
JFP 34, e2, 50 pages, 2024. c© The Author(s), 2024. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is
properly cited.
doi:10.1017/S0956796823000126

SPARCL: A language for partially invertible
computation

K A Z U T A K A M A T S U D A
Tohoku University, 6-3-09 Aramaki, Aza-Aoba, Aoba-ku, Sendai, Japan

(e-mail: kztk@tohoku.ac.jp)

M E N G W A N G
University of Bristol, BS8 1TH, Bristol, UK

(e-mail: meng.wang@bristol.ac.uk)

Abstract

Invertibility is a fundamental concept in computer science, with various manifestations in soft-
ware development (serializer/deserializer, parser/printer, redo/undo, compressor/decompressor, and
so on). Full invertibility necessarily requires bijectivity, but the direct approach of composing bijec-
tive functions to develop invertible programs is too restrictive to be useful. In this paper, we take a
different approach by focusing on partially invertible functions—functions that become invertible if
some of their arguments are fixed. The simplest example of such is addition, which becomes invert-
ible when fixing one of the operands. More involved examples include entropy-based compression
methods (e.g., Huffman coding), which carry the occurrence frequency of input symbols (in cer-
tain formats such as Huffman tree), and fixing this frequency information makes the compression
methods invertible.

We develop a language SPARCL for programming such functions in a natural way, where partial
invertibility is the norm and bijectivity is a special case, hence gaining significant expressiveness
without compromising correctness. The challenge in designing such a language is to allow ordinary
programming (the “partially” part) to interact with the invertible part freely, and yet guarantee invert-
ibility by construction. The language SPARCL is linear-typed and has a type constructor to distinguish
data that are subject to invertible computation and those that are not. We present the syntax, type sys-
tem, and semantics of the language and prove that SPARCL correctly guarantees invertibility for its
programs. We demonstrate the expressiveness of SPARCL with examples including tree rebuilding
from preorder and inorder traversals, Huffman coding, arithmetic coding, and LZ77 compression.

1 Introduction

Invertible computation, also known as reversible computation in physics and more
hardware-oriented contexts, is a fundamental concept in computing. It involves com-
putations that run both forward and backward so that the forward/backward semantics
form a bijection. (In this paper, we do not concern ourselves with the totality of func-
tions. We call a function a bijection if it is bijective on its actual domain and range,
instead of its formal domain and codomain.) Early studies of invertible computation arise

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796823000126
https://orcid.org/0000-0002-9747-4899
mailto:kztk@tohoku.ac.jp
https://orcid.org/0000-0001-7780-630X
mailto:meng.wang@bristol.ac.uk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956796823000126&domain=pdf
https://doi.org/10.1017/S0956796823000126

2 K. Matsuda and M. Wang

from the effort to reduce heat dissipation caused by information-loss in the traditional
(unidirectional) computation model (Landauer, 1961). More modern interpretations of
the problem include software concerns that are not necessarily connected to the phys-
ical realization. Examples of such include developing pairs of programs that are each
other’s inverses: serializer and deserializer (Kennedy & Vytiniotis, 2012), parser and
printer (Rendel & Ostermann, 2010; Matsuda & Wang, 2013, 2018b), compressor and
decompressor (Srivastava et al., 2011), and also auxiliary processes in other program
transformations such as bidirectionalization (Matsuda et al., 2007).

Invertible (reversible) programming languages are languages that offer primitive sup-
port to invertible computations. Examples include Janus (Lutz, 1986; Yokoyama et al.,
2008), Frank’s R (Frank, 1997), �-Lisp (Baker, 1992), RFun (Yokoyama et al., 2011),
�/�o (James & Sabry, 2012), and Inv (Mu et al., 2004b). The basic idea of these program-
ming languages is to support deterministic forward and backward computation by local
inversion: if a forward execution issues (invertible) commands c1, c2, and c3 in this order,
a backward execution issues corresponding inverse commands in the reverse order, as c−1

3 ,
c−1

2 , and c−1
1 . This design has a strong connection to the underlying physical reversibility

and is known to be able to achieve reversible Turing completeness (Bennett, 1973); i.e., all
computable bijections can be defined.

However, this requirement of local invertibility does not always match how high-level
programs are naturally expressed. As a concrete example, let us see the following toy
program that computes the difference of two adjacent elements in a list, where the first
element in the input list is kept in the output. For example, we have subs [1, 2, 5, 2, 3]=
[1, 1, 3,−3, 1].

subs :: [Int]→ [Int]
subs xs= goSubs 0 xs

goSubs :: Int→ [Int]→ [Int]
goSubs [] = []
goSubs n (x : xs)= (x− n) : goSubs x xs

Despite being simple, these kind of transformations are nevertheless useful. For example,
a function similar to subs can be found in the preprocessing step of image compression
algorithms such as those used for PNG.1 Another example is the encoding of bags (multi-
sets) of integers, where subs can be used to convert sorted lists to lists of integers without
any constraints (Kennedy & Vytiniotis, 2012).

The function subs is invertible. We can define its inverse as below.

subs−1 :: [Int]→ [Int]
subs−1 ys= goSubs′ 0 ys

goSubs′ :: Int→ [Int]→ [Int]
goSubs′ [] = []
goSubs′ n (y : ys)= let x= y+ n in x : goSubs′ x ys

However, subs cannot be expressed directly in existing reversible programming languages.
The problem is that, though subs is perfectly invertible, its subcomponent goSubs is not

1 https://www.w3.org/TR/2003/REC-PNG-20031110/.

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://www.w3.org/TR/2003/REC-PNG-20031110/
https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 3

(its first argument is discarded in the empty-list case, and thus the function is not injective).
Similar problems are also common in adaptive compression algorithms, where the model
(such as a Huffman tree or a dictionary) grows in the same way in both compression and
decompression, and the encoding process itself is only invertible after fixing the model at
the point.

In the neighboring research area of program inversion, which studies program transfor-
mation techniques that derive f −1 from f ’s defintion, functions like goSubs are identified as
partially invertible. Note that this notion of partiality is inspired by partial evaluation, and
partial inversion (Romanenko, 1991; Nishida et al., 2005; Almendros-Jiménez & Vidal,
2006) allows static (or fixed) parameters whose values are known in inversion and there-
fore not required to be invertible (for example the first argument of goSubs). (To avoid
potential confusion, in this paper, we avoid the use of “partial” when referring to total-
ity, and use the phrase “not-necessarily-total” instead.) However, program inversion by
itself does not readily give rise to a design of invertible programming language. Like
most program transformations, program inversion may fail, and often for reasons that are
not obvious to users. Indeed, the method by Nishida et al. (2005) fails for subs, and for
some other methods (Almendros-Jiménez & Vidal, 2006; Kirkeby & Glück, 2019, 2020),
success depends on the (heuristic) processing order of the expressions.

In this paper, we propose a novel programming language SPARCL2 that for the first
time addresses the practical needs of partially invertible programs. The core idea of our
proposal is based on a language design that allows invertible and conventional unidirec-
tional computations, which are distinguished by types, to coexist and interact in a single
definition. Specifically, inspired by Matsuda & Wang (2018c), our type system contains
a special type constructor (−)• (pronounced as “invertible”), where A• represents A-typed
values that are subject to invertible computation. However, having invertible types like A•

only solves half of the problem. For the applications we consider, exemplified by subs, the
unidirectional parts (the first argument of goSubs) may depend on the invertible part (the
second argument of goSubs), which complicates the design. (This is the very reason why
Nishida et al. (2005)’s partial inversion fails for subs. In other words, a binding-time anal-
ysis (Gomard & Jones, 1991) is not enough (Almendros-Jiménez & Vidal, 2006).) This
interaction demands conversion from invertible values of type A• to ordinary ones of type
A, which only becomes feasible when we leverage the fact that such values can be seen as
static (in the sense of partial inversion (Almendros-Jiménez & Vidal, 2006)) if the values
are already known in both forward and backward directions. The nature of reversibility
suggests linearity or relevance (Walker, 2004), as discarding of inputs is intrinsically irre-
versible. In fact, reversible functional programming languages (Baker, 1992; Mu et al.,
2004b; Yokoyama et al., 2011; James & Sabry, 2012; Matsuda & Wang, 2013) commonly
assume a form of linearity or relevance, and in SPARCL this assumption is made explicit
by a linear type system based on λq→ (the core system of Linear Haskell (Bernardy et al.,
2018)).

As a teaser, an invertible version of subs in SPARCL is shown in Figure 1.3 In SPARCL,
invertible functions from A to B are represented as functions of type A•� B•, where � is

2 The name stands for “a system for partially reversible computation with linear types”.
3 We use a Haskell-like syntax in this paper for readability, although our prototype implementation (https://
github.com/kztk-m/sparcl) uses simple non-indentation-sensitive syntax that requires more keywords
for parsing.

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://github.com/kztk-m/sparcl
https://github.com/kztk-m/sparcl
https://doi.org/10.1017/S0956796823000126

4 K. Matsuda and M. Wang

subs : (List Int)•� (List Int)•

subs xs= goSubs 0 xs

goSubs : Int→ (List Int)•� (List Int)•

goSubs Nil• =Nil• with null
goSubs n (Cons x xs)• =

let (x, r)• = pin x (λx′.goSubs x′ xs) in -- x′ : Int is a static version of x : Int•.
Cons• (sub n x) r with not ◦ null

sub : Int→ Int•� Int•

sub n= lift (λx.x− n) (λx.x+ n)

Fig. 1. Invertible subs in SPARCL.

the constructor for linear functions. Partial invertibility is conveniently expressed by tak-
ing additional parameters as in Int→ Int•� Int• and Int→ (List Int)•� (List Int)•. The
pin : A•� (A→ B•) � (A⊗ B)• operator converts invertible objects into unidirectional
ones. It captures a snapshot of its invertible argument and uses the snapshot as a static
value in the body to create a safe local scope for the recursive call. Both the invertible
argument and evaluation result of the body are returned as the output to preserve invertibil-
ity. The with conditions associated with the branches can be seen as postconditions which
will be used for invertible case branching. We leave the detailed discussion of the language
constructs to later sections, but would like to highlight the fact that looking beyond the sur-
face syntax, the definition is identical in structure to how subs is defined in a conventional
language: goSubs has the same recursive pattern with two cases for empty and nonempty
lists. This close resemblance to the conventional programming style is what we strive for
in the design of SPARCL.

What SPARCL brings to the table is bijectivity guaranteed by construction (potentially
with partially invertible functions as auxiliary functions). We can run SPARCL programs
in both directions, for example as below, and it is guaranteed that fwd e v results in v′ if
and only if bwd e v′ results in v (fwd and bwd are primitives for forward and backward
executions).

> fwd subs [1, 2, 5, 2, 3]
[1, 1, 3,−3, 1]
> bwd subs [1, 1, 3,−3, 1]
[1, 2, 5, 2, 3]

This guarantee of bijectivity is clearly different from the case of (functional) logic
programming languages such as Prolog and Curry. Those languages rely on (lazy) generate-
and-test (Antoy et al., 2000) to find inputs corresponding to a given output, a technique that
may be adopted in the context of inverse computation (Abramov et al., 2006). However,
the generate-and-test strategy has the undesirable consequence of making reversible pro-
gramming less apparent: it is unclear to programmers whether they are writing bijective
programs that may be executed deterministically. Moreover, lazy generation of inputs
may cause unpredictable overhead, whereas in reversible languages (Lutz, 1986; Baker,
1992; Frank, 1997; Mu et al., 2004b; Yokoyama et al., 2008, 2011; James & Sabry, 2012)
including SPARCL, the forward and backward executions of a program take the same steps.

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 5

One might notice from the type of pin that SPARCL is a higher-order language, in the
sense that it contains the simply-typed λ-calculus (more precisely, the simple multiplicity
fragment of λq→ (Bernardy et al., 2018)) as a subsystem. Thus, we can, for example, write
an invertible map function in SPARCL as below.

mapR : (a•� b•)→ (List a)• → (List b)•

mapR f Nil• =Nil• with null
mapR f (Cons x xs)• = Cons• (f x) (mapR f xs) with not ◦ null

Ideally, we want to program invertible functions by using higher-order functions. But it
is not possible. It is known that there is no higher-order invertible languages where �
always denotes (not-necessarily-total) bijections. In contrast, there is no issue on having
first-order invertible languages as demonstrated by existing reversible languages (see, e.g.,
RFun (Yokoyama et al., 2011)). Thus, the challenge of designing a higher-order invertible
languages lies in finding a sweet spot such that a certain class of functions denote (not-
necessarily-total) bijections and programmers can use higher-order functions to abstract
computation patterns. Partial invertibility plays an important role here, as functions can be
used as static inputs or outputs without violating invertibility. Though this idea has already
been considered in the literature (Almendros-Jiménez & Vidal, 2006; Mogensen, 2008;
Jacobsen et al., 2018) while with restrictions (specifically, no closures), and the advantage
is inherited from Matsuda & Wang (2018c) from which SPARCL is inspired, we claim that
SPARCL is the first invertible programming language that achieved a proper design for
higher-order programming.

In summary, our main contributions are as follows:

• We design SPARCL, a novel higher-order invertible programming language that
captures the notion of partial invertibility. It is the first language that handles both
clear separation and close integration of unidirectional and invertible computations,
enabling new ways of structuring invertible programs. We formally specify the
syntax, type system, and semantics of its core system named λPI→ (Section 3).

• We state and prove several properties about λPI→ (Section 3.6), including sub-
ject reduction, bijectivity, and reversible Turing completeness (Bennett, 1973).
We do not state the progress property directly, which is implied by our defini-
tional (Reynolds, 1998) interpreter written in Agda4 (Section 4).

• We demonstrate the utility of SPARCL with nontrivial examples: tree rebuilding
from inorder and preoder traversals (Mu & Bird, 2003) and simplified versions
of compression algorithms including Huffman coding, arithmetic coding, and
LZ77 (Ziv & Lempel, 1977) (Section 5).

In addition, a prototype implementation of SPARCL is available from https://github.
com/kztk-m/sparcl,which also contains more examples. All the artifacts are linked from
the SPARCL web page (https://bx-lang.github.io/EXHIBIT/sparcl.html).5

4 Available from https://github.com/kztk-m/sparcl-agda.
5 The code is archived on Software Heritage: https://archive.softwareheritage.org/swh:1:rev:
c3ed8ceb583472de673e5e3804a01ef0bd51a050 and https://archive.softwareheritage.org/
swh:1:rev:9750a5aa7626b7bf122bf82c8f57a0af469be81e.

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://github.com/kztk-m/sparcl
https://github.com/kztk-m/sparcl
https://bx-lang.github.io/EXHIBIT/sparcl.html
https://github.com/kztk-m/sparcl-agda
https://archive.softwareheritage.org/swh:1:rev:c3ed8ceb583472de673e5e3804a01ef0bd51a050
https://archive.softwareheritage.org/swh:1:rev:c3ed8ceb583472de673e5e3804a01ef0bd51a050
https://archive.softwareheritage.org/swh:1:rev:9750a5aa7626b7bf122bf82c8f57a0af469be81e
https://archive.softwareheritage.org/swh:1:rev:9750a5aa7626b7bf122bf82c8f57a0af469be81e
https://doi.org/10.1017/S0956796823000126

6 K. Matsuda and M. Wang

A preliminary version of this paper appeared in ICFP20 (Matsuda & Wang, 2020)
with the same title. The major changes include a description of our Agda implementa-
tion in Section 4 and the arithmetic coding and LZ77 examples in Sections 5.3 and 5.4.
Moreover, the related work section (Section 6) is updated to include work published after
the preliminary version (Matsuda & Wang, 2020).

2 Overview

In this section, we informally introduce the essential constructs of SPARCL and demon-
strate their use with small examples.

2.1 Linear-typed programming

Linearity (or weaker relevance) is commonly adopted in reversible functional lan-
guages (Baker, 1992; Mu et al., 2004b; Yokoyama et al., 2011; James & Sabry, 2012;
Matsuda & Wang, 2013) to exclude noninjective functions such as constant functions.
SPARCL is no exception (we will revisit its importance in Section 2.3) and adopts a lin-
ear type system based on λq→ (the core system of Linear Haskell (Bernardy et al., 2018)).
A feature of the type system is its function type A→p B, where the arrow is annotated by
the argument’s multiplicity (1 or ω). Here, A→1 B denotes linear functions that use the
input exactly once, while A→ω B denotes unrestricted functions that have no restriction on
the use of its input. The following are some examples of linear and unrestricted functions.

id : a→1 a
id x= x

double : Int→ω Int
double x= x+ x

const : a→1 b→ω a
const x y= x

Observe that the double used x twice and const discards y; hence, the corresponding arrows
must be annotated by ω. The purpose of the type system is to ensure bijectivity. But having
linearity alone is not sufficient. We will come back to this point after showing invertible
programming in SPARCL. Readers who are familiar with linear-type systems that have the
exponential operator ! (Wadler, 1993) may view A→ω B as !A � B.

A small deviation from the (simply-typed fragment of) λq→ is that SPARCL is
equipped with rank-1 polymorphism with qualified typing (Jones, 1995) and type infer-
ence (Matsuda, 2020). For example, the system infers the following types for the following
functions.

id : a→p a
id x= x

const : a→p b→ a
const x y= x

app : (p≤ q)⇒ (a→p b)→r a→q b
app f x= f x

In first two examples, p is arbitrary (i.e., 1 or ω); in the last example, the predicate p≤ q
states an ordering of multiplicity, where 1≤ω.6 This predicate states that if an argument
is linear then it cannot be passed to an unrestricted function, as an unrestricted function
may use its argument arbitrary many times. A more in-depth discussion of the surface type
system is beyond the scope of this paper, but note that unlike the implementation of Linear

6 For curious readers, we note that the inequality predicate is sufficient for typing our core system (Section 3)
where constructors have linear types (Matsuda, 2020).

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 7

Haskell as of GHC 9.0.X7 which checks linearity only when type signatures are given
explicitly, SPARCL can infer linear types thanks to the use of qualified typing.

For simplicity, we sometimes write � for →1 and simply → for →ω when showing
programming examples in SPARCL.

2.2 Multiplication

One of the simplest examples of partially invertible programs is multiplication (Nishida
et al., 2005). Suppose that we have a datatype of natural numbers defined as below.

data Nat= Z | S Nat

In SPARCL, constructors have linear types: Z : Nat and S : Nat�Nat.
We define multiplication in term of addition, which is also partially invertible.8

add : Nat→Nat•�Nat•

add Z y= y
add (S x) y= S• (add x y)

As mentioned in the introduction, we use the type constructor (−)• to distinguish data that
are subject to invertible computation (such as Nat•) and those that are not (such as Nat):
when the latter is fixed, a partially invertible function is turned into a (not-necessarily-total)
bijection, for example, add n : Nat•�Nat•. (For those who read the paper with colors,
the arguments of (−)• are highlighted in dark red.) Values of (−)•-types are constructed
by lifted constructors such as S• : Nat•�Nat•. In the forward direction, S• applies S to
the input, and in the backward direction, it strips one S (and the evaluation gets stuck if Z is
found). In general, since constructors by nature are always bijective (though not necessarily
total in the backward direction), every constructor C : σ1 � . . .� σn � τ automatically
give rise to a corresponding lifted version C• : σ1

•� . . .� σn
•� τ •.

A partially invertible multiplication function can be defined by using add as below.9

mul : Nat→Nat•�Nat•

mul z Z• = Z• with isZ
mul z (S x)• = add z (mul z x) with not ◦ isZ

An interesting feature in the mul program is the invertible pattern matching (Yokoyama
et al., 2008) indicated by patterns Z• and (S x)• (here, we annotate patterns instead of
constructors). Invertible pattern matching is a branching mechanism that executes bidi-
rectionally: the forward direction basically performs the standard pattern matching, the
backward direction employs an additional with clause to determine the branch to be taken.
For example, mul n : Nat•�Nat•, in the forward direction, values are matched against
the forms Z and S x; in the backward direction, the with conditions are checked upon an

7 The GHC 9.6.2 user manual: “Linear and multiplicity-polymorphic arrows are always declared, never
inferred.” (https://downloads.haskell.org/ghc/9.6.2/docs/users_guide/exts/linear_types.
html#linear-types-references).

8 This type is an instance of the most general type Nat→p Nat• →q Nat• of add; recall that there is no prob-
lem in using unrestricted inputs only once. We want to avoid overly polymorphic functions for simplicity of
presentation.

9 Nishida et al. (2005) discusses a slightly more complicated but efficient version.

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://downloads.haskell.org/ghc/9.6.2/docs/users_guide/exts/linear_types.html#linear-types-references
https://downloads.haskell.org/ghc/9.6.2/docs/users_guide/exts/linear_types.html#linear-types-references
https://doi.org/10.1017/S0956796823000126

8 K. Matsuda and M. Wang

output of the function mul n: if isZ : Nat→Bool returns True, the first branch is chosen,
otherwise the second branch is chosen. When the second branch is taken, the backward
computation of add n is performed, which essentially subtracts n, followed by recursively
applying the backward computation of mul n to the result. As the last step, the final result is
enclosed with S and returned. In other words, the backward behavior of mul n recursively
tries to subtract n and returns the count of successful subtractions.

In SPARCL, with conditions are provided by programmers and expected to be exclusive;
the conditions are enforced at run-time: the with conditions are asserted to be postcon-
ditions on the branches’ values. Specifically, the branch’s with condition is a positive
assertion while all the other branches’ ones are negative assertions. Thus, the forward
computation fails when the branch’s with condition is not satisfied, or any of the other
with conditions is also satisfied. This exclusiveness enables the backward computation to
uniquely identify the branch (Lutz, 1986; Yokoyama et al., 2008). Sometimes we may omit
the with condition of the last branch, as it can be inferred as the negation of the conjunc-
tion of all the others. For example, in the definition of goSubs the second branch’s with
condition is not ◦ null. One could use sophisticated types such as refinement types to infer
with-conditions and even statically enforce exclusiveness instead of assertion checking.
However, we stick to simple types in this paper as our primal goal is to establish the basic
design of SPARCL.

An astute reader may wonder what bijection mul Z defines, as zero times n is zero for
any n. In fact, it defines a non-total bijection that in the forward direction the domain of
the function contains only Z, i.e., the trivial bijection between {Z} and {Z}.

2.3 Why linearity itself is insufficient but still matters

The primal role of linearity is to prohibit values from being discarded or copied, and
SPARCL is no exception. However, linearity itself is insufficient for partially invertible
programming.

To start with, it is clear that � is not equivalent to not-necessarily-total bijections. For
example, the function λx.x (λy.y) (λz.z) : ((σ � σ) � (σ � σ) � (σ � σ)) � σ � σ

returns λy.y for both λf .λg.λx.f (g x) and λf .λg.λx.g (f x). Theoretically, this comes from
the fact that the category of (not-necessarily-total) bijections is not (monoidal) closed.
Thus, as discussed above, the challenge is to find a sweet spot where a certain class of
functions denote (not-necessarily-total) bijections.

It is known that a linear calculus concerning tensor products (⊗) and linear functions
(�) (even with exponentials (!)) can be modeled in the Int-construction (Joyal et al.,
1996) of the category of not-necessarily-total bijections (Abramsky et al., 2002; Abramsky,
2005). Here, roughly speaking, first-order functions on base types can be understood as
not-necessarily-total bijections. However, it is also known that such a system cannot be
easily extended to include sum-types nor invertible pattern matching (Abramsky, 2005,
Section 7).

Moreover, linearity does not express partiality as in partially invertible computations.
For example, without the (−)• types, function add can have type Nat�Nat�Nat (note
the linear use of the first argument), which does not specify which parameter is a fixed
one. It even has type Nat⊗Nat�Nat after uncurrying though addition is clearly not

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 9

fully invertible. These are the reasons why we separate the invertible world and the uni-
directional world by using (−)•, inspired by staged languages (Nielson & Nielson, 1992;
Moggi, 1998; Davies & Pfenning, 2001). Readers familiar with staged languages may see
A• as residual code of type A, which will be executed forward or backward at the second
stage to output or input A-typed values.

On the other hand, (−)• does not replace the need for linearity either. Without linear-
ity, (−)•-typed values may be discarded or duplicated, which may lead to non-bijectivity.
Unlike discarding, the exclusion of duplication is debatable as the inverse of duplica-
tion can be given as equality check (Glück and Kawabe, 2003). So it is our design
choice to exclude duplication (contraction) in addition to discarding (weakening) to avoid
unpredictable failures that may be caused by the equality checks. Without contraction,
users are still able to implement duplication for datatypes with decidable equality (see
Section 5.1.3). However, this design requires duplication (and the potential of failing) to be
made explicit, which improves the predictability of the system. Having explicit duplication
is not uncommon in this context (Mu et al., 2004b; Yokoyama et al., 2011).

Another design choice we made is to admit types like (A � B)• and (A•)• to simplify the
formalization; otherwise, kinds will be needed to distinguish types that can be used in (−)•

from general types, and subkinding to allow running and importing bijections (Sections 2.4
and 2.5). Such types are not very useful though, as function- or invertible-typed values
cannot be inspected during invertible computations.

2.4 Running reversible computation

SPARCL provides primitive functions to execute invertible functions in either directions:
fwd : (A•� B•)→ A→ B and bwd : (A•� B•)→ B→ A. For example, we have:

> fwd (add (S Z)) (S Z) -- (1+) 1
S (S Z) -- = 2
> bwd (add (S Z)) (S (S Z)) -- (1+)−1 2
S Z -- = 1
> fwd (mul (S (S Z))) (S (S (S Z))) -- (2×) 3
S (S (S (S (S (S Z))))) -- = 6
> bwd (mul (S (S Z))) (S (S (S (S (S (S Z)))))) -- (2×)−1 6
S (S (S Z)) -- = 3

Of course, the forward and backward computations may not be total. For example, the
following expression (legitimately) fails.

> bwd (mul (S (S Z))) (S (S (S Z))) -- (2×)−1 3
Runtime Error:...

The guarantee SPARCL offers is that derived bijections are total with respect to the func-
tions’ actual domains and ranges; i.e., fwd e v results in u, then bwd e u results in v, and
vice versa (Section 3.6.2).

Linearity plays a role here. Linear calculi are considered resource-aware in the sense
that linear variables will be lost once used. In our case, resources are A•-typed values, as
A• represents (a part of) an input or (a part of) an output of a bijection being constructed,

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

10 K. Matsuda and M. Wang

which must be retained throughout the computation. This is why the first argument of
fwd/bwd is unrestricted rather than linear. Very roughly speaking, an expression that can
be passed to an unrestricted function cannot contain linear variables, or “resources”. Thus,
a function of type A•� B• passed to fwd/bwd cannot use any resources other than one
value of type A• to produce one value of type B•. In other words, all and only information
from A• is retained in B•, guaranteeing bijectivity. As a result, SPARCL’s type system
effectively rejects code like bwd (λx.Z•) and bwd

(
λx.if fwd (λ()•.x) () then Z• else Z•

)
as x’s multiplicity is ω in both cases. In the former case, x is discarded and multiplicity in
our system is either 1 or ω. In the latter case, x appears in the first argument of fwd, which
is unrestricted.

2.5 Importing existing invertible functions

Bijectivity is not uncommon in computer science or mathematics, and there already exist
many established algorithms that are bijective. Examples include nontrivial results in
number theory or category theory, and manipulation of primitive or sophisticated data
structures such as Burrows-Wheeler transformations on suffix arrays.

Instead of (re)writing them in SPARCL, the language provides a mechanism to directly
import existing bijections (as a pair of functions) to construct valid SPARCL programs:
lift : (A→ B)→ (B→ A)→ A•� B• converts a pair of functions into a function on (−)•-
typed values, expecting that the pair of functions form mutual inverses. For example, by
lift, we can define addInt as below

addInt : Int→ Int•� Int•

addInt n= lift (λx.x+ n) (λx.x− n)

The use of lift allows one to create primitive bijections to be composed by the vari-
ous constructs in SPARCL. Another interesting use of lift is to implement in-language
inversion.

invert : (A•� B•)→ (B•� A•)
invert h= lift (bwd h) (fwd h)

2.6 Composing partially invertible functions

Partially invertible functions in SPARCL expect arguments of both (−)• and non-(−)•

types, which sometimes makes the calling of such functions interesting. This phenomenon
is particularly noticeable in recursive calls where values of type A• may need to be fed
into function calls expecting values of type A. In this case, it becomes necessary to convert
A•-typed values to A-typed one. To avoid the risk of violating invertibility, such conver-
sions are carefully managed in SPARCL through a special function pin : A•� (A→ B•) �
(A⊗ B)•, inspired by the depGame function in Kennedy & Vytiniotis (2012) and reversible
updates (Axelsen et al., 2007) in reversible imperative languages (Lutz, 1986; Frank, 1997;
Yokoyama et al., 2008; Glück & Yokoyama, 2016). The function pin creates a static snap-
shot of its first argument (A•) and uses the snapshot (A) in its second argument. Bijectivity

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 11

of a function involving pin is guaranteed as the original A• value is retained in the out-
put (A⊗ B)• together with the evaluation result of the second argument (B•). For example,
λ(x, y)•.pin x (λx′.add x′ y), which defines the mapping between (n, m) and (n, n+m), is
bijective. We will define the function pin and formally state the correctness property in
Section 3.

Let us revisit the example in Section 1. The partially invertible version of goSubs can be
implemented via pin as below.

goSubs : Int→ (List Int)•� (List Int)•

goSubs Nil• =Nil• with null
goSubs n (Cons x xs)• = (case pin x (λx′.goSubs x′xs) of

(x, r)• → Cons• (sub n x) r with λ .True) with not ◦ null

Here, we used pin to convert x : Int• to x′ : Int in order to pass it to the recursive call of
goSubs. In the backward direction, goSubs n executes as follows.10

bwd (goSubs 0) [1, 1, 3,−3, 1]
= { Cons branch is taken; Cons (sub 0 x) r= [1, 1, 3,−3, 1]=⇒ x= 1, r= [1, 3,−3, 1]. }

Cons 1 (bwd (goSubs 1) [1, 3,−3, 1])
= { Cons branch is taken; Cons (sub 1 x) r= [1, 3,−3, 1]=⇒ x= 2, r= [3,−3, 1]. }

Cons 1 (Cons 2 (bwd (goSubs 2) [3,−3, 1]))
= { Cons branch is taken; Cons (sub 2 x) r= [3,−3, 1]=⇒ x= 5, r= [−3, 1]. }

Cons 1 (Cons 2 (Cons 5 (bwd (goSubs 5) [−3, 1])))
= . . .

= Cons 1 (Cons 2 (Cons 5 (Cons 2 (Cons 3 (bwd (goSubs 3) [])))))
= {Nil branch is taken. }

Cons 1 (Cons 2 (Cons 5 (Cons 2 (Cons 3 Nil)))))= [1, 2, 5, 2, 3]

Note that the first arguments of (recursive) calls of goSubs (which are static) have the same
values (1, 2, 5, 2, and 3) in both forward/backward executions, distinguishing their uses
from those of the invertible arguments. As one can see, goSubs n behaves exactly like the
hand-written goSubs′ in subs−1 which is reproduced below.

goSubs′ [] = []
goSubs′ n (y : ys)= let x= y+ n in x : goSubs′ x ys

The use of pin commonly results in an invertible case with a single branch, as we see
in goSubs above. We capture this pattern with an invertible let as a shorthand notation,
which enables us to write let p• = e1 in e2 for case e1 of {p• → e2 with λ .True}. The
definition of goSubs shown in Section 1 uses this shorthand notation, which is reproduced
in Figure 2(a).

We would like to emphasize that partial invertibility, as supported in SPARCL, is key
to concise function definitions. In Figure 2, we show side-by-side two versions of the
same program written in the same language: the one on the left allows partial invertibility
whereas the one on the right requires all functions (include the intermediate ones) to be
fully invertible (note the different types in the two versions of goSubs and sub). As a result,

10 This execution trace is (overly) simplified for illustration purpose. See Section 3.5 for the actual operational
semantics.

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

12 K. Matsuda and M. Wang

subs : (List Int)•� (List Int)•
subs xs= goSubs 0 xs

goSubs : Int→ (List Int)•� (List Int)•
goSubs Nil• =Nil• with null
goSubs n (Cons x xs)• =

let (x, r)• = pin x (λx′.goSub x′ xs) in
Cons• (sub n x) r with not ◦ null

sub : Int→ Int•� Int•
sub n= lift (λx.x− n) (λx.x+ n)

(a) partially invertible version

subsF : (List Int)•� (List Int)•
subsF xs= let (0, r)• = goSubsF 0• xs in r

goSubsF : Int•� (List Int)•� (Int⊗ List Int)•
goSubsF n Nil• = (n, Nil•)• with null ◦ snd
goSubsF n (Cons x xs)• =

let (x, r)• = goSubsF x xs in
let (n, x′)• = subF (n, x)• in
(n, Cons• x′ r)• with not ◦ null ◦ snd

subF : (Int⊗ Int)•� Int⊗ Int•
subF = lift (λ(n, x).(n, x− n)) (λ(n, x).(n, x+ n))

(b) fully invertible version

Fig. 2. Side-by-side comparison of partially invertible (a) and fully invertible (b) versions
of subs.

goSubsF is much harder to define and the code becomes fragile and error-prone. This
advantage of SPARCL, which is already evident in this small example, becomes decisive
when dealing with larger programs, especially those requiring complex manipulation of
static values (for example, the Huffman coding in Section 5.2).

We end this section with a theoretical remark. One might wonder why (−)• is not a
monad. This intuitively comes from the fact that the first and second stages are in different
languages (the standard one and an invertible one, respectively) with different semantics.
More formally, (−)•, which brings a type in the second stage into the first stage, forms a
functor, but the functor is not endo. Recall that A• represents residual code in an invertible
system of type A; that is, A• and its component A belong to different categories (though
we have not formally described them).11 One then might wonder whether (−)• is a relative
monad (Altenkirch et al., 2010). To form a relative monad, one needs to find a functor that
has the same domain and codomain as (the functor corresponding to) (−)•. It is unclear
whether there exists such a functor other than (−)• itself; in this case, the relative monad
operations do not provide any additional expressive power.

2.7 Implementations

We have implemented a proof-of-concept interpreter for SPARCL including the linear type
system, which is available from https://github.com/kztk-m/sparcl. The implemen-
tation adds two small but useful extensions to what is presented in this paper. First, the
implementation allows nonlinear constructors, such as MkUn : a→Un a which serves as
! and helps us to write a function that returns both linear and unrestricted results. Misusing
such constructors in invertible pattern matching is guarded against by the type system
(otherwise it may lead to discarding or copying of invertible values). Second, the imple-
mentation uses the first-match principle for both forward and backward computations. That
is, both patterns and with conditions are examined from top to bottom. Recall also that

11 For curious readers, we note our conjecture that (−)• corresponds to the Yoneda embedding for the CPO-
enriched category of (strict) bijections, analogous to Moggi (1998), although denotational semantics is outside
the scope of this paper.

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://github.com/kztk-m/sparcl
https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 13

the implementation uses a non-indentation-sensitive syntax for simplicity as mentioned in
Section 1.

It is worth noting that the implementation uses Matsuda (2020)’s type inference to infer
linear types effectively without requiring any annotations. Hence, the type annotations in
this paper are more for documentation purposes.

As part of our effort to prove type safety (subject reduction and progress), we also pro-
duced a parallel implementation in Agda to serve as proofs (Section 3.6), available from
https://github.com/kztk-m/sparcl-agda.

3 Core system: λPI→

This section introduces λPI→, the core system that SPARCL is built on. Our design mixes
ideas of linear-typed programming and meta-programming. As mentioned in Section 2.1,
the language is based on (the simple multiplicity fragment of) λq→ (Bernardy et al., 2018),
and, as mentioned in Section 2.3, it is also two-staged (Nielson & Nielson, 1992; Moggi,
1998) with different meta and object languages. Specifically, the meta stage is a usual call-
by-value language (i.e., unidirectional), and the object stage is an invertible language. By
having the two stages, partial invertibility is made explicit in this formalization.

In what follows, we use a number of notational conventions. A vector notation t denotes
a sequence such as t1, . . . , tn or t1; . . . ; tn, where each ti can be of any syntactic cate-
gory and the delimiter (such as “,” and “;”) can differ depending on the context; we also
refer to the length of the sequence by |t|. In addition, we may refer to an element in the
sequence t as ti. A simultaneous substitution of x1, . . . , xn in t with s1, . . . , sn is denoted as
t[s1/x1, . . . , sn/xn], which may also be written as t[s/x].

3.1 Central concept: Bijections at the heart

The surface language of SPARCL is designed for programming partially invertible func-
tions, which are turned into bijections (by fixing the static arguments) for execution. This
fact is highlighted in the core system λPI→ where we have a primitive bijection type A � B,
which is inhabited by bijections constructed from functions of type A•� B•. Technically,
having a dedicated bijection type facilitates reasoning. For example, we may now straight-
forwardly state that “values of a bijection type A � B are bijections between A and B”
(Corollary 3.4).

Accordingly, the fwd and bwd functions for execution in SPARCL are divided into
application operators 	 and
 that apply bijection-typed values and an unlift opera-
tor for constructing bijections from functions of type A•� B•. For example, we have
unlift (add (S Z)) : Nat�Nat (where add : Nat→Nat•�Nat• is defined in Section 2),
and the bijection can be executed as unlift (add (S Z)) 	 S Z resulting in S (S Z) and
unlift (add (S Z))
 S (S Z) resulting in S Z. In fact, the operators fwd and bwd are now
derived in λPI→, as fwd= λωh.λωx.unlift h 	 x and bwd= λωh.λωx.unlift h
 x.

Here, ω of λω indicates that the bound variable can be used arbitrary many. In contrast,
λ1 indicates that the bound variable must be used linearly. Hence, for example, λ1x.Z
and λ1x.(x, x) are ill-typed, while λ1x.x, λωx.Z and λωx.(x, x) are well-typed. Similarly, we
also annotate (unidirectional) cases with the multiplicity of the variables bound by pattern

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://github.com/kztk-m/sparcl-agda
https://doi.org/10.1017/S0956796823000126

14 K. Matsuda and M. Wang

matching. Thus, for example, case1 S Z of {S x→ (x, x)} and λ1x.caseω x of{S y→ Z} are
ill-typed.

3.2 Syntax

The syntax of λPI→ is given as below.

Expressions: e ::= x | λπx.e | e1 e2 | C e | caseπ e0 of {p→ e}
| C• e | case e0 of {p• → e with e′}
| pin e1 e2 | unlift e | e1 	 e2 | e1
 e2

Patterns: p ::= C x
Multiplicities: π ::= 1 |ω

There are three lines for the various constructs of expressions. The ones in the first line are
standard except the annotations in λ and case that determine the multiplicity of the vari-
ables introduced by the binders: π = 1 means that the bound variable is linear, and π =ω

means there is no restriction. These annotations are omitted in the surface language as they
are inferred. The second and third lines consist of constructs that deal with invertibility.
As mentioned above, unlift e, e1 	 e2, and e1
 e2 handles bijections which can be used
to encode fwd and bwd in SPARCL. We have already seen lifted constructors, invertible
case, and pin in Section 2. For simplicity, we assume that pin, C and C• are fully applied.
Lifted constructor expressions C• e and invertible cases are basic invertible primitives
in λPI→. They are enough to make our system reversible Turing complete (Bennett, 1973)
(Theorem 3.5); i.e., all bijections can be implemented in the language. For simplicity, we
assume that patterns are nonoverlapping both for unidirectional and invertible cases. We
do not include lift, which imports external code into SPARCL, as it is by definition unsafe.
Instead, we will discuss it separately in Section 3.7.

Different from conventional reversible/invertible programming languages, the con-
structs unlift (together with 	 and
) and pin support communication between the
unidirectional world and the invertible world. The unlift construct together with 	 and

 runs invertible computation in the unidirectional world. The pin operator is the key to
partiality; it enables us to temporarily convert a value in the invertible world into a value
in the unidirectional world.

3.3 Types

Types in λPI→ are defined as below.

A, B ::= α |T A | A→π B | A• | A � B

Here, α denotes a type variable, T denotes a type constructor, A→π B is a function type
annotated with the argument’s multiplicity π , (−)• marks invertibility, and A � B is a
bijection type.

Each type constructor T comes with a set of constructors C of type

C : A1 � A2 � · · ·� An �T α

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 15

with fv(Ai) ∈ {α} for any i.12 Type variables α are only used for types of constructors in the
language. For example, the standard multiplicative product⊗ and additive sum⊕ (Wadler,
1993) are represented by the following constructors.

(−,−) : α1 � α2 � α1 ⊗ α2 InL : α1 � (α1 ⊕ α2) InR : α2 � (α1 ⊕ α2)

We assume that the set of type constructors at least include ⊗ and Bool, where Bool has
the constructors True : Bool and False : Bool. Types can be recursive via constructors; for
example, we can have a list type List α with the following constructors.

Nil : List α Cons : α � List α � List α

We may write A � B for A1 � A2 � · · ·� An � B (when n is zero, A � B is B). We
shall also instantiate constructors implicitly and write C : A′�T B when there is a con-
structor C : A �T α and A′i = Ai[B/α] for each i. Thus, we assume all types in our
discussions are closed.

Negative recursive types are allowed in our system, which, for example, enables us to
define general recursions without primitive fixpoint operators. Specifically, via F with the
constructor MkF : (F α→ α) � F α, we have a fixpoint operator as below.

fixπ � λωf .λπa.
(
λωx.λπa.f (out x x) a

) (
MkF (λωx.λπa.f (out x x) a)

)
a

where out � λ1x.case1 x of {MkF t→ t}
Here, out has type F C � F C→C for any C (in this case C= A→π B), and thus fixπ has
type ((A→π B)→ (A→π B))→ A→π B.

The most special type in the language is A•, which is the invertible version of A. More
specifically, the invertible type A• represents residual code in an invertible system that are
executed forward and backward at the second stage to output and input A-typed values.
Values of type A• must be treated linearly and can only be manipulated by invertible oper-
ations, such as lifted constructors, invertible pattern matching, and pin. To keep our type
system simple, or more specifically single-kinded, we allow types like (A � B)• and (A•)•,
while the category of (not-necessarily-total) bijections are not closed and λPI→ has no third
stage. These types do not pose any problem, as such components cannot be inspected in
invertible computation by any means (except in with conditions, which are unidirectional,
i.e., run at the first stage).

Note that we consider the primitive bijection types A � B as separate from (A→ B)⊗
(B→ A). This separation is purely for reasoning; in our theoretical development, we will
show that A � B denotes pairs of functions that are guaranteed to form (not-necessarily-
total) bijections (Corollary 3.4).

3.4 Typing relation

A typing environment is a mapping from variables x to pairs of type A and its multiplicity π ,
meaning that x has type A and can be used π -many times. We write x1 :π1 A1, . . . , xn :πn Bn

instead of {x1 → (A1, π1), . . . , xn → (Bn, πn)} for readability and write ε for the empty

12 For simplicity, we assume a constructor can only have linear fields. Extending our discussions to constructors
with unrestricted field is straightforward for the unidirectional part of the language. Such constructors cannot
appear as lifted constructors and patterns in invertible cases.

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

16 K. Matsuda and M. Wang

environment. Reflecting the two stages, we adopt a dual context system (Davies &
Pfenning, 2001), which has unidirectional and invertible environments, denoted by � and
� respectively. This separation of the two is purely theoretical, for the purpose of facili-
tating reasoning when we interpret A•-typed expressions that are closed in unidirectional
variables but may have free variables in � as bijections. In fact, our prototype imple-
mentation does not distinguish the two environments. For all invertible environments �,
without the loss of generality we assume that the associated multiplicities must be 1, i.e.,
�(x)= (Ax, 1) for any x ∈ dom(�). Thus, we shall sometimes omit multiplicities for �.
This assumption is actually an invariant in our system since any variables introduced in
� must have multiplicity 1. We make this explicit in order to simplify the theoretical
discussions. Moreover, we assume that the domains of � and � are disjoint.

Given two unidirectional typing environments �1 and �2, we define the addition �1 + �2

as below.

(�1 + �2)(x)=
{

(A, ω) if �1(x)= (A,) and �2(x)= (A,)

(A, π) if �i(x)= (A, π) and x �∈ dom(�j) for some i �= j ∈ {1, 2}
If dom(�1) and dom(�2) are disjoint, we sometimes write �1, �2 instead of �1 + �2

to emphasize the disjointness. A similar addition applies to invertible environments.
But as only multiplicity 1 is allowed in �, �1 +�2 =� implicitly implies dom(�1)∩
dom(�2)=∅.

We define multiplication of multiplicities as below.

1π = π1= π ωπ = πω=ω

Given � = x1 :π1 A1, . . . , xn :πn An, we write π� for the environment x1 :ππ1 A1, . . . , xn :ππn

An. A similar notation applies to invertible environments. Again, ω�′ =� means that
�′ = ε. Notice that it can hold that � = � + � and � =ω� = 1� if �(x)= (, ω) for all
x ∈ dom(�).

The typing relation �; �� e : A reads that under environments � and �, expression e
has type A (Figure 3). The definition basically follows λq→ (Bernardy et al., 2018) except
having two environments for the two stages. Although multiplicities in � are always 1,
some of the typing rules refers to ω� (which implies �= ε) in the conclusion parts, to
emphasize that � and � are treated similarly by the rules. The idea underlying this type
system is that, together with the operational semantics in Section 3.5, a term-in-context
ε; �� e : A• defines a piece of code representing a bijection between � and A, and hence
ε; ε � e′ : A � B defines a bijection between A and B (see Section 3.6). Our Agda imple-
mentation explained in Section 4, which we mentioned in Sections 1 and 2.7, follows this
idea with some generalization. The typing rules in Figure 3 are divided into three groups:
the standard ones inherited from λq→ (T-VAR, T-ABS, T-APP, T-CON, and T-CASE), the
ones for the invertible part (T-RVAR, T-RCON, and T-RCASE), and the ones for the
interaction between the two (T-PIN, T-UNLIFT, T-FAPP, and T-BAPP).

Intuitively, the multiplicity of a variable represents the usage of a resource to be associ-
ated with the variable. Hence, multiplicities in � and � are synthesized rather than checked
in typing. This viewpoint is useful for understanding T-APP and T-CASE; it is natural that,
if an expression e is used π times, the multiplicities of variables in e are multiplied by π .
Discarding variables, or weakening, is performed in the rules T-VAR, T-RVAR, T-CON,

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 17

Typing Rules for Expressions �; �� e : A and Patterns p : A 	π �

ω� + x :1 A; ω�� x : A
T-VAR

�, x :π A; �� e : B
�; �� λπ x.e : A→π B

T-ABS
�1; �1 � e1 : A→π B �2; �2 � e2 : A

�1 + π�2; �1 + π�2 � e1 e2 : B
T-APP

n= |e| = |A| C : A � T B {�i; �i � ei : Ai}i
ω�0 + �1 + · · · + �n; �1 + · · · +�n �C e : T B

T-CON

�0; �0 � e0 : A {pi : A 	π �i �, �i; �� ei : B}i
π�0 + �; π�0 +�� caseπ e0 of {p→ e} : B

T-CASE

ω�; x : A� x : A• T-RVAR

n= |e| = |A| C : A � T B {�i; �i � ei : A•i }i
ω�0 + �1 + · · · + �n; �1 + · · · +�n �C• e : (T B)

• T-RCON

�0; �0 � e0 : A• {pi : A 	1 �i �; �, �i � ei : B• �′; �′ � e′i : B→ω Bool}i
�0 + � +ω�′; �0 +�+ω�′ � case e0 of {p• → e with e′} : B•

T-RCASE

�1; �1 � e1 : A• �2; �2 � e2 : A→ω B•
�1 + �2; �1 +�2 � pin e1 e2 : (A⊗ B)• T-PIN

�; �� e : A• →1 B•
ω�; ω�� unlift e : A � B

T-UNLIFT

�1; �1 � e1 : A � B �2; �2 � e2 : A
�1 +ω�2; �1 +ω�2 � e1 	 e2 : B

T-FAPP
�1; �1 � e1 : A � B �2; �2 � e2 : B
�1 +ω�2; �1 +ω�2 � e1
 e2 : A

T-BAPP

C : A �T B

C x : T B 	π x :π A

Fig. 3. Typing rules for expressions and patterns.

and T-RCON which can be leaves in a derivation tree. Note that weakening is not allowed
for �-variables as they are linear.

The typing rules for the invertible part would need additional explanation. In T-RVAR,
x has type A• if the invertible typing environment is the singleton mapping x : A. One
explanation for this is that � represents the typing environment for the object (i.e., invert-
ible) system. Another explanation is that we simply omit (−)• as all variables in � must
have types of the form A•. Rule T-RCON says that we can lift a constructor to the invertible
world leveraging the injective nature of the constructor. Rule T-RCASE says that the invert-
ible case is for pattern-matching on (−)•-typed data; the pattern matching is done in the
invertible world, and thus the bodies of the branches must also have (−)•-types. Recall that
the with-conditions (e′i) are used for deciding which branch is used in backward computa-
tion. The type B→ω Bool indicates that they are conventional unrestricted functions, and
ω�′ and ω�′ in the conclusion part of the rule indicates that their uses are unconstrained.
Notice that, since the linearity comes only from the use of (−)•-typed values, there is little
motivation to use linear variables to define conventional functions in λPI→. The operators
pin, unlift, 	, and
 are special in λPI→. The operator pin is simply a fully applied version of
the one in Section 2; so we do not repeat the explanation. Rules T-UNLIFT, T-FAPP, and
T-BAPP are inherited from the types of fwd and bwd in Section 2. Recall that ω� ensures
�= ε, and thus the arguments of unlift and constructed bijections must be closed in terms

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

18 K. Matsuda and M. Wang

of invertible variables. It might look a little weird that e1 	 e2/e1
 e2 uses e1 linearly; this
is not a problem because �1 in T-FAPP/T-BAPP must be empty for expressions that occur
in evaluation (Lemma 3.2).

3.5 Operational semantics

The semantics of λPI→ consists of three evaluation relations: unidirectional, forward, and
backward. The unidirectional evaluation evaluates away the unidirectional constructs such
as λ-abstractions and applications, and the forward and backward evaluation specifies
bijections.

For example, let us consider an expression e= (λωf .f (f y)) (λ1x.S• x). Due to λ-
abstractions and function applications, it is not immediately clear how we can interpret
the expression as a bijection. The unidirectional evaluation ⇓ is used to evaluate these
unidirectional constructs away to make way for the forward and backward evaluation to
interpret the residual term. For the above expression, we have e⇓ S• (S• y) where the
residual S• (S• y) is ready to be interpreted bijectively. The forward evaluation μ� E⇒ v

evaluates a residual E under an environment μ to obtain a value v as usual. For exam-
ple, we have {y → Z} � S• (S• y)⇒ S (S Z). The backward evaluation E⇐ v �μ does the
opposite; it inversely evaluates E to find an environment μ for a given value v, so that the
corresponding forward evaluation of E returns the value for the environment. For example,
we have S• (S• y)⇐ S (S Z)� {y → Z}.

This is the basic story, but computation can be more complicated in general. With case
and pin, the forward ⇒ and backward ⇐ evaluation depend on the unidirectional evalu-
ation ⇓; and with 	 and
, the unidirectional evaluation ⇓ also depends on the forward
⇒ and backward ⇐ ones. Technically, the linear type system is also the key to the latter
type of dependency, which is an important difference from related work in bidirectional
programming (Matsuda & Wang, 2018c).

3.5.1 Values and residuals

We first define a set of values v and a set of residuals E as below.

Values: v ::= λπx.e | C v | E | 〈x.E〉
Residuals: E ::= x | C• E | case E0 of {p• → e with λωx.e′} | pin E1 (λωx2.e2)

The residuals are (−)•-typed expressions, which are subject to the forward and backward
evaluations. The syntax of residuals makes it clear that branch bodies in invertible cases are
not evaluated in the unidirectional evaluation; otherwise, recursive definitions involving
them usually diverge. A variable is also a value. Indeed, our evaluation targets expres-
sions/residuals that may be open in term of invertible variables. The value 〈x.E〉 represents
a bijection. Intuitively, 〈x.E〉 is a single-holed residual E where the hole is represented by
the variable x. The type system ensures that the x is the only free variable in E so that E
is ready to be interpreted as a bijection. Since 〈x.E〉 is not an expression defined so far,
we extend expressions to include this form as e ::= · · · | 〈x.E〉 together with the following
typing rule:

�; �, x : A� E : B•

ω�; ω�� 〈x.E〉 : A � B
T-HOLED

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 19

Unidirectional Evaluation e⇓ v

λπ x.e⇓ λπ x.e

e1 ⇓ λπ x.e e2 ⇓ v2 e[v2/x]⇓ v

e1 e2 ⇓ v

e⇓ v

C e⇓C v

e0 ⇓ v0 piμ= v0 eiμ⇓ v

caseπ e0 of {p→ e} ⇓ v

x⇓ x

e⇓ E

C• e⇓C• E

e0 ⇓ E0 e′ ⇓ λωx.e′′ α-renaming to make fv(p) fresh

case e0 of {p• → e with e′} ⇓ case E0 of {p• → e with λωx.e′′}
e1 ⇓ E1 e2 ⇓ λωx2.e′2

pin e1 e2 ⇓ pin E1 (λωx2.e′2) 〈x.E〉 ⇓ 〈x.E〉
e⇓ λ1x.e′ e′[y/x]⇓ E y: fresh

unlift e⇓ 〈y.E〉
e1 ⇓ 〈x.E〉 e2 ⇓ v2 {x → v2} � E⇒ v

e1 	 e2 ⇓ v

e1 ⇓ 〈x.E〉 e2 ⇓ v2 E⇐ v2 � {x → v}
e1
 e2 ⇓ v

Forward Evaluation μ� E⇒ v

{x → v} � x⇒ v

μ� E⇒ v⊎
μ�C• E⇒C v

μ1 � E1 ⇒ v1 e2[v1/x]⇓ E2 μ2 � E2 ⇒ v2

μ1 �μ2 � pin E1 (λωx.e2)⇒ (v1, v2)

μ0 � E0 ⇒ piμi dom(μi)= fv(pi) ei ⇓ Ei μ�μi � Ei ⇒ v e′i[v/xi]⇓True {e′j[v/xj]⇓ False}j �=i

μ0 �μ� case E0 of {p• → e with λωx.e′}⇒ v

Backward Evaluation E⇐ v �μ

x⇐ v � {x → v}
E⇐ v �μ

C• E⇐C v �⊎
μ

E1 ⇐ v1 �μ1 e2[v1/x]⇓ E2 E2 ⇐ v2 �μ2

pin E1 (λωx.e2)⇐ (v1, v2)�μ1 �μ2

e′i[v/xi]⇓True {e′j[v/xj]⇓ False}j �=i ei ⇓ Ei Ei ⇐ v �μ�μi dom(μi)= fv(pi) E0 ⇐ piμi �μ0

case E0 of {p• → e with λωx.e′}⇐ v �μ0 �μ

Fig. 4. Evaluation relations: unidirectional, forward and backward.

It is crucially important that x is added to the invertible environment. Recall again that ω�

ensures �= ε. Also, since values are closed in terms of unidirectional variables, a value
of the form 〈x.E〉 cannot have any free variables.

3.5.2 Three evaluation relations: Unidirectional, forward, and backward

The evaluation relations are shown in Figure 4, which are defined by mutually dependent
evaluation rules.

The unidirectional evaluation is rather standard, except that it treats invertible primitives
(such as lifted constructors, invertible cases, lift, and pin) as constructors. A subtlety is
that we assume dynamic α-renaming of invertible cases to avoid variable capturing. The
evaluation rules can evaluate open expressions by having x⇓ x; recall that residuals can
contain variables. The unlift operator uses a fresh variable y in the evaluation to make
a single-holed residual 〈y.E〉 as a representation of bijection. Such single-holed residuals
can be used in the forward direction by e1 	 e2 and in the backward direction by e1
 e2, by
triggering the corresponding evaluation.

The forward evaluation μ� E⇒ v states that under environment μ, a residual E evalu-
ates to a value v, and the backward evaluation E⇐ v �μ inversely evaluates E to return

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

20 K. Matsuda and M. Wang

the environment μ from a value v: the forward and backward evaluation relations form a
bijection. For variables and invertible constructors, both forward and backward evaluation
rules are rather straightforward. The rules for invertible case expression are designed to
ensure that every branch taken in one direction may and must be taken in the other direc-
tion too. This is why we check the with conditions even in the forward evaluation: the
condition is considered as a post-condition that must exclusively hold after the evaluation
of a branch. The pin operator changes the behavior of the backward computation of the
second argument based on the result of the first argument; notice that v1, the parameter for
the second argument, is obtained as the evaluation result of the first argument in the for-
ward evaluation, and as the first component of the result pair in the backward evaluation.
Notice that the unidirectional evaluation ⇓ involved in the presented evaluation rules is
performed in the same way in both evaluation, which is the key to bijectivity of E.

3.6 Metatheory

In this subsection, we present the key properties about λPI→.

3.6.1 Subject reduction

First, we show a substitution lemma for λPI→. We only need to consider substitution for
unidirectional variables because substitution for invertible variables never happens in
evaluation; recall that we use environments (μ) in the forward and backward evaluation.

Lemma 3.1. �, x :π A; �� e : B and �′; �′ � e′ : A implies � + π�′; �+ π�′ � e[e′/x] :
B.

Note that the substitution is only valid when �+ π�′ satisfy the assumption that invertible
variables have multiplicity 1. This assumption is guaranteed by typing of the constructs that
trigger substitution.

Then, by Lemma 3.1, we have the subject reduction properties as follows:

Lemma 3.2 (subject reduction). The following properties hold:

• Suppose ε; �� e : A and e⇓ v. Then, ε; �� v : A holds.
• Suppose ε; �� E : A• and μ� E⇒ v. Then, dom(�)= dom(μ) holds, and ε; ε �

μ(x) : �(x) for all x ∈ dom(�) implies ε; ε � v : A.
• Suppose ε; �� E : A• and E⇐ v �μ. Then, dom(�)= dom(μ) holds, and ε; ε �

v : A implies ε; ε �μ(x) : �(x) for all x ∈ dom(�).

Proof By (mutual) induction on the derivation steps of evaluation. �

The statements correspond to the three evaluation relations in λPI→. Note that the unidirec-
tional evaluation targets expressions that are closed in terms of unidirectional variables,
but may be open in terms of invertible variables, a property that is reflected in the first
statement above. The second and third statements are more standard, assuming closed
expressions in terms of both unidirectional and invertible variables. This assumption is

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 21

actually an invariant; even though open expressions and values are involved in the unidi-
rectional evaluation, the forward and backward evaluations always take and return closed
values.

3.6.2 Bijectivity

Roughly speaking, correctness means that every value of type A � B forms a bijection.
Values of type A � B has the form 〈x.E〉. By Lemma 3.2 and T-HOLED, values that occur
in the evaluation of a well-typed term can be typed as ε; ε � 〈x.E〉 : A � B, which implies
ε; x : A� E : B•. Since values 〈x.E〉 can only be used by 	 and
, bijectivity is represented
as: {x → v} � E⇒ v′ if and only if E⇐ v′ � {x → v}.13

To do so, we prove the following more general correspondence between the forward
and backward evaluation relations, which is rather straightforward as the rules of the two
evaluations are designed to be symmetric.

Lemma 3.3 (bijectivity of residuals). μ� E⇒ v if and only if E⇐ v �μ.

Proof Each direction is proved by induction on a derivation of the corresponding evalua-
tion. Note that every unidirectional evaluation judgment e′ ⇓ v′ occurring in a derivation
of one direction also appears in the corresponding derivation of the other direction, and
hence we can treat the unidirectional evaluation as a block box in this proof. �

Then, by Lemma 3.2, we have the following corollary stating that 〈x.E〉 : A � B actually
implements a bijection between A-typed values and B-typed values.

Corollary 3.4 (bijectivity of bijection values). Suppose ε; ε � 〈x.E〉 : A � B. Then, for any
v and u such that ε; ε � v : A and ε; ε � v′ : B, we have {x → v} � E⇒ v′ if and only if
E⇐ v′ � {x → v}.

3.6.3 Note on the progress property

Progress is another important property that, together with subjection reduction, proves the
absence of certain errors during evaluation. However, a standard progress property is usu-
ally based on small-step semantics, and yet λPI→ has a big-step operational semantics, which
was chosen for its advantage in clarifying the input-output relationship of the forward and
backward evaluation, as demonstrated by Lemma 3.3. A standard small-step semantics,
which defines one-step evaluation as a relation between terms, is not suitable in this regard.
Abstract machines are also unsatisfactory, as they will obscure the correspondence between
the forward and backward evaluations.

We instead establish progress by directly showing that the evaluations do not get stuck
other than with branching-related errors. This is done as an Agda implementation (men-
tioned in Sections 1 and 2.7) of definitional (Reynolds, 1998) interpreters, which use the
(sized) delay monad (Capretta, 2005; Abel & Chapman, 2014) and manipulate intrinsically
typed (i.e., Church style) expressions, values, and residuals. The interpreter uses sums,
products, and iso-recursive types instead of constructors. Also, instead of substitution,

13 Here, we consider syntactic (definitional) equality of values, but it is rather easy to extend the discussion to
observational equivalence.

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

22 K. Matsuda and M. Wang

value environments are used in the unidirectional evaluation to avoid the shifting of de
Bruijn terms. See Section 4 for details of the implementation. We note that, as a bonus
track, the Agda implementation comes with a formal proof of Lemma 3.3.

3.6.4 Reversible Turing completeness

Reversible Turing completeness (Bennett, 1973) is an important property that general-
purpose reversible languages are expected to have. Similar to the standard Turing
completeness, being reversible Turing complete for a language means that all bijections
can be expressed in the language (Bennett, 1973).

It is unsurprising that λPI→ is reversible Turing complete, as it has recursion (via fixπ in
Section 3.3) and reversible branching (i.e., invertible case).

Theorem 3.5. λPI→ is reversible Turing complete.

The proof is done by constructing a simulator for a given reversible Turing machine,
which is presented in Appendix A. We follow the construction in Yokoyama et al. (2011)
except the last step, in which we use a general reversible looping operator as below.14

trace : ((a⊕ x)•� (b⊕ x)•)→ a•� b•

As its type suggests, trace h applies h to InL a repeatedly until it returns InL b; the function
loops while h returns a value of the form InR x. Intuitively, this behavior corresponds to the
reversible loop (Lutz, 1986). In functional programming, loops are naturally encoded as
tail recursions, which, however, are known to be difficult to handle in the contexts of pro-
gram inversion (Glück & Kawabe, 2004; Mogensen, 2006; Matsuda et al., 2010; Nishida
& Vidal, 2011). In fact, our implementation uses a non-trivial reversible programming
technique, namely Yokoyama et al. (2012)’s optimized version of Bennett (1973)’s encod-
ing. The higher-orderness of λPI→ (and SPARCL) helps here, as the effort is made once and
for all.

3.7 Extension with the lift operator

One feature we have not yet discussed is the lift operator that creates primitive bijections
from unidirectional programs, for example, sub as we have seen in Section 2.

Adding lift to λPI→ is rather easy. We extend expressions to include lift as e ::= · · · |
lift e1 e2 e3 together with the following typing rule.

�1; �1 � e1 : A→ω B �2; �2 � e2 : B→ω A �3; �3 � e3 : A•

ω�1 +ω�2 + �3; ω�1 +ω�2 +�3 � lift e1 e2 e3 : B• T-LIFT

Accordingly, we extend evaluation by adding residuals of the form lift (λωx1.e1)
(λωx2.e2) E3 together with the following forward and backward evaluation rules (we omit
the obvious unidirectional evaluation rule for obtaining residuals of this form).

14 The operator is named after the trace operator (Joyal et al., 1996) in the category of bijections (Abramsky et al.,
2002).

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 23

μ� E3 ⇒ v3 e1[v3/x1]⇓ v

μ� lift (λωx1.e1) (λωx2.e2) E3 ⇒ v

e2[v/x2]⇓ v3 E3 ⇐ v3 �μ

lift (λωx1.e1) (λωx2.e2) E3 ⇐ v �μ

The substitution lemma (Lemma 3.1) and the subject reduction properties (Lemma 3.2) are
also lifted to lift.

However, lift is by nature unsafe, which requires an additional condition to ensure cor-
rectness. Specifically, the bijectivity of A � B-typed values is only guaranteed if lift is
used for pairs of functions that actually form bijections. For example, the uses of lift to
construct sub in Section 2 are indeed safe. In Section 5.2.1, we will see another interesting
example showing the use of conditionally safe lifts (see unsafeNew in Section 5.2.1).

4 Mechanized proof in Agda

In this section, we provide an overview of our implementation of SPARCL in Adga which
serves as a witness of the subjection reduction and the progress properties. Also, the imple-
mentation establish the invariant that the multiplicities of the variables in � are always
1. This is crucial for the correctness but non-trivial to establish in our setting, because an
expression and the value obtained as the evaluation result of the expression may have dif-
ferent free invertible variables due to the unidirectional free variables in the expression.
The Agda implementation also comes with the proof of Lemma 3.3.

4.1 Differences in formalization

We first spell out the differences in our Agda formalization from the system λPI→ described
in Section 3. As mentioned earlier, the implementation uses products, sums, and iso-
recursive types instead of constructors and uses environments instead of substitutions to
avoid tedious shifting of de Bruijn terms. In addition, the Agda version comes with a slight
extension to support ! in linear calculi.

We begin with the difference in types. The Agda version targets the following set of
types.

A, B ::= A→π B | () | A⊗ B | A⊕ B | !πA | α |μα.A | A• | A � B

As one can see, there are no user-defined types T A that come with constructors; instead,
we have the unit type (), product types A⊗ B, sum types A⊕ B, and (iso-) recursive types
μα.A. As for the extension mentioned earlier, there are also types of the form of !πA which
intuitively denote A-typed values together with the witness of π -many copyability of the
values.

The expressions are updated to match the types.

e ::= x | λπx.e | e1 e2

| () | letπ ()= e1 in e2 | (e1, e2) | letπ (x1, x2)= e1 in e2

| InL e | InR | caseπ e0 of {InL x1 → e1; InR x2 → e2}
| !πe | letπ !x= e1 in e2 | roll e | unroll e
| x• | ()• | let ()• = e1 in e2 | (e1, e2)• | let (x1, x2)• = e1 in e2

| InL• e | InR• e | case e0 of {(InL x)• → e1; (InR x)• → e2}with e′

| roll• e | unroll• e
| pin e1 e2 | unlift e | e1 	 e2 | e1 	 e2

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

24 K. Matsuda and M. Wang

Instead of constructors and pattern matching, this version includes the introduction and
elimination forms for each form of types except A•. And for types (), A⊗ B, A⊕ B, and
μα.A, there are corresponding invertible versions. For example, we have the introduction
form (e1, e2) and the elimination form letπ (x1, x2)= e1 in e2 for the product types, and
their invertible counterparts (e1, e2)•, and let (x1, x2)• = e1 in e2. Here, π ensures that e1

is used π -many times and so as the variables x1 and x2, similarly to the π of caseπ in the
original calculus λPI→ (see T-CASE in Figure 3). Note that both (unidirectional and invert-
ible) sorts of cases are only for sum types and have exactly two branches. For simplicity,
the invertible case has one with condition instead of two, as one is enough to select one
of the two branches. Since we use intrinsically typed terms, the syntax of terms must be
designed so that the typing relation becomes syntax-directed. Hence, we have two sorts of
variable expressions (not variables themselves) x and x•, which will be typed by T-VAR

and T-RVAR, respectively.
The typing rules for the expressions can be obtained straightforwardly from Figure 3,

except for the newly introduced ones that manipulate !πA-typed values.

�; �� e : A
π�; π�� !πe : !πA

�1; �1 � e1 : !π1A �2, x :ππ1 A; �2 � e2 : B

π�1 + �2; π�1 +�2 � letπ !x= e1 in e2 : B

An intuition underlying the rules is that !πA is treated as a GADT (Many π A) with the
constructor MkMany : A �π Many π A capturing the multiplicity π . As the constructor
discharges the multiplicity π when pattern matched, the latter rule says that the copyabil-
ity π1 is discharged by the binding, regardless of the use of the examined expression e1.
For example, we have x :1 (), y :ω A; ε � let1 !z= (let1 ()= x in !ωy) in (z, z) : A⊗ A where
x is used once in the expression but z can be used twice as the binding discharged the
copyability witnessed by !ωy.

The sets of values and residuals are also updated accordingly. Here, the main change is
the use of environments θ ::= {x1 → v1, . . . , xn → vn}.

v ::= 〈λπx.e, θ〉 | () | (v1, v2) | InL v | InR v | !πv | roll v | 〈x.E〉 | E
E ::= x• | ()• | let ()• = E1 in E2 | (E1, E2)• | let (x1, x2)• = E1 in E2

| InL• E | InR• E | case E0 of {〈(InL x)• → e1, θ1〉; 〈(InR x)• → e2, θ2〉}with v′

| roll• E | unroll• E
| pin E v

We intentionally used different metavariables θ and μ for environments: the former is used
in the unidirectional evaluation and may contain invertible free variables, while the latter
is used in the forward and backward evaluations. The typing relation �� θ : � must be
aware of such free invertible variables as below.

{x1, . . . , xn} = dom(θ)= dom(�) {πi�i � θ (xi) : Ai where �(xi)= (Ai, πi)}i
π1�1 + · · · + πn�n � θ : �

The typing rules for values and residuals (�� v : A and �� E : A•) are obtained straight-
forwardly from the rules for expressions (Figure 3) with � = ε, except for the two new
forms of value and residual involving closures. One of the two is a function closure
expression 〈λxπ .e, θ〉, which comes with the following typing rule.

�env � θ : � x :π A, �; �body � e : B

�env +�body � 〈λxπ .e, θ〉 : A→π B

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 25

The other is the invertible case residual, which has the following type rule.

�0 � E : (A1 ⊕ A2)• {�env � θi : �i �i; x :1 Ai, �body � ei : C•}i ε � v′ : C→ω Bool
�0 +�env +�body � case E0 of {〈(InL x)• → e1, θ1〉; 〈(InR x)• → e2, θ2〉}with v′ : C•

Here, we write Bool for ()⊕ () for readability.
We omit the concrete representations of expressions, values, and residuals as they are

straightforward. A subtlety is that the Agda version adopts separate treatment of types and
multiplicities: that is, � = {x1 :π1 A1, . . . , xn :πn An} is separated into �t = {x1 : A1, . . . , xn :
An} and �m = {x1 : π1, . . . , xn : πn}, so that complex manipulation of multiplicities happens
only for the latter. Also, � environments are separated into �t and �m in a similar way.

4.2 Evaluation functions

The Agda implementations include two definitional (Reynolds, 1998) interpreters for
intrinsically typed terms: one is for the unidirectional evaluation ⇓ and the other is for
the forward and backward evaluations ⇒ and ⇐. More specifically, the former one takes
�′ � θ : � and �; �� e : A to produce a value �′ +�� v : A if terminates, and the lat-
ter takes a residual �� E : A• to yield a not-necessarily-total bijection between μ : � and
� v : A, where μ : � means �μ(x) : �(x) for any x.

In our Agda development, an environment-in-context �′ � θ : �, a term-in-
context �; �� e : A, and a value-in-context �′ +�� v : A are represented by types
ValEnv �t �m �t �′

m, Term �t �m �t �m A, and Value �t (�′
m +m �m) A, respectively.

Recall that we have adopted the separate treatment of types and multiplicities. Hence,
instead of having a single �, we have �t and �m where the former typing environment
is treated in the usual way. Also, regarding the latter evaluation, a residual-in-context
�� E : A•, a typed-environment (for the forward/backward evaluation) μ : �, and a value-
in-context � v : A are represented by types Residual �t �m (A•), RValEnv �t �m, and
Value [] ∅ A, respectively. The different representations ([] and ∅) are used for the empty
typing environment and the empty multiplicity environment: the former type is just a list
of types, while the latter is a type indexed by the former.

Now, we are ready to give the signatures of the two evaluation functions.

eval : ∀{�t �′
m �t �m �m A} (i : Size)→ all-no-omega (�′

m +m �m)
→ ValEnv �t �m �t �′

m → Term �t �m �t �m A
→DELAY (Value �t (�′

m +m �m) A) i
evalR : ∀{�t �m A} (i : Size)→ all-no-omega �m → Residual �t �m (A•)

→ i�F RValEnv �t �m ⇔ Value [] ∅ A

The predicate all-no-omega asserts that a given multiplicity environment does not contain
the multiplicity ω, respecting the assumption on the core system that the multiplicities
involved in � are always 1. This property is considered as an invariant, because we need
to have a witness of the property to call eval and evalR recursively. The type constructor
DELAY is a variant the (sized) delay monad (Capretta, 2005; Abel & Chapman, 2014),
where the bind operation is frozen (i.e., represented as a constructor). This deviation from
the original is useful for the proof of Lemma 3.3 (Section 4.3). The record type i�F a⇔ b

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

26 K. Matsuda and M. Wang

represents not-necessarily-total bijections and has two fields: Forward : a→DELAY b i
and Backward : b→DELAY a i.

The fact that we have implemented these two functions in Agda witnesses the subject
reduction and the progress property. For the two functions to be type correct, they must
use appropriate recursive calls for intrinsically typed subterms, which is indeed what the
subject reduction requires. Also, Agda is a total language, meaning that we need to give
the definition for every possible structures—in other words, every typed term is subject
to evaluation. Note that, by DELAY , the evaluations are allowed to go into infinite loops,
which is legitate for the progress property. We also use infinite loops to represent errors,
which are thrown only in the following situations.

• forward evaluation of invertible cases with imprecise with conditions, and
• backward evaluation of InL• E and InR• E that receive opposite values.

The fact that the interpreters are typechecked in Agda serves as a constructive proof that
there are no other kind of errors.

Caveat: sized types. As their signatures suggest, the definitions of eval and evalR rely
on (a variant of) the sized delay monad. However, the sized types are in fact an unsafe
feature in Agda 2.6.2, which may lead to contradictions in cases,15 and, as far as we are
aware, the safe treatment of sized types is still open in Agda. Nevertheless, we believe
that our use of sized types, mainly regarding sized delay monads, is safe as the use is
rather standard (namely, we use the finite sized types in the definitions of eval and evalR
to ensure productivity, and then use the infinite size when we discuss the property of the
computation).

4.3 Bijectivity of the forward and backward evaluation

The statement of Lemma 3.3 is formalized in Agda as the signatures of the following
functions:

forward-backward :
∀{�t �m A}→ (ano : all-no-omega �m)→ (E : Residual �t �m (A•))
→∀μ v

→ Forward (evalR∞ ano E) μ−→ v→ Backward (evalR∞ ano E) v−→μ

backward-forward :
∀{�t �m A}→ (ano : all-no-omega �m)→ (E : Residual �t �m (A•))
→∀μ v

→ Backward (evalR∞ ano E) v −→μ→ Forward (evalR∞ ano E) μ−→ v

Here, m−→ v, which reads that m evaluates to v, is an inductively defined predicate assert-
ing that m : DELAY a ∞ terminates and produces the final outcome v. This relation has
a similar role to � (m ⇓) (λm→ extract w≡ v), where _⇓ and extract are defined in the
module Codata.Sized.Delay in the Agda standard library, but the key difference is its
explicit bind structures. Thanks to the explicit bind structures, we can perform the proof

15 See, e.g., https://github.com/agda/agda/issues/1201 and https://github.com/agda/agda/
issues/6002.

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://github.com/agda/agda/issues/1201
https://github.com/agda/agda/issues/6002
https://github.com/agda/agda/issues/6002
https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 27

straightforwardly by induction on E and case analysis on Forward (evalR∞ ano E) μ−→
v or Backward (evalR ∞ ano E) v−→μ, leveraging the fact that the forward/backward
evaluation “mirrors” the backward/forward evaluation also in the bind structures.

5 Larger examples

In this section, we demonstrate the utility of SPARCL with four examples, in which partial
invertibility supported by SPARCL is the key for programming. The first one is rebuilding
trees from preorder and inorder traversals (Mu & Bird, 2003), and the latter three are sim-
plified versions of compression algorithms (Salomon, 2008), namely, the Huffman coding,
arithmetic coding, and LZ77 (Ziv & Lempel, 1977).16

5.1 Rebuilding trees from a preorder and an inorder traversals

It is well known that we can rebuild a node-labeled binary tree from its preorder and inorder
traversals, provided that all labels in the tree are distinct. That is, for binary trees of type

data Tree= L |N Int Tree Tree

the following Haskell function pi is bijective.

pi :: Tree→ ([Int], [Int])
pi t= (preorder t, inorder t)

preorder L = []
preorder (N a l r)= a : preorder l++ preorder r

inorder L = []
inorder (N a l r) = inorder l++ [a]++ inorder r

For example, for binary trees

t1 =N 1 (N 2 (N 3 L L) L) L, t2 =N 1 (N 2 L (N 3 L L)) L,

t3 =N 1 (N 2 L L) (N 3 L L), t4 =N 1 L (N 2 (N 3 L L) L),

t5 =N 1 L (N 2 L (N 3 L L))

that share the preorder traversal [1, 2, 3], the inorder traversals distinguish them:

inorder t1 = [3, 2, 1], inorder t2 = [2, 3, 1],

inorder t3 = [2, 1, 3], inorder t4 = [1, 3, 2],

inorder t5 = [1, 2, 3].

The uniqueness of labels is key to the bijectivity of pi. It is clear that pi−1 returns L for
([], []), so the nontrivial part is how pi−1 will do for a pair of nonempty lists. Let us write
(a : p, i) for the pair. Then, since i contains exactly one a, we can unambiguously split i
as i= i1 ++ [a]++ i2. Then, by pi−1(take (length i1) p, i1), we can recover the left child l,

16 They are included in the Examples directory in the prototype implementation repository (https://github.
com/kztk-m/sparcl/) as Pi.sparcl, Huff.sparcl, ArithmeticCoding.sparcl, and LZ77.sparcl
respectively.

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://github.com/kztk-m/sparcl/
https://github.com/kztk-m/sparcl/
https://doi.org/10.1017/S0956796823000126

28 K. Matsuda and M. Wang

and, by pi−1(drop (length i1) p, i2), we can recover the right child r. After that, from a, l,
and r, we can construct the original input as N a l r. Notice that this inverse computation
already involves partial invertibility such as the splitting of the inorder traversal list based
on a, which is invertible for fixed a with the uniqueness assumption.

It is straightforward to implement the above procedure in SPARCL. However, such a
program is inefficient due to the cost of splitting. Program calculation is an established
technique for deriving efficient programs through equational reasoning (Gibbons, 2002),
and in this case of tree-rebuilding, it is known that a linear-time inverse exists and can be
derived (Mu & Bird, 2003).

In the following, we demonstrate that program calculation works well in the setting of
SPARCL. Interestingly, thinking in terms of partial-invertibility not only produces a Sparcl
program, but actually improves the calculation by removing some of the more-obscure
steps. Our calculation presented below basically follows Mu & Bird (2003, Section 3),
although the presentation is a bit different as we focus on partial invertibility, especially
the separation of unidirectional and invertible computation.

Note that Glück & Yokoyama (2019) give a reversible version of tree rebuilding using
(an extension of) R-WHILE (Glück & Yokoyama, 2016), a reversible imperative language
inspired by Janus (Lutz, 1986; Yokoyama et al., 2008). However, R-WHILE only supports
a very limited form of partial invertibility (Section 6.1), and the difference between their
definition and ours is similar to what is demonstrated by the goSubs and goSubsF examples
in Figure 2.

5.1.1 Calculation of the original definition

The first step is tupling (Chin, 1993; Hu et al., 1997) which eliminates multiple data
traversals. The elimination of multiple data traversals is known to be useful for program
inversion (Eppstein, 1985; Matsuda et al., 2012).

pi :: Tree→ ([Int], [Int])
pi L = ([], [])
pi (N a l r)= let (pr, ir)= pi r; (pl, il)= pi l in (a : pl++ pr, il++ [a]++ ir)

Mu & Bird (2003, Section 3) also use tupling as the first step in their derivation.
The next step is to eliminate ++, a source of inefficiency. The standard technique is

to use accumulation parameters (Kühnemann et al., 2001). Specifically, we obtain piA
satisfying piA t py iy= let (p, i)= pi t in (p++ py, i++ iy) as below.

piA :: Tree→ [Int]→ [Int]→ ([Int], [Int])
piA L py iy= (py, iy)
piA (N a l r) py iy= let (pr, ir)= piA r py iy; (pl, il)= piA l pr (a : ir) in (a : pl, il)

The invertibility of piA is still not clear because piA is called with two different forms
of the accumulation parameter iy: one is the case where iy is empty (e.g., the initial call
pi x= piA x [] []), and the other is the case where it is not (e.g., the recursion for the left
child piA l pr (a : ir)). This distinction between the two is important because, unlike the
former, an inverse for the latter is responsible for searching for the appropriate place to sep-
arate the inorder-traversal list. Nevertheless, this separation can be achieved by deriving

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 29

piR : Tree•� (List Int⊗ List Int)•
piR L• = (Nil•, Nil•)•

with null ◦ fst
piR (N a l r)• =

let (pr, ir)• = piR r in
let (a, (pl, il))• =

pin a (λa′.piASR a′ l pr ir) in
(Cons• a pl, il)•

piASR : Int→Tree•� (List Int)•
� (List Int⊗ List Int)•

piASR h L• py iy= (py, Cons• (new eqInt h) iy)•
with eqInt h ◦ head ◦ snd

piASR h (N a l r)• py iy=
let (pr, ir)• = piASR h r py iy in
let (a, (pl, il))• = pin a (λa′.piASR a′ l pr ir) in
(Cons• a pl, il)•

Fig. 5. Invertible pre- and in-order traversal in SPARCL.

a specialized version pi of piA satisfying pi x= piA x [] [] (we reuse the name as it
implements the same function).

pi :: Tree→ ([Int], [Int])
pi L = ([], [])
pi (N a l r) = let (pr, ir)= pi r; (pl, il)= piA l pr (a : ir) in (a : pl, il)

Having this new version of pi, we now have an invariant that iy of piA t py iy is always
nonempty; the other case is separated into a call to pi. Moreover, we can determine the head
h of iy beforehand in both forward and backward computations; this is exactly the label we
search for to split the inorder-traversal list. Indeed, if we know the head h of iy beforehand,
we can distinguish the ranges of the two branches of piA: for the first branch (py, iy), as iy
is returned as is, the head of the second component is the same as h, and for the second
branch (a : pl, il), the head of the second component of the return value cannot be equal to
h, i.e., the head of iy. Recall that piA t py iy= let (p, i)= pi t in (p++ py, i++ iy); thus, ir
in the definition of piA must have the form of · · · ++ iy, and then il must have the form of
· · · ++ [a]++ · · · ++ iy.

Thus, as the last step of our calculation, we clarify the unidirectional part, namely the
head of the second component of the accumulation parameters of piA, by changing it to a
separate parameter. Specifically, we prepare the function piAS satisfying piAS h t py iy=
piA t py (h : iy) as below.

piAS :: Int→Tree→ [Int]→ [Int]→ ([Int], [Int])
piAS h L py iy= (py, h : iy)
piAS h (N a l r) py iy= let (pr, ir)= piAS h r py iy; (pl, il)= piAS a l pr ir in (a : pl, il)

Also, we replace the function call of piA in pi appropriately.

pi :: Tree→ ([Int], [Int])
pi L = ([], [])
pi (N a l r) = let (pr, ir)= pi r; (pl, il)= piAS a l pr ir in (a : pl, il)

5.1.2 Making partial-invertibility explicit

An efficient implementation in SPARCL falls out from the above calculation (see Figure 5):
the only additions are the types and the use of pin. Recall that let p• = e1 in e2 is syntac-
tic sugar for case e1 of {p• → e2 with λ .True}. Recall also that the first match principle
is assumed and the catch-all with conditions for the second branches are omitted. The

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

30 K. Matsuda and M. Wang

function new in the program lifts an A-typed value a to an A•-typed value, corresponding
to a bijection between () and {a}.

new : (a→ a→Bool)→ a→ a•

new eq c= lift (λ .c) (λc′. case eq c c′ of {True→ ()}) ()•

Note that the arguments of lift in new eq form a not-necessarily-total bijection, provided
that eq implements the equality on A.

The backward evaluation of piR has the same behavior as that Mu & Bird (2003,
Section 3) derived. The partial bijection that piASR defines indeed corresponds to reb in
their calculation. Their reb function is introduced as a rather magical step; our calculation
can be seen as a justification of their choice.

5.1.3 new and delete

In the above example, we used new, which can be used to introduce redundancy to the
output. For example, it is common to include checksum information in encoded data. The
new function is effective for this scenario, as demonstrated below.

checkSum : List Int•� List Int•

checkSum xs=
let (xs, s)= pin xs (λxs′.new eqInt (sum xs′)) in -- sum : List Int→ Int
Cons• s xs

In the forward direction, checkSum computes the sum of the list and prepends it to the list.
In the backward direction, it checks if the head of the input list is the sum of its tail: if the
check succeeds, the backward computation of checkSum returns the tail, and (correctly)
fails otherwise.

It is worth mentioning that the pattern new eq is a finer operation than reversible copying
where the inverse is given by equivalence checking (Glück and Kawabe, 2003); reversible
copying can be implemented as λx.pin x (new eq) : A•� (A⊗ A)•, assuming appropriate
eq : A→ A→Bool.

The new function has the corresponding inverse delete, which can be used to remove
redundancy from the input.

delete : (a→ a→Bool)→ a→ a•� ()•

delete eq c a= lift (λc′.case eq c c′ of {True→ ()}) (λ .c) a

It is interesting to note that new and delete can be used to define a safe variant of lift.

safeLift : (a→ a→Bool)→ (b→ b→Bool)→ (a→ b)→ (b→ a)→ a•� b•

safeLift eqA eqB f g a= let (a, b)• = pin a (λa′.new eqB (f a′)) in
let (b, ())• = pin b (λb′.delete eqA (g b′) a) in
b

In the forward computation, the function applies f to the input and tests whether g is an
inverse of f by applying g to the output and checking if the result is the same as the original
input by eqA. The backward computation does the opposite: it applies g and tests the result
by using f and eqB. This function is called “safe”, as it guarantees correctness by the
runtime check, provided that eqA and eqB implement the equality on the domains.

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 31

huffCompress : (List Symbol)•� (Huff ⊗ List Bit)•
huffCompress s=

let (s, h)• = pin s (λs′.new eqHuff (makeHuff s′)) in
pin h (λh′.encode h′ s)

encode : Huff→ (List Symbol)•� (List Bit)•
encode h Nil• =Nil• with null
encode h (Cons s ss)• = encR h s (encode h ss)

Fig. 6. Two-pass Huffman coding in SPARCL.

5.2 Huffman coding

The Huffman coding is one of the most popular compression algorithms (Salomon, 2008).
The idea of the algorithm is to assign short code to frequently occurring symbols. For exam-
ple, consider that we have symbols a, b, c, and d that occur in the text to be encoded with
probability 0.6, 0.2, 0.1, and 0.1, respectively. If we assign code as a : 0, b : 10, c : 110, and
d : 111, then a text aabacabdaawill be encoded into 16-bit code 0

a
0
a
10
b
0
a
110
c

0
a
10
b
111
d

0
a
0
a
,

which is smaller than the 20-bit code obtained under the naive encoding that assigns two
bits for each symbol.

5.2.1 Two-pass Huffman coding

Assume that we have a data structure for a Huffman coding table, represented by type
Huff. The table may be represented as an array (or arrays) or a tree, and in practice one
may want to use different data structures for encoding and decoding (for example, an array
for encoding and a trie for decoding). In this case, Huff is a pair of two data structures,
where each one is used only in one direction. To handle such a situation, we treat it as an
abstract type with the following functions.

makeHuff : List Symbol→Huff
enc : Huff→ Symbol→ List Bit
dec : Huff→ List Bit→ Symbol⊗ List Bit

Here, enc and dec satisfy the properties dec h (enc h s++ ys)= (s, ys) and dec h ys= (s, ys′)
implies enc s++ ys= ys′, where ++ is the list append function.

Then, by enc and dec, we can define an bijective version encR as below.

encR : Huff→ Symbol•� (List Bit)•� (List Bit)•

encR h s r= lift (λ(s, ys). enc h s++ ys) (λys. dec h ys) (s, r)•

An encoder can be defined by first constructing a Huffman coding table and then encod-
ing symbol by symbol. We can program this procedure in a natural way in SPARCL

(Figure 6) by using pin. This is an example where multiple pins are used to convert data.
The input symbol list is first passed to makeHuff under new to create a Huffman table h
in the first pin; here the input symbol list is unidirectional (static), while the constructed
Huffman table is invertible. Then, the input symbol list is encoded with the constructed
Huffman table in the second pin; here the input symbol list is invertible, while the Huffman
table is unidirectional (static). A subtlety here is the use of eqHuff : Huff→Huff→Bool
to test the equality of the Huffman encoding tables. This check ensures the property that

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

32 K. Matsuda and M. Wang

fwd huffCompress (bwd huffCompress (h, ys))= (h, ys). This equation holds only when h
is the table obtained by applying makeHuff to the decoded text; indeed, eqHuff checks the
condition. One could avoid this check by using the following unsafeNew instead.

unsafeNew : a→ a•

unsafeNew a= lift (λ().a) (λa′.()) -- assuming a= a′

The use of unsafeNew a is safe only when its backward execution always receives a.
Replacing new with unsafeNew violates this assumption, but for this case, the replace-
ment just widens the domain of bwd huffCompress, which is acceptable even though
fwd huffCompress and bwd huffCompress do not form a bijection due to unsafeNew. But
in general this outcome is unreliable, unless the condition above can be guaranteed.

5.2.2 Concrete representation of Huffman tree in SPARCL

In the above we have modeled the case where different data structures are used for encod-
ing and decoding, which demands the use of abstract type and consequently the use of
lifting. In this section, we define encR directly in SPARCL, which is possible when the
same data structure is used for encoding and decoding.

To do so, we first give a concrete representation of Huff.

data Huff = Lf Symbol |Br Huff Huff

Here, Lf s encodes s into the empty sequence, and Br l r encodes s into
Cons 0 c if l encodes s to c, and Cons 1 c if r encodes s to c. For example,
Br (Lf ′a′) (Br (Lf ′b′) (Br (Lf ′c′) (Lf ′d′))) is the Huffman tree used to encode the example
presented in the beginning of Section 5.2.

Now let us define encR to be used in encode above. It is easier to define it via its inverse
decR.

decR : Huff→ (List Bit)•� (Symbol⊗ List Bit)•

decR (Lf s) ys= (new eqSym s, ys)•

decR (Br l r) ys= case ys of (Cons 0 ys′)• → decR l ys′ with λ(s,).member s l
(Cons 1 ys′)• → decR r ys′

encR h s ys= invert (decR h) (s, ys)•

Here, member : Symbol→Huff→Bool is a membership test function. Recall that invert
implements inversion of a bijection (Section 2). One can find that searching s in l for every
recursive call is inefficient, and this cost can be avoided by additional information on Br
that makes a Huffman tree a search tree. Another solution is to use different data structures
for encoding and decoding as we demonstrated in Section 5.2.1.

5.2.3 Adaptive Huffman coding

In the above huffCompress, a Huffman coding table is fixed during compression which
requires the preprocessing makeHuff to compute the table. This is sometimes suboptimal:
for example, a one-pass method is preferred for streaming while a text could consist of
several parts with very different frequency distributions of symbols.

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 33

huffCompress : (List Symbol)•� (Huff ⊗ List Bit)•
huffCompress= encode initHuff

encode : Huff→ (List Symbol)•� (List Bit)•
encode h Nil• =Nil• with null
encode h (Cons s ss)• =

let (s, r)• = pin s (λs′.encode (updHuff s′ h) ss) in
encR h s r

Fig. 7. Adaptive Huffman coding in SPARCL.

Being adaptive means that we have the following two functions instead of makeHuff .

initHuff : Huff updHuff : Symbol→Huff→Huff

Instead of constructing a Huffman coding table beforehand, the Huffman coding table is
constructed and changed throughout compression here.

The updating process of the Huffman coding table is the same in both compression
and decompression, which means that SPARCL is effective for writing an invertible and
adaptive version of Huffman coding in a natural way (Figure 7). This is another demon-
stration of the SPARCL’s strength in partial invertibility. Programming the same bijection
in a fully invertible language gets a lot more complicated due to the irreversible nature of
updHuff .

5.3 Arithmetic coding

The idea of arithmetic coding is to encode the entire message into a single number in the
range [0, 1). It achieves this by assigning a range to each symbol and encode the symbol
sequence by narrowing the ranges. For example, suppose that symbols a, b, c, and d are
assigned with ranges [0, 0.6), [0.6, 0.8), [0.8, 0.9), and [0.9, 1.0). The compression algo-
rithm retains a range [l, r), narrows the range to [l+ (r− l)ls, l+ (r− l)rs) when it reads
a symbol s to which [ls, rs) is associated, and finally yields a real in [l, r). For example,
reading a text aabacabdaa, the range is narrowed into [0.25258176, 0.2526004224) and a
real 0.010000001010101 (in base 2) can be picked. Since the first and last bits are redun-
dant, the number can be represented by a 14-bit code 01000000101010, which is smaller
than the 20 bit code produced by the naive encoding. Notice that the code 0 corresponds to
multiple texts a, aa, aaa, There are several ways to avoid this ambiguity in decoding;
here we assume a special end-of-stream symbol EOS whose range does not appear in the
symbol range list.

As a simplification, we only consider ranges defined by rational numbers Q. Specifically,
we assume the following type and functions.

type Range= (Q, Q)
rangeOf : Symbol→ Range
find : Range→Q→ Symbol

Here, rangeOf returns a range assigned to a given symbol, and find takes a range and a
rational in the range, and returns a symbol of which the subdivision of the range contains
the rational. In addition, we will use the following functions.

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

34 K. Matsuda and M. Wang

The narrowing of ranges can be implemented straightforwardly as below.

narrow : Range→ Range→ Range
narrow (l, r) (ls, rs)= (l+ (r− l) ∗ ls, l+ (r− l) ∗ rs)

In what follows, narrow is used only with rangeOf . So, we define the following function
for convenience.

narrowBySym : Range→ Symbol→ Range
narrowBySym ran s= narrow ran (rangeOf s)

These functions satisfy the following property.

narrowBySym (l, r) s= (l′, r′)
⇒ (l≤ l′ ∧ r′ ≤ r)∧ (∀q ∈Q.l′ ≤ n < r′ ⇒ find (l, r) q= s

)
Although λs.narrow (l, r) (rangeOf s) is an injection (provided that r− l > 0), the arith-
metic coding does not use the property in decompression because in decompression the
result is a rational number instead of a range.

As the first step, we define a unidirectional version that return a rational instead of a bit
sequence for simplicity.

arithComp : (List Symbol)→Q

arithComp= encode (0, 1)
encode : Range→ (List Symbol)→Q

encode (l, r) Nil = l
encode (l, r) (Cons s ss)= encode (narrowBySym (l, r) s) ss

We can see from the definition that unidirectional and invertible computation is mixed
together. On one hand, the second component of the range is nonlinear (discarded when
encode meats Nil), meaning that the range must be treated as unidirectional. On the other
hand, a rational in the range (here we just use the lower bound for simplicity) goes to
the final result of arithComp, which means that the range should be treated as invertible.
The pin operator could be a solution to the issue. Since we want to use the unidirectional
function narrowBySym, it is natural to pin the symbol s to narrow the range, which belongs
to the unidirectional world. However, there is a problem. Using pin produces an invertible
product (Symbol⊗Q)• with the symbol remaining in the output. In Huffman coding as
we have seen, this is not a problem because the two component are combined as the final
product. But here the information of Symbol is redundant as it is already retained by the
rational in the second component. We need a way to reveal this redundancy and safely
discard the symbol.

The solution lies with the delete function in Section 5.1.3. For this particular case of the
arithmetic coding, the following derived version is more convenient.

deleteBy : (b→ b→Bool)→ (a→ b)→ a•� b•� a•

deleteBy eq f a b= let (a, ())• = pin a (λa′.delete eq (f a′) b) in
a

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 35

By using deleteBy with find (part of the arithmetic encoding API), we can write an
invertible version as below.

arithComp : (List Symbol)•�Q•

arithComp= encode (0, 1)

encode : Range→ (List Symbol)•�Q•

encode (l, r) (Nil)• = new eqQ l with eqQ l
encode (l, r) (Cons s ss)• =

let (s, q)• = pin s $ λs′. encode (narrowBySym (l, r) s′) ss in
deleteBy eqSym (find (l, r)) q s

Here, eqQ and eqSym are equivalence tests on Q and Symbol, respectively. The operator
($), defined by ($)= λf .λx.f x, is used to avoid parentheses, which is right-associative and
has the lowest precedence unlike function application. The with-condition enQ l becomes
false for any result from the second branch of encode; the assumption on EOS guarantees
that encode eventually meats EOS and changes the lower bound of the range. It is worth
noting that, in this case, the check eqSym involved in deleteBy always succeeds thanks to
the property about narrowBySym and find above. Thus, we can use the “unsafe” variants
of delete and deleteBy safely here. Also, for this particular case, we can replace new with
unsafeNew, if we admit some unsafety: this replacement just makes bwd arithComp accept
more inputs than what fwd arithComp can return.

As a general observation, programming in a compositional way in SPARCL is easier
when a component function, after fixing some arguments, transforms all and only the infor-
mation of the input to the output. In the Huffman coding example, where a bounded number
of bits are transmitted for a symbol, both enR and encode satisfy this criterion; and as a
result, its definition is mostly straightforward. In contrast, in arithmetic coding, even recur-
sive calls of encode do not satisfy the criterion, as a single bit of an input could affect an
unbounded number of positions in the output, which results in the additional programming
effort as we demonstrated in the above.

5.4 LZ77 compression

LZ77 (Ziv & Lempel, 1977) and its variant (such as LZ78 and LZSS) are also some of
the most popular compression algorithms. The basic idea is to use a string of a fixed
length (called a window) from the already traversed part of the message as a dictionary
and repeatedly replace to be traversed strings with their entries (matching positions and
lengths) in the dictionary. To do so, LZ77 maintains two buffers: the window and the look-
ahead buffer (Salomon, 2008), where the window is searched for the matching position
and length of the string in the look-ahead buffer. When the search succeeds, the algorithm
emits the matching position and length and shifts both buffers by the matching length.17

Otherwise, it emits the first character and shifts the two buffers by one. For example, when
the window size is 4 and the look-ahead buffer size is 3, for an window dabc and an input

17 Here, we consider an LZSS-flavored variant that emits either a character or a pair of matching position and
length, unlike the original one that always emits a triple of matching position, length and the following
character even when the matched length is zero.

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

36 K. Matsuda and M. Wang

string abda, the algorithm yields (3, 2)da, as below

dabc abda emits (3, 2)

dabcab da emits d

dabcabd a emits a

where (3, 2) means that the string ab of length 2 appears in the window at position
3 (counted from the last). In general, the end of a matched string may not be in the
window but the look-ahead buffer. For example, for bbba aaa the algorithm emits
(1, 4).

The basic idea of our implementation is to use pin to convert the input string from
invertible to unidirectional to allow overlapping in searching. Hence, we prepare the fol-
lowing unidirectional functions for the manipulation of the window, which is an abstract
type Window.

emptyWindow : Window
extendWindow : Window→ List Symbol→Window
findMatch : Window→ List Symbol→Maybe (Int⊗ Int)
takeMatch : Window→ (Int⊗ Int)→ List Symbol

Here, the last two functions satisfy the following property.

findMatch w s= Just (p, l)=⇒ takeMatch w (p, l)= take l s

Also, we use the following type for the output code.

data LZCode= Lit Symbol | Entry (Int⊗ Int)

We do not need to represent the look-ahead buffer explicitly, as it is hidden in the findMatch
function. Instead of using custom-sized integers, we use Int to represent both matching
positions (bounded by the size of the window) and matching lengths (bounded by the size
of the look-ahead buffer) for simplicity.

Figure 8 shows an implementation of an invertible LZ77 compression in SPARCL. We
omit the definition of eqMatchRes : Maybe (Int⊗ Int)→Maybe (Int⊗ Int)→Bool and
eqStr : List Symbol→ List Symbol→Bool. Similarly to the arithmetic coding example,
we also use the new/delete trick here. The property above of findMatch and takeMatch
ensures that the delete in encode must succeed in the forward evaluation, meaning that
we can replace the delete by its unsafe variant similarly to the arithmetic coding example.
It is also similar to the previous examples that the backward evaluation of lz77 can only
accept the encoded string that the corresponding forward evaluation can produce. This is
inconvenient in practice, because there in general are many compression algorithms that
correspond to a decompression algorithm. Fortunately, the same solution to the previous
examples also apply to this example: for this particular case, replacing new with unsafeNew
is widen the domain of the backward execution, without risking the expected behavior that
decompression after compression should yield the original data.

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 37

lz77 : (List Symbol)•� (List LZCode)•
lz77= encode emptyWindow

encode : Window→ (List Symbol)•� (List LZCode)•
encode w Nil• =Nil• with null
encode w inp• =

let (inp, matchRes)• = pin inp (λinp′. new eqMatchRes (findMatch w inp)) in
case matchRes of

Nothing• →
let (Cons s ss)• = inp in
let (s, r)• = pin s (λs′. encode (extendWindow w (Cons s′ Nil)) ss) in
Cons• (revised Lit s) r

with isLit ◦ head
(Just (p, l))• →

let (l, (mstr, rest))• = pin l (λl′. split l inp) in
let (mstr, r)• = pin mstr (λmstr′. encode (extendWindow w mstr′) rest) in
let (c, ())• = pin (p, l)• (λc. delete eqStr (takeMatch w c) mstr) in
Cons• (Entry c) r

split :: Int→ (List a)• → (List a)•
split n Nil• = (Nil•, Nil•)• with λ(a, b).null a && null b
split n (Cons a as)• = if n 0 then (Cons• a as, Nil•)•

else let (t, d)• = split (n− 1) as in (Cons a t, d)•

Fig. 8. LZ77 in SPARCL.

6 Related work

6.1 Program inversion and invertible/reversible computation

In the literature of program inversion (a program transformation technique to find f −1

for a given f), it is known that an inverse of a function may not arise from reversing all
the execution steps of the original program. Partial inversion (Romanenko, 1991; Nishida
et al., 2005) addresses the problem by classifying inputs/outputs into known and unknown,
where known information is available also for inverses. This classification can be viewed
as a binding-time analysis (Gomard & Jones, 1991; Jones et al., 1993) where the known
part is treated as static. The partial inversion is further extended so that the return values
of inverses are treated as known as well (Almendros-Jiménez & Vidal, 2006; Kirkeby &
Glück, 2019, 2020); in this case, it can no longer be explained as a binding-time analysis.
This extension introduces additional power, but makes inversion fragile as success depends
on which function is inverted first. For example, the partial inversion for goSubs succeeds
when it inverts x− n first, but fails if it tried to invert goSubs x xs first. The design of
SPARCL is inspired by these partial inversion methods: we use (−)•-types to distinguish
the known and unknown parts, and pin together with case to control orders. Semi inver-
sion (Mogensen, 2005) essentially converts a program to logic programs and then tries to
convert it back to a functional inverse program, which also allows the original and inverse
programs to have common computations. Its extension (Mogensen, 2008) can handle a
limited form of function arguments. Specifically, such function arguments must be names
of top-level functions; neither closures nor partial applications is supported. The Inversion

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

38 K. Matsuda and M. Wang

Framework (Kirkeby & Glück, 2020) unifies the partial and semi inversion methods based
on the authors’ reformulation (Kirkeby & Glück, 2019) of semi inversion for conditional
constructor term rewriting systems (Terese, 2003). The PINS system allows users to spec-
ify control structures as they sometimes differ from the original program (Srivastava et al.,
2011). As we mentioned in Section 1, these program inversion methods may fail, and often
for reasons that are not obvious to programmers.

Embedded languages can be seen as two-staged (a host and a guest), and there are several
embedded invertible/reversible programming languages. A popular approach to implement
such languages is based on combinators (Mu et al., 2004b; Rendel & Ostermann, 2010;
Kennedy & Vytiniotis, 2012; Wang et al., 2013), in which users program by composing
bijections through designated combinators. To the best of our knowledge, only (Kennedy
& Vytiniotis, 2012) has an operator like pin : A•� (A→ B•) � A⊗ B•, which is key
to partial invertibility. More specifically, Kennedy & Vytiniotis (2012) has an operator
depGame :: Game a→ (a→Game b)→Game (a, b). The types suggest that Game and
(−)• play a similar role; indeed they both represent invertibility but in different ways. In
their system, Game a represents (total) bijections from bit sequences and a-typed values,
while in our system A• represents a bijection whose range is A but domain is determined
when unlift is applied. One consequence of this difference is that, in their domain-specific
system, there is no restriction of using a value v :: Game a linearly, because there is no
problem of using an encoder/decoder pair for type a multiple times, even though nonlinear
use of v : A•, especially discarding, leads to non-bijectivity. Another consequence of the
difference is that their system is hardwired to bit sequences and therefore does not sup-
port deriving general bijections between a and b from Game a→Game b, whereas we
can obtain a (not-necessarily-total) bijections between A and B from any function of type
A•� B• that does not contain linear free variables.

The pin operator can be seen as a functional generalization of reversible update state-
ments (Axelsen et al., 2007) x⊕= e in reversible imperative languages (Lutz, 1986; Frank,
1997; Yokoyama et al., 2008; Glück & Yokoyama, 2016), of which the inverse is given by
x�= e with � satisfying (x⊕ y)� y= x for any y; examples of ⊕ (and �) include addi-
tion, subtraction, bitwise XOR, and replacement of nil (Glück & Yokoyama, 2016) as a
form of reversible copying (Glück and Kawabe, 2003). Having (x⊕ y)� y means that ⊕
and � are partially invertible, and indicates that they correspond to the second argument
of pin. Whereas the operators such as ⊕ and � are fixed in those languages, in SPARCL,
leveraging its higher-orderness, any function of an appropriate type can be used as the sec-
ond argument of pin, which leads to concise function definitions as demonstrated in goSub
in Section 2 and the examples in Section 5.

Most of the existing reversible programming languages (Lutz, 1986; Baker, 1992; Frank,
1997; Mu et al., 2004b; Yokoyama et al., 2008, 2011; Wang et al., 2013) do not sup-
port function values, and higher-order reversible programming languages are uncommon.
One notable exception is Abramsky (2005) that shows a subset of the linear λ-calculus
concerning � and ! (more precisely, a combinator logic that corresponds to the subset)
can be interpreted as manipulations of (not-necessarily-total) bijections. However, it is
known to be difficult to extend their system to primitives such as constructors and invert-
ible pattern matching (Abramsky, 2005, Section 7). Abramsky (2005)’s idea is based on

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 39

the fact that a certain linear calculus is interpreted in a compact closed category, which
has a dual object A∗ such that A∗ ⊗ B serves as a function (i.e., internal hom) object, and
that we can construct (Joyal et al., 1996) a compact closed category from the category
of not-necessary-total bijections (Abramsky et al., 2002). Recently, Chen & Sabry (2021)
designed a language that has fractional and negative types inspired by compact closed
categories. In the language, a negative type −A is a dual of A for ⊕, and constitutes a
“function” type −A⊕ B that satisfies the isomorphism A⊕ B↔C A↔−B⊕C, where
↔ denotes bijections. One of the applications of the negative type is to define a loop like
operation called the trace operator, which has a similar behavior to trace in Section 3.6.4.
The fractional types in the language are indexed by values as 1/(v : A), which represents
the obligation to erase an ancilla value v, and hence the corresponding application form
does perform the erasure. However, behavior of both−A⊕ B and 1/(v : A)⊗ B is different
from what we expect for functions: the former operates on ⊕ instead of ⊗, and the latter
only accepts the input v.

A few reversible functional programming languages also support a limited form of
partial invertibility. RFunT,18 a typed variant of RFun (Yokoyama et al., 2011) with
Haskell-like syntax, allows a function to take additional parameters called ancilla param-
eters. The reversibility restriction is relaxed for ancilla parameters, and they can be
discarded and pattern-matched without requiring a way to determine branching from
their results. However, these ancilla parameters are supposed to be translated into auxil-
iary inputs and outputs that stay the same before and after reversible computation, and
mixing unidirectional computation is not their primary purpose. In fact, very limited oper-
ations are allowed for these ancilla data by the system. CoreFun also supports ancilla
parameters (Jacobsen et al., 2018). Their ancilla parameters are treated as static inputs
to reversible functions, and arguments that appear at ancilla positions are free from the
linearity restriction.19 The system is overly conservative: all the functions are (partially)
reversible, and thus functions themselves used in the ancilla positions must obey the lin-
earity restriction. Jeopardy (Kristensen et al., 2022b)20 is a work-in-progress reversible
language, which plans to support partial invertibility via program analysis. The implicit
argument analysis (Kristensen et al., 2022a), which Jeopardy uses, identifies which argu-
ments are available (or, known (Nishida et al., 2005)) for each functional call and for the
forward/backward execution. However, the inverse execution based on the analysis has
neither been formalized nor implemented to the best of the authors’ knowledge. More cru-
cially, RFunT, CoreFun and Jeopardy are first-order languages (to be precise, they allow
top-level function names to be used as values, but not partial application or λ-abstraction),
which limits flexible programming. In contrast, A• is an ordinary type in SPARCL, and
there is no syntactic restriction on expressions of type A•. This feature, combined with
the higher-orderness, gives extra flexibility in mixing unidirectional and invertible pro-
gramming. For example, SPARCL allows a function composition operator that can be used
for both unidirectional (hence unrestricted) and invertible (hence linear) functions, using
multiplicity polymorphism (Bernardy et al., 2018; Matsuda, 2020).

18 https://github.com/kirkedal/rfun-interp.
19 A correction to Jacobsen et al. (2018) (personal communication with Michael-Kirkedal Thomsen, Jun 2020).
20 Don’t confuse it with the program inversion method with the same name (Dershowitz & Mitra, 1999).

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://github.com/kirkedal/rfun-interp.
https://doi.org/10.1017/S0956796823000126

40 K. Matsuda and M. Wang

6.2 Functional quantum programming languages

In quantum programming, many operation are reversible, and there are a few higher-
order quantum programming languages (Selinger & Valiron, 2006; Rios & Selinger, 2017).
Among them, the type system of Proto-Quipper-M (Rios & Selinger, 2017) is similar to
λPI→ in the sense that it also uses a linear-type system and distinguishes two sorts of variable
environments as we do with � and �, although the semantic back-ends are different. They
do not have any language construct that introduces new variables to the second sort of
environments (a counterpart of our �), because their language does not have a counterpart
to our invertible case.

It is also interesting to see that some quantum languages allow weakening (i.e., discard-
ing) (Selinger & Valiron, 2006) and some allow contraction (i.e., copying) (Altenkirch
& Grattage, 2005). In these frameworks, weakening is allowed because one can throw
away a quantum bit after measuring, and contraction is allowed because states can be
shared through introducing entanglements. As our goal is to obtain a bijection as final
product, weakening in general is not possible in our context. On the other hand, it is a
design choice whether or not contraction is allowed. Since the inverse of copying can be
given by equivalence checking and vice versa (Glück and Kawabe, 2003). However, care-
less uses of copying may result in unintended domain restriction. Moreover supporting
such a feature requires hard-wired equivalence checks for all types of variables that can
be in � (notice that multiple uses of a variable in � will be reduced to multiple uses of
variables in � (Matsuda & Wang, 2018c)). This requires the type system to distinguish
types that can be in � from general ones, as types such as A � B do not have decidable
equality. Moreover, the hard-wired equivalence checks would prevent users from using
abstract types such as Huff in Section 5, for which the definition of equivalence can differ
from that on their concrete representations.

6.3 Bidirectional programming languages

It is perhaps not surprising that many of the concerns in designing invert-
ible/bijective/reversible languages are shared by the closely related field of bidirectional
programming (Foster et al., 2007). A bidirectional transformation is a generalization of a
pair of inverses that allows a component to be non-bijective; for example, an (asymmetric)
bidirectional transformation between a and b are given by two functions called get : a→ b
and put : a→ b→ a (Foster et al., 2007). Similarly to ours, in the bidirectional language
HOBiT (Matsuda & Wang, 2018c), a bidirectional transformation between a and b is rep-
resented by a function from B a to B b, and top-level functions of type B a→B b can be
converted to a bidirectional transformation between a and b. Despite the similarity, there
are unique challenges in invertible programming: notably, the handling of partial invertibil-
ity that this paper focuses on and the introduction of the operator pin as a solution. Another
difference is that SPARCL is based on a linear type system, which, as we have seen, per-
fectly supports the need for the intricate connections between unidirectional and inverse
computation in addressing partial invertibility. One of the consequences of this difference
in the underlying type system is that Matsuda & Wang (2018c) can only interpret top-level
functions of type B a→B b as bidirectional transformations between a and b, yet we can

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 41

interpret functions of type A•� B• in any places as bijections between A and B, as long as
they have no linear free variables. Linear types also clarify the roles of values and prevent
users from unintended failures caused by erroneous use of variables. For example, the type
A•� (A→ B•) � (A⊗ B)• of pin clarifies that the function argument of pin can safely
discard or copy its input as the nonlinear uses do not affect the domain of the resulting
bijection.

It is worth mentioning that, in addition to bidirectional transformations, HOBiT provides
a way to lift bidirectional combinators (i.e., functions that take and return bidirectional
transformations). However, the same is not obvious in SPARCL due to its linear type sys-
tem, as the combinators need to take care of the manipulation of � environments such as
splitting �=�1 +�2. On the other hand, there is less motivation to lift combinators in the
context of bijective/reversible programming especially for languages that are expressive
enough to be reversible Turing complete (Bennett, 1973).

The applicative-lens framework (Matsuda & Wang, 2015a, 2018a), which is an
embedded domain-specific language in Haskell, provides a function lift that converts a bidi-
rectional transformation (a→ b, a→ b→ a) to a function of type L s a→ L s b where L
is an abstract type parameterized by s. As in HOBiT, bidirectional transformations are rep-
resented as functions so that they can be composed by unidirectional functions; the name
applicative in fact comes from the applicative (point-wise functional) programming style.
(To be precise, L together with certain operations forms a lax monoidal functor (Mac Lane,
1998, Section XI.2) as Applicative instances (McBride & Paterson, 2008; Paterson, 2012)
but not endo to be an Applicative instance (Matsuda & Wang, 2018a).) The type param-
eter s has a similar role to the s of the ST s monad (Launchbury & Jones, 1994), which
enables the unlifting that converts a polymorphic function ∀s.L s a→ L s b back to a bidi-
rectional transformation (a→ b, a→ b→ a). That is, unlike HOBiT, functions that will
be interpreted as bidirectional transformations are not limited to top-level ones. However,
in exchange for this utility, the expressive power of the applicative lens is limited com-
pared with HOBiT; for example, bidirectional cases are not supported in the framework,
and resulting bidirectional transformations cannot propagate structural updates as a result.

As a remark, duplication (contraction) of values is also a known challenge in bidirec-
tional transformation, for the purpose of supporting multiple views of the same data and
synchronization among them (Hu et al., 2004). However, having unrestricted duplication
makes compositional reasoning of correctness very difficult; in fact most of the fundamen-
tal properties of bidirectional transformation, including well-behavedness (Foster et al.,
2007) and its weaker variants (Mu et al., 2004a; Hidaka et al., 2010), are not preserved in
the presence of unrestricted duplication (Matsuda & Wang, 2015b).

6.4 Linear type systems

SPARCL is based on λq→, a core system of Linear Haskell (Bernardy et al., 2018), with
qualified typing (Jones, 1995; Vytiniotis et al., 2011) for effective inference (Matsuda,
2020). An advantage of this system is that the only place where we need to explicitly
handle linearity is the manipulation of (−)•-typed values; there is no need of any special
annotations for the unidirectional parts, as demonstrated in the examples. This is different
from Wadler (1993)’s linear type system, which would require a lot of ! annotations in

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

42 K. Matsuda and M. Wang

the code. Linear Haskell is not the only approach that is able to avoid the scattering of
!s. Mazurak et al. (2010) use kinds (◦ and ∗) to distinguish types that are treated in a
linear way (◦) from those that are not (∗). Thanks to the subkinding ∗ " ◦, no syntactic
annotations are required to convert the unrestricted values to linear ones. Their system
has two sort of function types: ◦→ for the functions that themselves are treated in the
linear way and ∗→ for the functions that are unrestricted. As a result, a function can have
multiple incomparable types; e.g., the K combinator can have four types (Morris, 2016).
Universal types accompanied by kind abstraction (Tov & Pucella, 2011) addresses the
issue to some extent; it works well especially for K, but still gives the B combinator two
incomparable types (Morris, 2016). Morris (2016) further extends these two systems to
overcome the issue by using qualified types (Jones, 1995), which can infer principal types
thank to inequality constraints. Note that the implementation of SPARCL uses an inference
system by Matsuda (2020), which, based on OUTSIDEIN(X) (Vytiniotis et al., 2011), also
uses qualified typing with inequality constraints for λq→, inspired by Morris (2016).

7 Conclusion

We have designed SPARCL, a language for partially invertible computation. The key idea
of SPARCL is to use types to distinguish data that are subject to invertible computation and
those that are not; specifically the type constructor (−)• is used for marking the former. A
linear type system is utilized for connecting the two worlds. We have presented the syntax,
type system, and semantics of SPARCL and proved that invertible computations defined
in SPARCL are in fact invertible (and hence bijective). To demonstrate the utility of our
proposed language, we have proved its reversible Turing completeness and presented non-
trivial examples of tree rebuilding and three compression algorithms (Huffman coding,
arithmetic coding, and LZ77).

There are several future directions of this research. One direction is to use finer type sys-
tems. Recall that we need to check with conditions even in the forward computation, which
can be costly. We believe that refinement types and their inference (Xi & Pfenning, 1998;
Rondon et al., 2008) would be useful for addressing this issue. Currently, our prototype
implementation is standalone, preventing users from writing functions in another language
to be used in lift, and from using functions obtain by fwd and bwd in the other language.
Although prototypical implementation of a compiler of SPARCL to Haskell is in progress,
a seamless integration through an embedded implementation would be desirable (Matsuda
& Wang, 2018b). Another direction is to extend our approach to bidirectional transforma-
tions (Foster et al., 2007) to create the notion of partially bidirectional programming. As
discussed in Section 6, handling copying (i.e., contraction) is an important issue; we want
to find the sweet spot of allowing flexible copying without compromising reasoning about
correctness.

Acknowledgments

We thank the IFIP 2.1 members for their critical but constructive comments on a prelim-
inary version of this research, Anders Ågren Thuné for the LZ77 example in Section 5.4
and finding bugs in our prototype implementation and Agda proofs since the publication of

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 43

the conference version, and Samantha Frohlich for her helpful suggestions and comments
on the presentation of this paper. We also thank the anonymous reviewers of ICFP 2020
for their constructive comments. This work was partially supported by JSPS KAKENHI
Grant Numbers JP15H02681, JP19K11892, JP20H04161 and JP22H03562, JSPS Bilateral
Program, Grant Number JPJSBP120199913, the Kayamori Foundation of Informational
Science Advancement, EPSRC Grant EXHIBIT: Expressive High-Level Languages for
Bidirectional Transformations (EP/T008911/1), and Royal Society Grant Bidirectional
Compiler for Software Evolution (IES\R3\170104).

Conflict of Interests

None.

References

Abel, A. & Chapman, J. (2014) Normalization by evaluation in the delay monad: A case study
for coinduction via copatterns and sized types. In Proceedings 5th Workshop on Mathematically
Structured Functional Programming, MSFP@ETAPS 2014, Grenoble, France, 12 April 2014, pp.
51–67.

Abramov, S. M., Glück, R. & Klimov, Y. A. (2006) An universal resolving algorithm for inverse
computation of lazy languages. In Perspectives of Systems Informatics, 6th International Andrei
Ershov Memorial Conference, PSI 2006, Novosibirsk, Russia, June 27–30, 2006. Revised Papers,
Virbitskaite, I. & Voronkov, A. (eds), Lecture Notes in Computer Science, vol. 4378. Springer, pp.
27–40.

Abramsky, S. (2005) A structural approach to reversible computation. Theor. Comput. Sci. 347(3),
441–464.

Abramsky, S., Haghverdi, E. & Scott, P. J. (2002) Geometry of interaction and linear combinatory
algebras. Math. Struct. Comput. Sci. 12(5), 625–665.

Almendros-Jiménez, J. M. & Vidal, G. (2006) Automatic partial inversion of inductively sequential
functions. In Implementation and Application of Functional Languages, 18th International Symp
osium, IFL 2006, Budapest, Hungary, September 4–6, 2006, Revised Selected Papers. Springer,
pp. 253–270.

Altenkirch, T., Chapman, J. & Uustalu, T. (2010) Monads need not be endofunctors. In Foundations
of Software Science and Computational Structures, 13th International Conference, FOSSACS
2010, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2010, Paphos, Cyprus, March 20–28, 2010. Proceedings. Springer, pp. 297–311.

Altenkirch, T. & Grattage, J. (2005) A functional quantum programming language. In 20th IEEE
Symposium on Logic in Computer Science (LICS 2005), 26–29 June 2005, Chicago, IL, USA,
Proceedings. IEEE Computer Society, pp. 249–258.

Antoy, S., Echahed, R. & Hanus, M. (2000) A needed narrowing strategy. J. ACM. 47(4), 776–822.
Axelsen, H. B., Glück, R. & Yokoyama, T. (2007) Reversible machine code and its abstract processor

architecture. In Computer Science - Theory and Applications, Second International Symposium on
Computer Science in Russia, CSR 2007, Ekaterinburg, Russia, September 3–7, 2007, Proceedings.
Springer, pp. 56–69.

Baker, H. G. (1992) NREVERSAL of fortune - the thermodynamics of garbage collection. In
Memory Management, International Workshop IWMM 92, St. Malo, France, September 17–19,
1992, Proceedings. Springer, pp. 507–524.

Bennett, C. H. (1973) Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532.
Bernardy, J., Boespflug, M., Newton, R. R., Peyton Jones, S. & Spiwack, A. (2018) Linear haskell:

Practical linearity in a higher-order polymorphic language. PACMPL 2(POPL), 5:1–5:29.

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

44 K. Matsuda and M. Wang

Capretta, V. (2005) General recursion via coinductive types. Logical Methods Comput. Sci. 1(2),
Article number 1.

Chen, C. & Sabry, A. (2021) A computational interpretation of compact closed categories:
Reversible programming with negative and fractional types. Proc. ACM Program. Lang. 5(POPL),
1–29.

Chin, W. (1993) Towards an automated tupling strategy. In Proceedings of the ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-Based Program Manipulation, PEPM’93,
Copenhagen, Denmark, June 14–16, 1993. ACM, pp. 119–132.

Davies, R. & Pfenning, F. (2001) A modal analysis of staged computation. J. ACM 48(3), 555–604.
Dershowitz, N. & Mitra, S. (1999) Jeopardy. In Rewriting Techniques and Applications, 10th

International Conference, RTA-99, Trento, Italy, July 2–4, 1999, Proceedings. Springer, pp.
16–29.

Eppstein, D. (1985) A heuristic approach to program inversion. In IJCAI, pp. 219–221.
Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C. & Schmitt, A. (2007) Combinators for

bidirectional tree transformations: A linguistic approach to the view-update problem. ACM Trans.
Program. Lang. Syst. 29(3), Article number 17.

Frank, M. P. (1997) The R programming language and compiler. MIT Reversible Computing
Project Memo #M8, MIT AI Lab. Available on: https://github.com/mikepfrank/
Rlang-compiler/blob/master/docs/MIT-RCP-MemoM8-RProgLang.pdf.

Gibbons, J. (2002) Calculating functional programs. In Algebraic and Coalgebraic Methods in the
Mathematics of Program Construction, Backhouse, R., Crole, R. & Gibbons, J. (eds). Lecture
Notes in Computer Science, vol. 2297. Springer-Verlag, pp. 148–203. Available at: http://www.
cs.ox.ac.uk/people/jeremy.gibbons/publications/acmmpc-calcfp.pdf.

Glück, R. & Kawabe, M. (2003) A program inverter for a functional language with equality and
constructors. In Programming Languages and Systems, First Asian Symposium, APLAS 2003,
Beijing, China, November 27–29, 2003, Proceedings, Ohori, A. (ed). Lecture Notes in Computer
Science, vol. 2895. Springer, pp. 246–264.

Glück, R. & Kawabe, M. (2004) Derivation of deterministic inverse programs based on LR parsing.
In FLOPS. Springer, pp. 291–306.

Glück, R. & Yokoyama, T. (2016) A linear-time self-interpreter of a reversible imperative language.
Comput. Softw. 33(3), 3_108–3_128.

Glück, R. & Yokoyama, T. (2019) Constructing a binary tree from its traversals by reversible
recursion and iteration. Inf. Process. Lett. 147, 32–37.

Gomard, C. K. & Jones, N. D. (1991) A partial evaluator for the untyped lambda-calculus. J. Funct.
Program. 1(1), 21–69.

Hidaka, S., Hu, Z., Inaba, K., Kato, H., Matsuda, K. & Nakano, K. (2010) Bidirectionalizing
graph transformations. In Proceeding of the 15th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2010, Baltimore, Maryland, USA, September 27–29, 2010. ACM,
pp. 205–216.

Hu, Z., Iwasaki, H., Takeichi, M. & Takano, A. (1997) Tupling calculation eliminates multi-
ple data traversals. In Proceedings of the 1997 ACM SIGPLAN International Conference on
Functional Programming (ICFP’97), Amsterdam, The Netherlands, June 9–11, 1997. ACM,
pp. 164–175.

Hu, Z., Mu, S. & Takeichi, M. (2004) A programmable editor for developing structured documents
based on bidirectional transformations. In Proceedings of the 2004 ACM SIGPLAN Workshop
on Partial Evaluation and Semantics-based Program Manipulation, 2004, Verona, Italy, August
24–25, 2004. ACM, pp. 178–189.

Jacobsen, P. A. H., Kaarsgaard, R. & Thomsen, M. K. (2018) CoreFun: A typed functional reversible
core language. In Reversible Computation - 10th International Conference, RC 2018, Leicester,
UK, September 12–14, 2018, Proceedings. Springer, pp. 304–321.

James, R. P. & Sabry, A. (2012) Information effects. In Proceedings of the 39th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2012, Philadelphia,
Pennsylvania, USA, January 22–28, 2012. ACM, pp. 73–84.

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://github.com/mikepfrank/Rlang-compiler/blob/master/docs/MIT-RCP-MemoM8-RProgLang.pdf
https://github.com/mikepfrank/Rlang-compiler/blob/master/docs/MIT-RCP-MemoM8-RProgLang.pdf
http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/acmmpc-calcfp.pdf
http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/acmmpc-calcfp.pdf
https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 45

Jones, M. P. (1995) Qualified Types: Theory and Practice. New York, NY, USA: Cambridge
University Press.

Jones, N. D., Gomard, C. K. & Sestoft, P. (1993) Partial Evaluation and Automatic Program
Generation. Prentice Hall International Series in Computer Science. Prentice Hall.

Joyal, A., Street, R. & Verity, D. (1996) Traced monoidal categories. Math. Proc. Cambridge Philos.
Soc. 119(3), 447–468.

Kennedy, A. J. & Vytiniotis, D. (2012) Every bit counts: The binary representation of typed data and
programs. J. Funct. Program. 22(4–5), 529–573.

Kirkeby, M. H. & Glück, R. (2019) Semi-inversion of conditional constructor term rewriting systems.
In Logic-Based Program Synthesis and Transformation - 29th International Symposium, LOPSTR
2019, Porto, Portugal, October 8–10, 2019, Revised Selected Papers. Springer, pp. 243–259.

Kirkeby, M. H. & Glück, R. (2020) Inversion framework: Reasoning about inversion by conditional
term rewriting systems. In PPDP’20: 22nd International Symposium on Principles and Practice of
Declarative Programming, Bologna, Italy, 9–10 September, 2020. ACM, pp. 9:1–9:14.

Kristensen, J. T., Kaarsgaard, R. & Thomsen, M. K. (2022a) Branching execution symmetry in
jeopardy by available implicit arguments analysis. CoRR. abs/2212.03161.

Kristensen, J. T., Kaarsgaard, R. & Thomsen, M. K. (2022b) Jeopardy: An invertible functional
programming language. CoRR. abs/2209.02422.

Kühnemann, A., Glück, R. & Kakehi, K. (2001) Relating accumulative and non-accumulative
functional programs. In RTA. Springer, pp. 154–168.

Landauer, R. (1961) Irreversibility and heat generation in the computing process. IBM J. Res. Dev.
5(3), 183–191.

Launchbury, J. & Jones, S. L. P. (1994) Lazy functional state threads. In Proceedings of the
ACM SIGPLAN’94 Conference on Programming Language Design and Implementation (PLDI),
Orlando, Florida, USA, June 20–24, 1994. ACM, pp. 24–35.

Lutz, C. (1986) Janus: A time-reversible language. Letter to R. Landauer. Available on: http://
tetsuo.jp/ref/janus.pdf.

Mac Lane, S. (1998) Categories for the Working Mathematician, 2nd ed. Graduate Texts in
Matheematics, vol. 5. Springer.

Matsuda, K. (2020) Modular inference of linear types for multiplicity-annotated arrows. In
Programming Languages and Systems - 29th European Symposium on Programming, ESOP 2020,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2020, Dublin, Ireland, April 25–30, 2020, Proceedings. Springer. pp. 456–483. The full version is
available on: http://arxiv.org/abs/1911.00268v2.

Matsuda, K., Hu, Z., Nakano, K., Hamana, M. & Takeichi, M. (2007) Bidirectionalization trans-
formation based on automatic derivation of view complement functions. In Proceedings of the
12th ACM SIGPLAN International Conference on Functional Programming, ICFP 2007, Freiburg,
Germany, October 1–3, 2007. ACM, pp. 47–58.

Matsuda, K., Inaba, K. & Nakano, K. (2012) Polynomial-time inverse computation for accumulative
functions with multiple data traversals. Higher-Order Symb. Comput. 25(1), 3–38.

Matsuda, K., Mu, S.-C., Hu, Z. & Takeichi, M. (2010) A grammar-based approach to invertible
programs. In ESOP. Springer, pp. 448–467.

Matsuda, K. & Wang, M. (2013) FliPpr: A prettier invertible printing system. In ESOP. Springer, pp.
101–120.

Matsuda, K. & Wang, M. (2015a) Applicative bidirectional programming with lenses. In ICFP.
ACM, pp. 62–74.

Matsuda, K. & Wang, M. (2015b) “Bidirectionalization for free” for monomorphic transformations.
Sci. Comput. Program. 111, 79–109.

Matsuda, K. & Wang, M. (2018a) Applicative bidirectional programming: Mixing lenses and
semantic bidirectionalization. J. Funct. Program. 28, e15.

Matsuda, K. & Wang, M. (2018b) Embedding invertible languages with binders: A case of the
FliPpr language. In Proceedings of the 11th ACM SIGPLAN International Symposium on Haskell,
Haskell@ICFP 2018, St. Louis, MO, USA, September 27–17, 2018. ACM, pp. 158–171.

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

http://tetsuo.jp/ref/janus.pdf
http://tetsuo.jp/ref/janus.pdf
http://arxiv.org/abs/1911.00268v2
https://doi.org/10.1017/S0956796823000126

46 K. Matsuda and M. Wang

Matsuda, K. & Wang, M. (2018c) HOBiT: Programming lenses without using lens combinators. In
ESOP. Springer, pp. 31–59.

Matsuda, K. & Wang, M. (2020) Sparcl: A language for partially-invertible computation. Proc. ACM
Program. Lang. 4(ICFP), 118:1–118:31.

Mazurak, K., Zhao, J. & Zdancewic, S. (2010) Lightweight linear types in system fdegree. In TLDI.
ACM, pp. 77–88.

McBride, C. & Paterson, R. (2008) Applicative programming with effects. J. Funct. Program. 18(1),
1–13.

Mogensen, T. Æ. (2005) Semi-inversion of guarded equations. In Generative Programming and
Component Engineering, 4th International Conference, GPCE 2005, Tallinn, Estonia, September
29–October 1, 2005, Proceedings. Springer, pp. 189–204.

Mogensen, T. Æ. (2006) Report on an implementation of a semi-inverter. In Perspectives of Systems
Informatics, 6th International Andrei Ershov Memorial Conference, PSI 2006, Novosibirsk,
Russia, June 27–30, 2006. Revised Papers, Virbitskaite, I. & Voronkov, A. (eds). Lecture Notes
in Computer Science, vol. 4378. Springer, pp. 322–334.

Mogensen, T. Æ. (2008) Semi-inversion of functional parameters. In Proceedings of the 2008 ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Manipulation, PEPM
2008, San Francisco, California, USA, January 7–8, 2008. ACM, pp. 21–29.

Moggi, E. (1998) Functor categories and two-level languages. In Foundations of Software Science
and Computation Structure, First International Conference, FoSSaCS’98, Held as Part of the
European Joint Conferences on the Theory and Practice of Software, ETAPS’98, Lisbon, Portugal,
March 28–April 4, 1998, Proceedings. Springer, pp. 211–225.

Morris, J. G. (2016) The best of both worlds: linear functional programming without compromise.
In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming,
ICFP 2016, Nara, Japan, September 18–22, 2016. ACM, pp. 448–461.

Mu, S. & Bird, R. S. (2003) Rebuilding a tree from its traversals: A case study of program inversion.
In Programming Languages and Systems, First Asian Symposium, APLAS 2003, Beijing, China,
November 27–29, 2003, Proceedings, Ohori, A. (ed). Lecture Notes in Computer Science, vol.
2895. Springer, pp. 265–282.

Mu, S., Hu, Z. & Takeichi, M. (2004a) An algebraic approach to bi-directional updating. In
Programming Languages and Systems: Second Asian Symposium, APLAS 2004, Taipei, Taiwan,
November 4–6, 2004. Proceedings. Springer, pp. 2–20.

Mu, S., Hu, Z. & Takeichi, M. (2004b) An injective language for reversible computation.
In Mathematics of Program Construction, 7th International Conference, MPC 2004, Stirling,
Scotland, UK, July 12–14, 2004, Proceedings. Springer, pp. 289–313.

Nielson, F. & Nielson, H. R. (1992) Two-Level Functional Languages. Cambridge Tracts in
Theoretical Computer Science. Cambridge University.

Nishida, N., Sakai, M. & Sakabe, T. (2005) Partial inversion of constructor term rewriting systems.
In Term Rewriting and Applications, 16th International Conference, RTA 2005, Nara, Japan, April
19–21, 2005, Proceedings. Springer, pp. 264–278.

Nishida, N. & Vidal, G. (2011) Program inversion for tail recursive functions. In RTA. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 283–298.

Ohori, A. (ed) (2003) Programming Languages and Systems, First Asian Symposium, APLAS 2003,
Beijing, China, November 27–29, 2003, Proceedings. Lecture Notes in Computer Science, vol.
2895. Springer.

Paterson, R. (2012) Constructing applicative functors. In MPC. Springer, pp. 300–323.
Rendel, T. & Ostermann, K. (2010) Invertible syntax descriptions: Unifying parsing and pretty

printing. In Haskell. ACM, pp. 1–12.
Reynolds, J. C. (1998) Definitional interpreters for higher-order programming languages. Higher-

Order Symb. Comput. 11(4), 363–397.
Rios, F. & Selinger, P. (2017) A categorical model for a quantum circuit description language. In

Proceedings 14th International Conference on Quantum Physics and Logic, QPL 2017, Nijmegen,
The Netherlands, 3–7 July 2017, pp. 164–178.

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 47

Romanenko, A. (1991) Inversion and metacomputation. In Proceedings of the Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, PEPM’91, Yale University, New Haven,
Connecticut, USA, June 17–19, 1991. ACM, pp. 12–22.

Rondon, P. M., Kawaguchi, M. & Jhala, R. (2008) Liquid types. In Proceedings of the ACM
SIGPLAN 2008 Conference on Programming Language Design and Implementation, Tucson, AZ,
USA, June 7–13, 2008. ACM, pp. 159–169.

Salomon, D. (2008) A Concise Introduction to Data Compression. Undergraduate Topics in
Computer Science. Springer.

Selinger, P. & Valiron, B. (2006) A lambda calculus for quantum computation with classical control.
Math. Struct. Comput. Sci. 16(3), 527–552.

Srivastava, S., Gulwani, S., Chaudhuri, S. & Foster, J. S. (2011) Path-based inductive synthesis for
program inversion. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4–8, 2011. ACM,
pp. 492–503.

Terese. (2003) Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55.
Cambridge University.

Tov, J. A. & Pucella, R. (2011) Practical affine types. In Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA,
January 26–28, 2011. ACM, pp. 447–458.

Virbitskaite, I. & Voronkov, A. (eds) (2007) Perspectives of Systems Informatics, 6th International
Andrei Ershov Memorial Conference, PSI 2006, Novosibirsk, Russia, June 27–30, 2006. Revised
Papers. Lecture Notes in Computer Science, vol. 4378. Springer.

Vytiniotis, D., Peyton Jones, S. L., Schrijvers, T. & Sulzmann, M. (2011) OutsideIn(X) modular type
inference with local assumptions. J. Funct. Program. 21(4–5), 333–412.

Wadler, P. (1993) A taste of linear logic. In Mathematical Foundations of Computer Science
1993, 18th International Symposium, MFCS’93, Gdansk, Poland, August 30–September 3, 1993,
Proceedings. Springer, pp. 185–210.

Walker, D. (2004) Substractural type systems. In Advanced Topics in Types and Programming
Languages, Pierce, B. C. (ed). MIT, pp. 3–43.

Wang, M., Gibbons, J., Matsuda, K. & Hu, Z. (2013) Refactoring pattern matching. Sci. Comput.
Program. 78(11), 2216–2242. Special section on Mathematics of Program Construction (MPC
2010) and Special section on methodological development of interactive systems from Interaccion
2011.

Xi, H. & Pfenning, F. (1998) Eliminating array bound checking through dependent types. In
Proceedings of the ACM SIGPLAN’98 Conference on Programming Language Design and
Implementation (PLDI), Montreal, Canada, June 17–19, 1998. ACM, pp. 249–257.

Yokoyama, T., Axelsen, H. B. & Glück, R. (2008) Principles of a reversible programming language.
In Proceedings of the 5th Conference on Computing Frontiers, 2008, Ischia, Italy, May 5–7, 2008.
ACM, pp. 43–54.

Yokoyama, T., Axelsen, H. B. & Glück, R. (2011) Towards a reversible functional language. In RC.
Springer, pp. 14–29.

Yokoyama, T., Axelsen, H. B. & Glück, R. (2012) Optimizing reversible simulation of injective
functions. Multiple-Valued Logic Soft Comput. 18(1), 5–24.

Ziv, J. & Lempel, A. (1977) A universal algorithm for sequential data compression. IEEE Trans. Inf.
Theory 23(3), 337–343.

A Appendix: Proof of the reversible Turing completeness

As we mentioned before, the proof will be done by implementing a given reversible Turing
machine. We follow Yokoyama et al. (2008) for the construction except the last step. For
convenience, we shall use SPARCL instead of λPI→ for construction, but the discussions in
this section can be adapted straightforwardly to λPI→.

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

48 K. Matsuda and M. Wang

Following Yokoyama et al. (2008) means that we basically do not make use of the partial
invertibility in the implementation, which is unsurprising as a reversible Turing machine is
fully-invertible by nature. A notable exception is the last step, which uses a general looping
operator represented as a higher-order function, where function parameters themselves are
static (i.e., unidirectional).

A.1 Reversible Turing machines

We start with reviewing ordinary Turing machines.

Definition A.1 (Turing Machine). A (nondeterministic) Turing machine is a 5-tuple
(Q, �, δ, q0, qf) where Q is a finite set of states, � is a finite set of symbols, δ is a finite set of
transition rules whose element has a form (q1, (σ1, σ2), q2) or (q1, d, q2) where q1, q2 ∈Q,
q1 �= qf , q2 �= q0, σ1, σ2 ∈� and d ∈ {−1, 0, 1}, q0 ∈Q is the initial state and qf ∈Q is the
final state.

We assume that � contains a special symbol ␣ called blank. A Turing machine, with a
state and a head on a tape with no ends, starts with the initial state q0 and a tape with the
finite non-black cells and repeats transitions accordingly to the rules δ until it reaches the
final state qf . Intuitively, a rule (q1, (σ1, σ2), q2) states that, if the current state of a machine
is q1 and the head points to the cell containing σ1, then it writes σ2 to the cell and changes
the current state to q2. A rule (q1, d, q2) states that, if the current state of a machine is
q1 and its head is located at position i in the tape, then it moves the head to the position
i+ d and changes the state to q2. A reversible Turing machine is a Turing machine whose
transitions are deterministic both forward and backward.

Definition A.2 (Reversible Turing Machine (Bennett, 1973; Yokoyama et al., 2008)). A
reversible Turing machine is a Turing machine (Q, �, δ, q0, qf) satisfying the following
conditions for any distinct rules (q1, a, q2) and (q′1, a′, q′2).

• If q1 = q′1, then a and a′ must have the forms (σ1, σ2) and (σ ′1, σ ′2), respectively, and
σ1 �= σ ′1.

• If q2 = q′2, then a and a′ must have the forms (σ1, σ2) and (σ ′1, σ ′2), respectively, and
σ2 �= σ ′2.

A.2 Programming a reversible Turing machine

Consider a given reversible Turing machine (Q, �, δ, q0, qf). We first prepare types used
for implementing the given reversible Turing machine. We assume types TQ and T� for
states and symbols, and Qq : TQ and Sσ : T� for constructors corresponding to q ∈Q and
σ ∈�, respectively. Then, a type for tapes is give by a product Tape= List T� ⊗T� ⊗
List T� , where a triple (l, a, r) : Tape means that a is the symbol at the current head, l is the
symbols to the left of the head, and r is the symbols to the right to the head. For uniqueness
of the representation, the last elements of l and r are assumed not to be S␣ if they are not
empty.

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

SPARCL: A language for partially invertible computation 49

Then, we prepare the function moveR below that moves the head to the right.

moveR : Tape•�Tape•

moveR (l, a, r)• = let (a′, l′)• = invert push l in
(l′, a′, push (a, r)•)•

push : (T� ⊗ List T�)•� (List T�)•

push (S␣, Nil)• =Nil• with null
push (a, xs)• = Cons• a xs

Here, (−, . . . ,−)• is a lifted version of the tuple constructor (−, . . . ,−), let p• = e in e′ is
a shorthand notation for case e of {p• → e′ with λ .True}, and the function invert : (A•�
B•)→ B•� A• implements the inversion of a invertible function (Section 2).

Then, we define the one-step transition of the given reversible Turing machine.

step : (TQ ⊗Tape)•� (TQ ⊗Tape)•

step t= case t of {�r�}r∈δ

Here, the translation �r� of each rule r is defined as below.

�(q1, (σ1, σ2), q2)� = (Qq1 , (l, Sσ1 , r))• → (Qq2 , (l, Sσ2 , r))•

with λ(q, (, s,)).isQq2
q && isSσ2 s

�(q1, 0, q2)� = (Qq1 , t)• → (Qq2
•, t)• with λ(q,).isQq2

q

�(q1, 1, q2)� = (Qq1 , t)• → (Qq2
•, moveR t)• with λ(q,).isQq2

q

�(q1,−1, q2)� = (Qq1 , t)• → (Qq2
•, invert moveR t)• with λ(q,).isQq2

q

Here, isQq : TQ →Bool is a function that returns True for Qq and False otherwise, and
isSσ : T� →Bool is similar but defined for symbols. Notice that, by the reversibility of
the Turing machine, patterns are nonoverlapping and at most one with-condition becomes
True.

The last step is to apply step repeatedly from the initial state to the final state, which
can be performed by a reversible loop (Lutz, 1986). Since we do not have reversible loop
as a primitive, manual reversible programming is required. In functional programming,
loops are naturally encoded as tail recursions, which are known to be difficult to handle
in the contexts of program inversion (Glück & Kawabe, 2004; Mogensen, 2006; Matsuda
et al., 2010; Nishida & Vidal, 2011). Roughly speaking, for a tail recursion (such as g x=
case x of{p→ g e; p′ → e′}), with-conditions are hardly effective in choosing branches, as
due to the tail call of g, the set of possible results of a branch coincides with the other’s. So
we need to program such loop-like computation without tail recursions.

The higher-orderness of SPARCL (and λPI→) is useful here, as the effort can be made once
for all. Specifically, we prepare the following higher-order function implementing general
loops.

trace : (a•� (a⊗ a)•)→ (b•� (b⊗ b)•)→ ((a⊕ x)•� (b⊕ x)•)→ a•� b•

trace dupA dupB h a= let (a1, a2)• = dupA a in
let (b1, n)• = go (h (InL• a1)) in
let (InL b2)• = h (goN a2 n) in
invert dupB (b1, b2)•

where go : (b⊕ x)•� (b⊗Nat)•

go (InL b)• = (b, Z•)• with isZ ◦ snd
go (InR x)• = let (b, n)• = go (h (InR• x)) in (b, S• n)•

goN : a•�Nat•� (a⊕ x)•

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

50 K. Matsuda and M. Wang

goN a Z• = InL• a with isInL
goN a (S n)• = let (InR x)• = h (goN a n) in InR• x

The trace dupA dupB h a applies the forward/backward computation of h repeatedly to
InL a; it returns b if h returns InL b, and otherwise (if h returns InR x) it applies the same
computation again for h (InR x). Here, dupA and dupB are supposed to be the reversible
duplication (Glück and Kawabe, 2003). This implementation essentially uses Yokoyama
et al. (2012)’s optimized version of Bennett (1973)’s encoding. That is, if we have an injec-
tive f : A � B of which invertibility is made evident (i.e., locally reversible) by outputting
and consuming the same trace (or, history (Bennett, 1973)) of type H as f1 : A � B⊗H
and f2 : A⊗H � B, respectively, then we can implement the version f ′ : A � B of which
invertibility is evident by (1) copying the input a as (a1, a2), (2) applying f1 to a1 to obtain
(b1, h), (3) applying f2 to a2 and h to obtain b2, and (4) applying the inverse of copying (i.e.,
equivalence check (Glück and Kawabe, 2003)) to (b1, b2) to obtain b (= b1 = b2). Note that
the roles of f1 and f2 are swapped in the backward execution. Above, we use loop counts
as the trace H , and go and goN correspond to f1 and f2, respectively. The construction
implies that the inverse of copying must always succeeds, and thus we can safely replace
dupA by unsafe copying λa.pin a unsafeNew and dupB by invert (λb.pin b unsafeNew).
The version presented in the main body of this paper assumes this optimization.

By using trace, we conclude the proof by rtm below that implements the behavior of the
given reversible Turing machine.

rtm : Tape•�Tape•

rtm= trace dupTape dupTape (checkFinal ◦ step ◦ assertInit)

assertInit : (Tape⊕ (TQ ⊗Tape))• → (TQ ⊗Tape)•

assertInit (InL t)• = (Qq0
•, t)• with isQq0

◦ fst

assertInit (InR (q, t))• = (q, t)•

checkFinal : (TQ ⊗Tape)• → (Tape⊕ (TQ ⊗Tape))•

checkFinal (Qqf , t)• = InL• t with isL

checkFinal (q, t)• = InR• (q, t)•

Here, dupTape : Tape•� (Tape⊗Tape)• is the reversible duplication of tapes. Recall that
q0 cannot be the destination of a transition and qf cannot be the source. Note that, thanks to
trace, the above definition of rtm is more straightforward than Yokoyama et al. (2008) in
which rtm is defined by forward and backward simulations of a reversible Turing machine
with step counting.

https://doi.org/10.1017/S0956796823000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000126

	Sparcl: A language for partially invertible computation
	Introduction
	Overview
	Linear-typed programming
	Multiplication
	Why linearity itself is insufficient but still matters
	Running reversible computation
	Importing existing invertible functions
	Composing partially invertible functions
	Implementations

	Core system: PI
	Central concept: Bijections at the heart
	Syntax
	Types
	Typing relation
	Operational semantics
	Values and residuals
	Three evaluation relations: Unidirectional, forward, and backward

	Metatheory
	Subject reduction
	Bijectivity
	Note on the progress property
	Reversible Turing completeness

	Extension with the lift operator

	Mechanized proof in Agda
	Differences in formalization
	Evaluation functions
	Bijectivity of the forward and backward evaluation

	Larger examples
	Rebuilding trees from a preorder and an inorder traversals
	Calculation of the original definition
	Making partial-invertibility explicit
	new and delete

	Huffman coding
	Two-pass Huffman coding
	Concrete representation of Huffman tree in Sparcl
	Adaptive Huffman coding

	Arithmetic coding
	LZ77 compression

	Related work
	Program inversion and invertible/reversible computation
	Functional quantum programming languages
	Bidirectional programming languages
	Linear type systems

	Conclusion
	Appendix: Proof of the reversible Turing completeness
	Reversible Turing machines
	Programming a reversible Turing machine

