation:

ṗi(t) = Pi(p(t),w(t); t) (ε +Vi(p(t),w(t); t)) + f (pi(t), t). (1.1)

The variable t > 0 represents time, and p(t) is a vector-valued function of time that
takes into account the positions of the different groups of penguins. Roughly speaking,
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Table 1. Notation.

pi(t) one-dimensional position of the ith group of penguins at time t
wi(t) number of penguins belonging to the ith group of penguins at time t
f function describing the environment (sea, shore, presence of predators,

etc.)
Pi stopping function
ε speed of a solitary penguin in a neutral condition (may be zero)
Vi strategic speed of the ith group of penguins (depending on the position of

the penguins, on the size of the group and on time)
v speed of “large” groups of penguins
mi influence of the “visible” penguins ahead and behind on the speed of the

ith group
s eyesight of the penguins

at time t, there are n(t) groups of penguins, therefore p(t) is an array with n(t)
components, and so we write

p(t) = (p1(t), . . . , pn(t)(t)). (1.2)

We stress that n(t) may vary in time (in fact, it will be taken to be piecewise constant),
hence the spatial dimension of the image of p is also a function of time. For any
i ∈ {1, . . . , n(t)}, the ith group of penguins contains a number of penguins denoted by
wi(t) (thus, the number of penguins belonging to each group is also a function of time).
In further detail, the following notation is used. The function n : [0,+∞)→ N0, where
N0 = N \ {0}, is piecewise constant and nonincreasing, that is, there exist a (possibly
finite) sequence 0 = t0 < t1 < · · · < t j < · · · and integers n1 > · · · > n j > · · · , such that

n(t) = n j ∈ N0 for any t ∈ (t j−1, t j). (1.3)

In this model, for simplicity, the spatial occupancy of a cluster of penguins coincides
with that of a single penguin: of course, in reality, there is a small repulsion playing
among the penguins, which cannot stay too close to one another. This additional
complication may also be taken into account in our model, by enlarging the spatial
size of the cluster in dependence of the numerousness of the penguins in the group. In
any case, for practical purposes, we think it is not too inaccurate to identify a group of
penguins with just a single element, since the scale at which the parade occurs (several
tens of metres) is much larger than the size of a single penguin (little penguins are only
about 30 cm tall).

We also consider the array w(t) = (w1(t), . . . , wn(t)(t)). We assume that wi is
piecewise constant, wi(t) = w̄i, j for any t ∈ (t j−1, t j), for some w̄i, j ∈ N0, that is, the
number of little penguins in each group remains constant, until the next penguins join
the group at time t j (if, for the sake of simplicity, one wishes to think that initially
all the little penguins are separated from one another, then one may also suppose that
wi(t) = 1 for all i ∈ {1, . . . , n1} and t ∈ [0, t1)).
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By possibly renaming the variables, we suppose that the initial position of the
groups is increasing with respect to the index, that is,

p1(0) < · · · < pn1 (0). (1.4)

The parameter ε > 0 represents the drift velocity of the penguins towards their home,
which is located at the point H ∈ (0,+∞). The parameter ε, from the biological point
of view, represents the fact that each penguin, in a neutral situation, has a natural
tendency to move towards its burrow. We can also allow ε = 0 in our treatment; in this
case, the existence and uniqueness theory in Section 2 remains unchanged if ε = 0,
and the rigorous results in Section 3 present cases in which they still hold true when
ε = 0, compared, in particular, with assumptions (3.1) and (3.3). For concreteness, if
pi(T ) = H for some T > 0, we can set pi(t) = H for all t > T and remove pi from the
equation of motion, that is, the penguin has safely returned home.

For any i ∈ {1, . . . ,n(t)}, the quantityVi(p(t),w(t); t) represents the strategic velocity
of the ith group of penguins, and it can be considered as a function with domain varying
in time,Vi(·, ·; t) : Rn(t) × Nn(t) → R, that is,

Vi(·, ·; t) : Rn j × Nn j → R for any t ∈ (t j−1, t j),

and for any (p,w) = (p1, . . . , pn(t),w1, . . . ,wn(t)) ∈ Rn(t) × Nn(t), it is of the form

Vi(p,w; t) = (1 − µ(wi)) mi(p,w; t) + vµ(wi). (1.5)

In this setting, for any (p,w) = (p1, . . . , pn(t),w1, . . . ,wn(t)) ∈ Rn(t) × Nn(t),

mi(p,w; t) =
∑

j∈{1,...,n(t)}

sign (p j − pi) w j s(|pi − p j|), (1.6)

where s ∈ Lip([0,+∞)) is nonnegative and nonincreasing, and as usual, we denote the
“sign function” as

R 3 r 7→ sign (r) =


1 if r > 0,
0 if r = 0,
−1 if r < 0.

Also, for any ` ∈ N, we set

µ(`) =

{
1 if ` > κ,
0 if ` 6 κ − 1, (1.7)

for a fixed κ ∈ N with κ > 2 and v > ε.
In our framework, the meaning of the strategic velocity of the ith group of penguins

is the following. When the group of penguins is too small, that is, it contains fewer than
κ little penguins, the term involving µ vanishes. Thus the strategic velocity reduces to
the term given by mi; this term, in turn, takes into account the position of the other
groups of penguins. That is, each penguin is endowed with an “eyesight” (i.e., the
capacity of seeing the other penguins that are “sufficiently close” to them), which is
modelled by the function s. For instance, if s is identically equal to 1 then the penguin
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has a “perfect eyesight”, if s(r) = e−r2
then the penguin sees close objects much better

than distant ones, and if s is compactly supported then the penguin does not see objects
that are too far, etc. Based on the position of the other mates that it sees, the penguin
has the tendency to move either forward or backward: the more penguins it sees ahead,
the more inclined it is to move forward; the more penguins it sees behind, the more
inclined it is to move backward; nearby penguins are weighted more than distant ones,
due to the monotonicity of the function s. This strategic tension coming from the
position of the other penguins is encoded by the function mi.

The eyesight function can be also considered as a modification of the interaction
model based simply on metric distance. Another interesting feature which has been
observed in several animal groups (see, for example, [1]), is the so-called “topological
interaction” model, in which every agent interacts only with a fixed number of agents
among the ones which are closer. A modification of the function s can also take
this possibility into account. It is of course very interesting to investigate by direct
observations how much topological, quantitative and metric considerations influence
the formation and the movement of little penguin clusters.

When the group of penguins is sufficiently large (that is, it contains at least κ little
penguins), then the term involving µ is equal to 1. In this case, the strategic velocity is
v, that is, when the group of penguins is sufficiently rich in population, its strategy is
to move forward with cruising speed equal to v.

The function Pi(p(t), w(t); t) describes the case of extreme isolation of the ith
individual from the rest of the herd. Here, we take d > d > 0, a nonincreasing function
ϕ ∈ Lip(R, [0, 1]) with ϕ(r) = 1 if r 6 d and ϕ(r) = 0 if r > d, and for any ` ∈ N0,

w(`) =

{
1 if ` > 2,
0 if ` = 1. (1.8)

As our stopping function with variable domain we take

Pi(·, ·; t) : Rn(t) × Nn(t) → [0, 1],

that is,
Pi(·, ·; t) : Rn j × Nn j → [0, 1] for any t ∈ (t j−1, t j),

given by
Pi(p,w; t) = max

{
w(wi), max

j∈{1,...,n(t)}
j,i

ϕ(|pi − p j|)
}

(1.9)

for any (p,w) = (p1, . . . , pn(t),w1, . . . ,wn(t)) ∈ Rn(t) × Nn(t). Here the notation “Lip”
stands for bounded and Lipschitz continuous functions. The case of ϕ being identically
equal to 1 can also be contained in our setting. In this case, Pi is also identically equal
to 1, corresponding to the case where the stopping function has no effect.

The stopping function describes the fact that the group may have a tendency
to suddenly stop. This happens when the group contains only one element (that
is, wi = 0), and the other groups are far apart (that is, at distance larger than d).
Conversely, if the group contains at least two little penguins, or if there is at least one
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other group sufficiently close (say, at distance smaller than d), then the group is self-
confident, namely, the function Pi(p(t),w(t); t) is equal to 1 and the total intentional
velocity of the group coincides with the strategic velocity.

Interestingly, the stopping function Pi may be independent of the eyesight function
s, namely, a little penguin can stop if it feels too exposed, even if it can see other little
penguins (for instance, if s is identically equal to 1, the little penguin always sees the
other members of the herd, and can stop if they are too far away).

The function f ∈ Lip(R × [0,+∞)) takes into account the environment. For a neutral
environment, this term vanishes (here “neutral” means that the environment does not
favour or penalize the homecoming of the penguins). In practice, it may take into
account the ebb and flow of the sea on the foreshore where the little penguin parade
starts, the possible ruggedness of the terrain, the presence of predators, etc. (as a
variation, one can consider also a stochastic version of this term). This environment
function can take into account several characteristics at the same time. For example,
a possible situation that we wish to model is that the sea occupies the spatial region
(−∞, 0), producing waves that are periodic in time with frequency $ and amplitude
δ. Suppose also that the shore is located in the spatial region (−∞, 0), presenting a
steep hill in the region (1, 2) which can slow down the motion of the penguins, whose
burrows are located at the point 4. In this setting, a possible choice of the environment
function f is

R × [0,+∞) 3 (p, t) 7−→ f (p, t) = δ sin($t + φ) χ(−∞,0)(p) − h χ(1,2)(p).

In this notation, h > 0 is a constant that takes into account “how steep” the hill located
in the region (1, 2) is, φ ∈ R is an initial phase of the wave in the sea, and χE is the
characteristic function of a set E, namely,

χE(x) =

{
1 if x ∈ E,
0 if x < E.

Given the interpretations above, equation (1.1) comprises the pattern that we described
in words and sets the scheme of motion of the little penguins into a mathematical
framework.

1.4. Preliminary presentation of the mathematical results In this paper, three
main mathematical results are presented. First of all, in Section 2, we provide
an existence and uniqueness theory for the solutions of equation (1.1). From a
mathematical viewpoint, we remark that (1.1) does not fall into the classical framework
of the standard Cauchy initial value problem for ordinary differential equations (for
example, compare with formula (2.3) and [2, Theorem 2.1]), since the right-hand
side of the equation is not Lipschitz continuous (and, in fact, is not even continuous).
This mathematical complication is indeed the counterpart of the real motion of the
little penguins in the parade, which have the tendency to change their speed rather
abruptly to maintain contact with the other elements of the herd. That is, in our
view, it does not seem unreasonable to model, as a simplification, the speed of the
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penguin as a discontinuous function, to take into account the sudden modifications of
the waddling according to the position of the other penguins with the conclusive aim
of gathering together a sufficient number of penguins in a group which eventually will
march concurrently in the direction of their burrows.

Then, in Section 3, we provide two rigorous results which guarantee suitable
conditions under which all the penguins, or some of them, safely return to their
burrows. In Theorem 3.1 we establish that if the sum of the drift velocity and the
environmental function is strictly positive, and if there is a time (which can be the
initial time or a subsequent one) for which the group at the end of the line consists of
at least two penguins, then all the penguins reach their burrows in a finite time, which
can be explicitly estimated.

Also, in Theorem 3.2 we prove that if the sum of the drift and cruise velocities and
the environmental function is strictly positive, and if there is a time for which one of
the penguin groups is sufficiently numerous, then all the penguins in this group and in
the groups ahead safely return home in a finite time, which can be explicitly estimated.
Rigorous statements and proofs will be given in Sections 2 and 3.

1.5. Detailed organization of the paper The mathematical treatment of equation
(1.1) that we provide in this paper is the following. In Section 2 we provide a notion of
solution for which (1.1) is uniquely solvable in the appropriate setting. This notion of
solution will be obtained by a “stop-and-go” procedure, which is compatible with the
idea that when two (or more) groups of penguins meet, they form a new, bigger group
which moves coherently with the rest of the march.

In Section 3 we discuss a couple of concrete examples in which the penguins are
able to safely return home, that is, we show that there are “nice” conditions in which
the strategy of the penguins allows a successful homecoming. In Section 4 we present
a series of numerical simulations to compare our mathematical model with the real-
world experience. This part also contains some figures produced by the numerics.
Several possible structural generalizations of the model proposed are presented in
Section 5. Furthermore, the model that we propose can be easily generalized to a multi-
dimensional setting, as discussed in Section 6. Section 7 concludes our discussion.

2. Existence and uniqueness theory for equation (1.1)

We stress that equation (1.1) does not lie within the setting of ordinary differential
equations, since the right-hand side is not Lipschitz continuous (due to the
discontinuity of the functions w and mi, and in fact the right-hand side also involves
functions with domain varying in time). As far as we know, the weak formulations of
ordinary differential equations as the ones treated by [8] do not take into consideration
the setting of equation (1.1), so we briefly discuss here a direct approach to the
existence and uniqueness theory for such equation. To this end, and to clarify our
direct approach, we present two illustrative examples [11].
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Example 2.1. Setting x : [0,+∞)→ R, the ordinary differential equation

ẋ(t) =

{
−1 if x(t) > 0,
1 if x(t) < 0, (2.1)

is not well posed. Indeed, taking an initial datum x(0) < 0, it will evolve with the
formula x(t) = t + x(0) for any t ∈ [0,−x(0)] till it hits the zero value. At that point,
equation (2.1) would prescribe a negative velocity, which becomes contradictory with
the positive velocity prescribed for the negative coordinates. �

Example 2.2. The ordinary differential equation

ẋ(t) =


−1 if x(t) > 0,
0 if x(t) = 0,
1 if x(t) < 0,

(2.2)

is similar to the one in (2.1), in the sense that it does not fit into the standard theory
of ordinary differential equations, due to the lack of continuity of the right-hand side.
But, unlike the one in (2.1), it can be set into an existence and uniqueness theory by a
simple “reset” algorithm.

Namely, taking an initial datum x(0) < 0, the solution evolves with the formula
x(t) = t + x(0) for any t ∈ [0, −x(0)] till it hits the zero value. At that point,
equation (2.2) would prescribe a zero velocity, thus a natural way to continue the
solution is to take x(t) = 0 for any t ∈ [−x(0),+∞) (similarly, in the case of positive
initial datum x(0) > 0, a natural way to continue the solution is x(t) = −t + x(0) for any
t ∈ [0, x(0)] and x(t) = 0 for any t ∈ [x(0),+∞)). The basic idea for this continuation
method is to flow the equation according to the standard Cauchy theory of ordinary
differential equations for as long as possible, and then, when the classical theory
breaks, “reset” the equation with respect of the datum at the break time. This method
is not universal, and indeed it does not work for (2.1), but it produces a natural global
solution for (2.2). �

In the light of Example 2.2, we now present a framework in which equation (1.1)
possesses a unique solution (in a suitable “reset” setting). To this end, we first notice
that the initial number of groups of penguins is fixed to be equal to n1 and each group
is given by a fixed number of little penguins packed together, that is, the number of
little penguins in the ith initial group being equal to w̄i,1 and i ranges from 1 to n1). So
we set w̄1 = (w̄1,1, . . . , w̄n1,1) and w̄i,1 = w(w̄i,1), where w is as defined in (1.8). Also,
for any p = (p1, . . . , pn1 ) ∈ Rn1 , let

Pi,1(p) = max
{
w̄i,1, max

j∈{1,...,n1}
j,i

ϕ(|pi − p j|)
}
. (2.3)

The reader may compare this definition with the one in (1.9). For any i ∈ {1, . . . , n1},
we also set

µ̄i,1 = µ(w̄i,1),

https://doi.org/10.1017/S1446181118000147 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181118000147


38 S. Dipierro et al. [12]

where µ is the function defined in (1.7), and, for any p = (p1, . . . , pn1 ) ∈ Rn1 ,

m̄i,1(p) =
∑

j∈{1,...,n1}

sign (p j − pi) w̄ j,1 s(|pi − p j|).

Compare this definition with (1.6). Recalling equation (1.4), we also set

D1 = {p = (p1, . . . , pn1 ) ∈ Rn1 s.t. p1 < · · · < pn1}.

We remark that if p ∈ D1 then

m̄i,1(p) =
∑

j∈{i+1,...,n1}

w̄ j,1 s(|pi − p j|) −
∑

j∈{1,...,i−1}

w̄ j,1 s(|pi − p j|),

and therefore,

m̄i,1(p) is bounded and Lipschitz for any p ∈ D1. (2.4)

Then we set
Vi,1(p) = (1 − µ̄i,1) m̄i,1(p) + vµ̄i,1.

Compare this definition with the one in (1.5). Notice that in view of (2.4),

Vi,1(p) is bounded and Lipschitz for any p ∈ D1. (2.5)

So we set
Gi,1(p, t) = Pi,1(p) (ε +Vi,1(p)) + f (pi, t).

From (2.3) and (2.5), Gi,1 is bounded and Lipschitz in D1 × [0,+∞). Consequently,
from the global existence and uniqueness of solutions of ordinary differential
equations, there exist t1 ∈ (0, +∞] and a solution p(1)(t) = (p(1)

1 (t), . . . , p(1)
n1 (t)) ∈ D1

of the Cauchy problem ṗ(1)
i (t) = Gi,1(p(1)(t), t) for t ∈ (0, t1),

p(1)(0) given inD1,

and
p(1)(t1) ∈ ∂D1 (2.6)

(see, for example, [16, Theorem 1.4.1]).
Note that, as is customary in the mathematical literature, we denoted by ∂ the

“topological boundary” of a set. In particular,

∂D1 = {p = (p1, . . . , pn1 ) ∈ Rn1 | p1 6 · · · 6 pn1

and there exists i ∈ {1, . . . , n1 − 1} such that pi = pi+1}.

Thus the idea for studying the Cauchy problem in our framework is that as long as
the trajectory of the system stays in the interior of the domain D1, the forcing term
remains uniformly Lipschitz, so that the flow does not develop any singularity. Hence,
the trajectory exists, and it is defined up to the time (if any) at which it meets the
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boundary of the domain D1, which in the biological framework corresponds to the
situation in which two or more penguins meet (that is, they occupy the same position
at the same time). In this case, the standard flow procedure of the ordinary differential
equation is stopped, we will merge the coincident penguins into a common cluster, and
then repeat the argument.

In further detail, the solution of equation (1.1) will be taken to be p(1) in [0, t1),
that is, we set p(t) = p(1)(t) for any t ∈ [0, t1). We also set n(t) = n1 and w(t) =

(w̄1,1, . . . , w̄n1,1). With this setting, we have that p is a solution of equation (1.1) in
the time range t ∈ (0, t1) with prescribed initial datum p(0). Condition (2.6) allows us
to perform our “stop-and-go” reset procedure as follows. We denote by n2 the number
of distinct points in the set {p(1)

1 (t1), . . . , p(1)
n1 (t1)}. Notice that (2.6) says that if t1 is

finite then n2 6 n1 − 1 (namely, at least two penguins have reached the same position).
In this way, the set of points {p(1)

1 (t1), . . . , p(1)
n1 (t1)} can be identified by the set of n2

distinct points, which we denote by {p(2)
1 (t1), . . . , p(2)

n2 (t1)} with the convention that

p(2)
1 (t1) < · · · < p(2)

n2
(t1).

For any i ∈ {1, . . . , n2}, we also set

w̄i,2 =
∑

j∈{1,...,n1}

p(1)
j (t1)=p(2)

i (t1)

w̄ j,1.

This says that the new group of penguins indexed by i contains all the penguins that
have reached that position at time t1.

Thus, having the “new number of groups”, n2, the “new number of little
penguins in each group”, w̄2 = (w̄1,2, . . . , w̄n2,2), and the “new initial datum”, p(2)(t1) =

(p(2)
1 (t1), . . . , p(2)

n2 (t1)), we can solve a new differential equation with these new
parameters, in exactly the same way as before, and keep iterating this process.

Indeed, recursively, we suppose that we have found t1 < t2 < · · · < tk, p(1) : [0, t1]→
Rn1 , . . . , p(k) : [0, tk]→ Rnk and w̄1 ∈ N

n1
0 , . . . , w̄k ∈ N

nk
0 , such that setting

p(t) = p( j)(t) ∈ D j, n(t) = n j

and w(t) = w̄ j,

for t ∈ [t j−1, t j) and j ∈ {1, . . . , k}, yields that p solves (1.1) in each interval (t j−1, t j)
for j ∈ {1, . . . , k}, with the “stop condition”

p( j)(t j) ∈ ∂D j,

where
D j = {p = (p1, . . . , pn j ) ∈ R

n j | p1 < · · · < pn j}.

Then, since p(k)(tk) ∈ ∂Dk, if tk is finite, we find nk+1 6 nk − 1 such that the set of points
{p(k)

1 (tk), . . . , p(k)
nk (tk)} coincides with a set of nk+1 distinct points, which we denote by

{p(k+1)
1 (tk), . . . , p(k+1)

nk (tk)}, with the convention that

p(k+1)
1 (tk) < · · · < p(k+1)

nk
(tk).

https://doi.org/10.1017/S1446181118000147 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181118000147


40 S. Dipierro et al. [14]

For any i ∈ {1, . . . , nk+1}, we set

w̄i,k+1 =
∑

j∈{1,...,nk }

p(k)
j (tk )=p(k+1)

i (tk )

w̄ j,k. (2.7)

It is useful to observe that in light of (2.7),∑
i∈{1,...,nk+1}

w̄i,k+1 =
∑

i∈{1,...,nk}

w̄i,k,

which says that the total number of little penguins always remains the same; more
precisely, the sum of all the little penguins in all groups is constant in time.

Let also w̄i,k+1 = w(w̄i,k+1). Then, for any i ∈ {1, . . . ,nk+1} and any p = (p1, . . . , pnk+1 )
∈ Rnk+1 , we set

Pi,k+1(p) = max
{
w̄i,k+1, max

j∈{1,...,nk+1}
j,i

ϕ(|pi − p j|)
}
.

For any i ∈ {1, . . . , nk+1} we also define µ̄i,k+1 = µ(w̄i,k+1), where µ is the function
defined in (1.7), and, for any p ∈ Rnk+1 ,

m̄i,k+1(p) =
∑

j∈{1,...,nk+1}

sign (p j − pi) w̄ j,k+1 s(|pi − p j|).

We notice that m̄i,k+1(p) is bounded and Lipschitz for any p ∈ Dk+1 with {p =

(p1, . . . , pnk+1 ) ∈ Rnk+1 | p1 < · · · < pnk+1}.
We also define

Vi,k+1(p) = (1 − µ̄i,k+1) m̄i,k+1(p) + vµ̄i,k+1

and
Gi,k+1(p, t) = Pi,k+1(p) (ε +Vi,k+1(p)) + f (pi, t).

In this way, we have that Gi,k+1 is bounded and Lipschitz inDk+1 × [0,+∞) and so we
find the next solution p(k+1)(t) = (p(k+1)

1 (t), . . . , p(k+1)
nk+1 (t)) ∈ Dk+1 in the interval (tk, tk+1),

with p(k+1)(tk+1) ∈ ∂Dk+1, by solving the ordinary differential equation

ṗ(k+1)
i (t) = Gi,k+1(p(k+1)(t), t).

This completes the iteration argument and provides the desired notion of solution for
equation (1.1).

3. Examples of safe return home

Here we provide some sufficient conditions for the penguins to reach their home,
located at the point H, which is taken to be “far away with respect to the initial position
of the penguins”, that is, we assume that

H > max
i∈{1,...,n(0)}

pi(0),
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and ε has to be taken sufficiently small. Recall that in the live parade that we saw,
one little penguin remained stuck and did not manage to return home. So giving a
mathematical treatment of the case in which the strategy of the penguins turns out to
be successful reassured us as to the fate of the species.

To give a mathematical framework of the notion of homecoming, we introduce the
function

[0,+∞) 3 t 7→ N(t) =
∑

j∈{1,...,n(t)}
p j(t)=H

w j(t).

In the setting of Section 1.3, the function N(t) represents the number of penguins that
have safely returned home at time t. For counting reasons, we also point out that the
total number of penguins is constant and is given by

M =
∑

j∈{1,...,n(0)}

w j(0) =
∑

j∈{1,...,n(t)}

w j(t) for any t > 0.

Our first result shows that if at some time the group of penguins that stays further
behind gathers into a group of at least two elements, then all the penguins will manage
to return home eventually. The mathematical setting is as follows.

Theorem 3.1. Let to > 0, and assume that

ε + inf
(r,t)∈R×[to,+∞)

f (r, t) > ι, (3.1)

for some ι > 0, and
w1(to) > 2. (3.2)

Then there exists T ∈ [to, to + (H − p1(to))/ι] such that N(T ) =M.

Proof. We observe that w1(t) is nondecreasing in t, by (2.7), and therefore (3.2) implies
that w1(t) > 2 for any t > to. Consequently, from (1.8) we obtain w(w1(t)) = 1 for any
t > to. This and (1.9) yield P1(p,w(t); t) = 1 for any t > to and p ∈ Rn(t). Accordingly,
from the equation of motion in (1.1),

ṗ1(t) = ε +V1(p(t),w(t); t) + f (p1(t), t)
> ε + f (p1(t), t)
> ι

for any t > to, by (3.1). That is, for any j ∈ {1, . . . , n(t)},

p j(t) > p1(t) > min{H, p1(to) + ι (t − to)},

which gives the desired result. �

A simple variation of Theorem 3.1 says that if at some time, a group of little
penguins reaches a sufficiently large size, then all the penguins in this group (as well as
the ones ahead) safely reach their home. The precise statement (whose proof is similar
to that of Theorem 3.1, up to some technical modifications, and is therefore omitted)
is as follows.
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Theorem 3.2. Let to > 0, and assume that

ε + v + inf
(r,t)∈R×[to,+∞)

f (r, t) > ι, (3.3)

for some ι > 0, and
w jo (to) > κ,

for some jo ∈ {1, . . . , n(to)}, where κ is defined in (1.7). Then there exists T ∈
[to, to + (H − p jo (to)/ι] such that

N(T ) >
∑

j∈{ jo,...,n(to)}

w j(to).

4. Pictures, videos and numerics

Here, we present some simple numerical experiments to facilitate the intuition
behind the model presented in (1.1). These simulations may actually show some of the
typical traits of the little penguin parade, such as the oscillations and sudden change
of direction, the gathering of the penguins into clusters and the possibility that some
elements of the herd remain isolated, either on the land or in the sea.

The possibility that a penguin remains isolated in the sea is a very real one,
as demonstrated by the last penguin in the herd on the video (courtesy of Phillip
Island Nature Parks) named Penguins2.MOV available online at https://youtu.be/

dVk1uYbH Xc.
In our simulations, for the sake of simplicity, we considered 20 penguins returning

to their burrows from the shore – some of the penguins may start their trip from the
sea (which occupies the region below level 0 in the simulations) in which waves and
currents may affect the movements of the animals. All the figures presented here have
the time variable on the horizontal axis and the space variable on the vertical axis (with
the burrows of the penguin community set at level 4 for definiteness). The figures are
self-explanatory. For instance, in Figure 1, we present a case in which, fortunately, all
the little penguins manage to safely return home, after having gathered into groups:
as a matter of fact, in the first of these pictures all the penguins safely reach home
together at the same time (after having rescued the first penguin, who stayed still for a
long period due to isolation). The second of these pictures shows that a first group of
penguins, which originated from the animals that were on the land at the initial time,
reaches home slightly before the second group of penguins, which originated from
the animals that were in the sea at the initial time. Also notice that the motion of the
penguins in the sea appears to be affected by waves and currents.

We also observe a different scenario depicted in Figure 4 with two different
functions to represent the currents in the sea; in this situation, a large group of 18
penguins gathers together, collecting also penguins who were initially in the water,
and safely returns home. Two penguins remain isolated in the water, and they keep
slowly moving towards their final destination; they reach home after a longer time.
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Figure 1. All the little penguins safely return home.

Figure 2. One penguin remains in the water.

Similarly, in Figure 2, almost all the penguins gather into a single group and reach
home, while two penguins get together in the sea, come ashore and slowly waddle
towards their final destination, and one single penguin remains isolated in the water,
moved by the currents.

The situation in Figure 3 is slightly different, since the last penguin at the beginning
moves towards the others, but does not manage to join the forming group by the
time the other penguins decide to move consistently towards their burrows – so
unfortunately this last penguin, in spite of its initial effort, finally remains in the water.

With simple modifications of the function f , one can also consider the case in which
the waves of the sea change with time and their influence may become more (or less)
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Figure 3. One penguin moves towards the others but remains in the water.

Figure 4. Two penguins are still in the water after a long time.

relevant for the swimming of the little penguins (for an example of this feature, see
Figures 5 and 6).

In Figures 7 and 8 we give some examples of what happens when varying the
parameters that we used in the numerics of the other figures. For example, we consider
different values of κ, the parameter which encodes when a group of penguins is big
enough to be self-confident and waddle home without being influenced by the other
groups of penguins in sight.

By considering small values of κ, we represent a strong preference of the penguins
to go straight towards their home, instead of first trying to form a large group. This
situation is depicted in the second picture in Figure 8, where we see that after a
short time the penguins form two distinct small groups and go towards home without
trying to form a unique large group together. In contrast, considering a large value
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Figure 5. Effect of the waves on the movement of the penguins in the sea.

Figure 6. Effect of the waves on the movement of the penguins in the sea.

of κ represents the preference of the penguins to gather in a very large group before
starting their march towards home, as in the first picture in Figure 8. This situation
could represent, for example, the penguins being timorous because of the presence of
predators.

We think that the case in which one penguin, or a small number of penguins,
remain(s) in water even after the return of the main group is worth further investigation
by means of concrete experiments. One possible scenario is that the penguins in the
water may just wait long enough for other penguins to get close to the shore and join
them to form a new group. On the other hand, if all the other penguins have already
returned, the few who remained in the water may have to accept the risk of returning
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Figure 7. The penguins form smaller groups and move towards their home.

Figure 8. The penguins form groups of different sizes and reach their home.

home isolated from the other conspecifics and in an unprotected situation, and we think
that interesting biological features could be detected in this case.

Finally, we recall that once a group of little penguins is created, it moves
consistently altogether. This is of course a simplifying assumption, and it might
happen in reality that one or a few penguins leave a large group after its formation
– perhaps because one penguin is slower than the other penguins in the group, or
perhaps because it gets distracted by other events on the beach, or simply because it
feels too exposed being at the side of the group and may prefer to form a new group
in which it finds a more central and protected position. We plan to describe this case
in detail in a forthcoming project (also possibly in light of morphological and social
considerations and taking into account a possible randomness in the system).
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The situation in which one little penguin seems to think about leaving an already
formed group can be observed in the video (courtesy of Phillip Island Nature Parks)
named Penguins2.MOV and available online at https://youtu.be/dVk1uYbH Xc (see
in particular the behaviour of the second penguin from the bottom, that is, the last
penguin of the already formed large cluster). We point out that all these pictures have
been easily obtained by short programs in MATLAB.

We describe the algorithm of the basic program here, with waves of constant size
and standard behaviour of all the little penguins. The modified versions (periodic
strong waves, tired little penguins and so on) can be easily inferred from it. We take
into account N little penguins, we set their house at H = 4 and the sea below the
location 0. Strong waves can go beyond the location 0 in some cases, but in the
standard program we just consider normal ones. We take a small ε to represent the
natural predisposition of the little penguins to return home, and we define a constant
δ = (N + 1)ε that we need to define the velocity of the little penguins. We define the
waves as WAVE = δ sin(T ), where T is the array of times. The speed of the animals is
related to the one of waves in such a way that it becomes the strongest just when the
little penguins form a group that is big enough.

The program starts with a “for” loop that counts all the animals in a range near
the chosen little penguin. This “for” loop gives us two values: the indicator of the
parameter PAN (short for “panic”) and the function W, which represents the number
of animals in the same position as the one we are considering. We needed this function
since we have seen that when the little penguins form a group that is big enough, they
proceed towards their home with a cruise speed that is higher than it was before. We
define this cruise speed as vc (short for “velocity”) in the program.

Then we start computing the speed V of the little penguin. If PAN is equal to zero,
the little penguin freezes. His velocity is zero if he is on the shore (that is, his position
is greater or equal than zero), or it is given by the waves if he is in the water. It is
worth noting that at each value of time the “for” loop counts the value of PAN, hence a
little penguin can leave the stopping condition, if it sees some mates and start moving
again.

If PAN is not zero we have two cases, according to the fact that a big group is
formed or not. If this has happened, that is, W > N/2, then the little penguin we are
considering is in the group, so he goes towards home with a cruise speed vc, possibly
modified by the presence of waves. If the group is not formed yet, the animal we are
considering is surrounded by some mates, but there are not enough of them to proceed
straight home. Its speed is positive or negative, that is, it moves forward or backward,
depending on the number of little penguins it has ahead of or behind it. Its speed is
given by

V = ε + M,

where M is the number of penguins ahead of it minus the number of animals behind it
multiplied by δ/N, and ε is as already defined. As in the other cases, the speed can be
modified by the presence of waves, if the position is less than zero. Now that we have
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computed the speed of the animal, we can obtain its position P after a discrete time
interval t by considering P(k + 1) = P(k) + Vt.

The purpose of the last “for” loop is to put in the same position two animals
that are close enough. Then we reset the counting variables PAN, W and M,
and we restart the loop. For completeness, we have made the source code
for all the programs available at https://www.dropbox.com/sh/odgic3a0ke5qp0q/

AABIMaasAcTwZQ3qKRoB--xra?dl=0.
An example of the code is given in the Appendix. The simplicity of these programs

shows that the model in (1.1) is indeed very simple to implement numerically, still
producing sufficiently “realistic” results in terms of cluster formation and cruising
speed of the groups. The parameters in the code are chosen as examples, producing
simulations that show some features similar to those observed on site and in the
videos. From one picture to another, what is varying are the initial conditions and the
environment function (minor modifications in the code would allow us also to change
the number of penguins, their eyesight, the drift and cruise velocities, the stopping
function, and also to take into account multi-dimensional cases).

Also, these pictures can be easily translated into animations. Simple videos that we
have obtained by these numerics are available at https://www.youtube.com/playlist?
list=PLASZVs0A5ReZgEinpnJFat66lo2kIkWTS.

The source code of the animations is available online at https://www.dropbox.com/

s/l1z5riqtc8jzxbs/scatter.txt?dl=0.

5. Discussion on the model proposed: simplifications, generalizations and
further directions of investigation

We stress that the model proposed in (1.1) is of course a dramatic simplification
of “reality”. As indeed often happens in science, several simplifications have been
adopted in order to allow a rigorous mathematical treatment and convenient numerical
computations. Nevertheless the model is already rich enough to detect some specific
features of the little penguin parade, such as the formation of groups, the oscillatory
waddling of the penguins and the possibility of isolated and exposed individuals.
Moreover, our model is flexible enough to allow specific distinctions between the
single penguins (for instance, with minor modifications, one can take into account
the possibility that different penguins have different eyesight, that they have a different
reaction to isolation, or that they exhibit some specific social behaviour that favours
the formation of clusters selected by specific characteristics); similarly, the modelling
of the habitat may also encode different possibilities (such as the burrows of the
penguins being located in different places), and multi-dimensional models can be
also constructed using similar ideas (see Section 6 for details). We observe that the
quantities v, s, µ, κ, ϕ can be replaced with vi, si, µi, κi, ϕi, if one wants to customize
these features for every group.

Furthermore, natural modifications lead to the possibility that one or a few penguins
may leave an already formed group, for instance, rather than forming one single group,
the model can still consider the penguins of the cluster as separate elements, each one
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with its own peculiar behaviour. At the moment, for simplicity, we consider here the
basic model in which, once a cluster is formed, it keeps moving without losing any
of its elements – we plan to address in detail in a future project the case of groups
which may also decrease in size, possibly depending on random fluctuations or social
considerations among the members of the group.

In addition, for simplicity, in this paper we modelled each group as located at a
precise point: though this is not a completely unrealistic assumption (given that the
scale of the individual penguin is much smaller than that of the beach), one can also
easily modify this feature by locating a cluster in a region comparable to its size.

In future projects, we plan to introduce other more sophisticated models, also taking
into account stochastic oscillations and optimization methods, and, in the long run, to
use these models in a detailed experimental analysis taking advantage of the automated
monitoring systems which is under development on Phillip Island.

The model that we propose here is also flexible enough to allow quantitative
modifications of all the parameters involved. This is quite important, since these
parameters may vary due to different conditions of the environment. For instance,
the eyesight of the penguins can be reduced by fog [5] and by the effect of moonlight
and artificial light [22].

Similarly, the number of penguins in each group and the velocity of the herd may
vary due to structural changes to the beach. Roughly speaking, from the empirical data,
penguins typically gather into groups of 5–10 individuals (but we have also observed
much larger groups forming on the beach) within 40-second intervals [7], but the way
these groups are built varies year by year and, for instance, the number of individuals
which always gather in the same group changes year by year in strong dependence on
the breeding success of the season [7]. Also, tidal phenomena may change the number
of little penguins in each group and the velocity of the group, since the change to the
beach width alters the penguins’ perception of risk. For instance, a low tide produces a
larger beach, with higher potential risk of predators, thus making the penguins gather
in groups of larger size [17].

6. Multi-dimensional models

It is interesting to note that the model in (1.1) can be easily generalized to the multi-
dimensional case. That is, for any i ∈ {1, . . . , n(t)}, the ith coordinate pi can be taken
to have image in some Rd. More generally, the dimension of the target space can also
vary in time, by allowing, for any i ∈ {1, . . . , n(t)}, the ith coordinate pi to range in
some Rdi(t), with di(t) piecewise constant, namely di(t) = di, j ∈ N0 for any t ∈ (t j−1, t j)
(compare with (1.3)).

This modification just causes a small notational complication in (1.2), since
each pi(t) would now be a vector in Rdi(t) and the array p(t) would now be of dimension
d1(t) + · · · + dn(t). While we do not indulge in this generalization here, we observe that
such a mathematical extension may be useful, in practice, to consider the specific
location of the burrows and describe, for instance, the movements of the penguins on
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the beach (say, a two-dimensional surface) which, as time flows, gather together in a
single queue and then move in a one-dimensional line.

Of course, the rigorous results in Section 3 need to be structurally modified in higher
dimension, since several notions of “proximity” of groups, “direction of march” and
“orientation of the eyesight” can be considered.

7. Conclusions

As a result of our direct observation at Phillip Island and a series of scientific
discussions with penguin ecologists, we provide a simple but rigorous mathematical
model which aims to describe the formation of groups of penguins on the shore at
sunset and the return to their burrows. This model is proved to possess existence and
uniqueness of solutions, and quantitative results on the homecoming of the penguins
are given. The framework is general enough to show the formation of groups of
penguins marching together, as well as the possibility that some penguins remain
isolated from the rest of the herd. The model is also numerically implemented in
simple and explicit simulations.

We believe that the method proposed can be suitably compared with the real
penguin parade, thus triggering specific fieldwork on this rather peculiar topic. Indeed,
at the moment, a precise collection of data focused on the penguin parade seems
to be still missing in the literature, and we think that a mathematical formulation
provides the necessary setting for describing specific behaviours in ethology, such
as the formation of groups and the possible isolation of penguins, in a rigorous and
quantitative way.

Given the simple and quantitative mathematical setting that we introduced here,
we also believe that our formulation can be easily modified and improved to capture
possible additional details of the penguins’ march provided by the biological data
which may be collected in future specialized fieldwork. We hope that this problem will
also take advantage of statistically sound observations by ecologists, possibly taking
into account the speed of the penguins in different environments, the formation of
groups of different size, the velocity of each group depending on its size and the links
between group formations motivated by homecoming and the social structures of the
penguin population.

Due to the lack of available biological theories and precise experimental data,
the form of some of the functions considered in this article should be viewed as an
example. This applies, in particular, to the strategic velocity function, the eyesight
function and the stopping function, and it would be ideal to run experiments to provide
a better quantification of these notions.

Also, it would be interesting to detect how changes in the environment such as
modified visibility or presence of predators influence the formation of groups, their
size and speed. In general, we think that it is very important to provide precise
conditions for clustering, and to explore these conditions systematically. In addition,
it would be desirable to adapt models of this type to social studies, politics and
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evolutionary biology, in order to describe and quantify the phenomenon of “front-
runners” who “wait for the formation of groups of considerable size” in order to “more
safely proceed towards their goal”.

Appendix

Example of a program listing

H=4; % Position of the burrow of the penguins community

S=-2; % The sea lies in the region (-\infty,0]. For simplicity we assume

that penguins start near the shore, that is, the initial position

of each penguin is at least S

eps=0.005; % Drift velocity of the penguins

vc=0.05; % Cruising speed of a big enough raft of penguins

N=20; % Number of penguins

delta=(N+1)*eps; % This parameter is used to compute the strategic

velocity of a penguin.

% These parameters define the time interval

TMAX=(H-S)/(2*eps);

t=0.01;

T=(0:t:TMAX);

TG=T(1:1,1:12000);

P=zeros(N,length(T));

% The following is the array of the initial positions of the N penguins

P(:,1)=[-1.95 -1.5 -1.05 -0.6 -0.55 -0.4 -0.2 0.1 0.2 0.4 0.8 0.85 0.9

1 1.1 1.15 1.2 1.65 3 3.4];

s=(H-S)/3; % The parameter encoding the eye-sight of the penguins

pgot=(H-S)/12; % The parameter representing the stopping function

M=zeros(1,N);

V=M;

PAN=-1;

W=0;

WAVE=sin(T)*delta; % The "environment function". In this case only

waves are taken into account

for k=1 : length(T)-1

for i=1 : N

if P(i,k)<H

for j=1: N % This cycle checks if the ith penguin is in panic

if -pgot<P(i,k)-P(j,k) & P(i,k)-P(j,k)<pgot

PAN=PAN+1;

if P(i,k)==P(j,k)

W=W+1; % This counts the number of penguins in the same

position as the ith penguin, that is, the dimension

of the raft
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end

end

end

if PAN==0 % The ith penguin is stuck because of panic

if -3.5<P(i,k) & P(i,k)<0

V(i)=-WAVE(k);

P(i,k+1)=P(i,k)+V(i)*t;

else

P(i,k+1)=P(i,k);

end

else

if W>N/2 % The ith penguin is a member of a big enough raft,

so it tends to go home, forgetful of the other penguins

if -3.5<P(i,k) & P(i,k)<0 % The environment can still affect

the movement of the raft

V(i)=vc-WAVE(k);

else

V(i)=vc; % If the environment does not affect the movement,

the penguin moves at cruise velocity

end

else % The raft is not big enough, so the strategic velocity

of the ith penguin is influenced by the other penguins in sight

for j=1 : N

if -s<P(i,k)-P(j,k) & P(i,k)-P(j,k)<0

M(i)=M(i)+delta/N; % Each penguin in sight ahead adds a

delta/N to the strategic velocity of the

ith penguin

else

if 0<P(i,k)-P(j,k) & P(i,k)-P(j,k)<s

M(i)=M(i)-delta/N; % Each penguin in sight behind

subtracts a delta/N from the strategic

velocity of the ith penguin

end

end

end

if -3.5<P(i,k) & P(i,k)<0

V(i)=eps+M(i)-WAVE(k);

else

V(i)=eps+M(i);

end

end

P(i,k+1)=P(i,k)+V(i)*t;

end

else

P(i,k+1)=H;

end

PAN=-1;

W=0;

end
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M=zeros(1,N);

for i=2 : N

for j=1 : i-1

if -0.011<P(j,k+1)-P(i,k+1) & P(j,k+1)-P(i,k+1)<0.011

P(j,k+1)=P(i,k+1); % For simplicity, we assume that penguins

close enough occupy the same position, forming a raft

and moving together

end

end

end

end

Q=P(1:N,1:length(TG));

plot(TG,Q)
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