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Abstract

We generalize the work of Bertolini and Darmon on the anticyclotomic main conjecture
for elliptic curves to modular forms of higher weight.
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Introduction

This is the continuation of our previous work [CH12] on the analytic side of Iwasawa theory
for modular forms over the anticyclotomic Zp-extension of imaginary quadratic fields, i.e. the
construction of p-adic L-functions and explicit interpolation formulas. The purpose of this paper
is to prove a one-sided divisibility relation towards the main conjecture in Iwasawa theory for
modular forms over anticyclotomic Zp-extensions by generalizing the proof of Bertolini and
Darmon [BD05] for elliptic curves. To state our result precisely, we introduce some notation. Let
f ∈ Sk(Γ0(N)) be an elliptic new form of level N with q-expansion at the infinity cusp,

f(q) =
∑
n>0

an(f)qn.

Let K be an imaginary quadratic field with absolute discriminant DK . Decompose N = N+N−,
where N+ is only divisible by primes split in K and N− is only divisible by primes inert or
ramified in K. In this paper we assume that

N− is the square-free product of an odd number of inert primes. (ST)
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Let p be a distinguished rational prime such that

p - NDK .

Fix an embedding ιp : Q̄ → Cp. Let E = Qp(f) be the Hecke field of f in Cp, i.e. the finite
extension of Qp generated by {an(f)}n. Let O be the ring of integers of E and F be the residue
field. Henceforth, we assume that

f is p-ordinary, (ord)

i.e. the pth Fourier coefficient ap(f) is a unit in O. Let ρf : GQ = Gal(Q̄/Q) → GL2(E)
be the p-adic Galois representation attached to f . We have det ρf = εk−1, where ε : GQ → Z×p
is the p-adic cyclotomic character. We consider the self-dual Galois representation

ρ∗f := ρf ⊗ ε(2−k)/2 : GQ→ GL2(E). (0.1)

Let Vf = E⊕2 be the representation space of ρ∗f . By the ordinary assumption for f , there exists a

unique rank-one GQp-invariant subspace F+
p Vf ⊂ Vf on which the inertia group of GQp acts via

εk/2. We shall fix a GQ-stable lattice Tf ⊂ Vf once and for all. Let Af := Vf/Tf and let F+
p Af be

the image of F+
p Vf in Af . Let K∞ be the anticyclotomic Zp-extension of K. Let Γ = Gal(K∞/K)

and let Λ = OJΓK be the one-variable Iwasawa algebra over O. In this paper we are interested in
the Λ-adic minimal Selmer group Sel(K∞, Af ) for ρ∗f . Recall that for each algebraic extension
L over K, the minimal Selmer group Sel(L,Af ) is defined by

Sel(L,Af ) := ker

{
H1(L,Af )→

∏
v-p

H1(Lv, Af )×
∏
v|p

H1(Lv, Af/F
+
p Af )

}
,

where v runs over places of L and Lv is the completion of L with respect to v. It is well known
that the Pontryagin dual Sel(K∞, Af )∨ of Sel(K∞, Af ) is a finitely generated Λ-module.

On the other hand, in [CH12, Theorem A] we construct a theta element θ∞ ∈ Λ obtained
by the evaluation of a p-ordinary definite quaternionic modular form at Gross points, and define
a complex number Ωf,N− ∈ C× attached to (f,N−) such that for every finite-order character
χ : Γ → µp∞ of conductor pn, the anticyclotomic p-adic L-function Lp(K∞, f) := θ2

∞ satisfies
the following interpolation formula:

χ(Lp(K∞, f)) = Γ

(
k

2

)2

· L(f/K, χ, k/2)

Ωf,N−
· ep(f, χ)2 · pnαp(f)−2n(pnDK)k−2 · u2

K

√
DK , (0.2)

where αp(f) is the p-adic unit root of the Hecke polynomial X2−ap(f)X+pk−1, uK = #(O×K)/2
and ep(f, χ) is the p-adic multiplier defined by

ep(f, χ) =


1 if n > 0,

(1− χ(p)p(k−2)/2αp(f)−1)(1− χ(p)p(k−2)/2αp(f)−1) if n = 0 and p = pp is split,

1− pk−2αp(f)−2 if n = 0 and p = p is inert.

In general, this complex number Ωf,N− belongs to Ωf · O, where Ωf is Hida’s canonical period.
Recall that

Ωf =
4k−1πk‖f‖Γ0(N)

ηf (N)
,

where ‖f‖Γ0(N) is the Petersson norm of f and ηf (N) is the congruence number of f among
forms in Sk(Γ0(N)).
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The main aim of this paper is to prove under certain hypotheses a one-sided divisibility result

towards the anticyclotomic main conjecture asserting an equality between the characteristic

power series charΛSel(K∞, Af )∨ and the p-adic L-function Lp(K∞, f). To describe our

hypotheses explicitly, we need to introduce some notation. Let ρ̄f be the residual Galois

representation of ρf . Throughout, we assume that the prime p satisfies the following hypothesis.

Hypothesis (CR+). (1) p > k + 1 and #(F×p )k−1 > 5.

(2) The restriction of ρ̄f to the absolute Galois group of Q(
√

(−1)(p−1)/2p) is absolutely

irreducible.

(3) ρ̄f is ramified at ` if either (i) ` | N− and `2 ≡ 1 (mod p) or (ii) ` ‖ N+ and ` ≡ 1 (mod p).

(4) ρ̄f restricted to the inertia group of Q` is irreducible if `2 | N and ` ≡ −1 (mod p).

We will further assume that

ap(f)2 6≡ 1 (mod p) if k = 2. (PO)

Remark 1. (1) Under the hypothesis (CR+), it is proved in [CH12, Proposition 6.1] that

Ωf,N− = u · Ωf for some u ∈ O×

if we further assume that ρ̄f is ramified at all primes dividing N−.

(2) (CR+2) implies that the definition of the Selmer group Sel(K∞, Af ) does not depend on

the choice of the lattice Tf .

(3) Note that (PO) is indeed equivalent to saying that αp(f)2 6≡ 1 (mod p). Moreover, it

implies that ep(f,1) 6≡ 0 (mod p), where 1 is the trivial character. When f is attached to an elliptic

curve over Q, the same hypothesis is also used in [BD94, Assumption 2.15 and Proposition 2.16].

(4) Since N− > 1 is square-free, f cannot be a CM form, and hence the hypothesis (CR+)

holds for all but finitely many primes p (but it is not known if there are infinitely many ordinary

primes for a given modular form f).

Theorem 1. With the hypotheses (CR+) and (PO) for the prime p, we have

charΛSel(K∞, Af )∨ ⊃ (Lp(K∞, f)).

Remark 2. (1) For the case k = 2, this theorem was proved by Bertolini and Darmon [BD05]

with the hypotheses for f being p-isolated and the maximality of the image of the residual

Galois representation ρ̄f . The former assumption was removed by Pollack and Weston [PW11].

We remove the assumption on the image of the residual Galois representation by looking carefully

into the Euler system arguments in [BD05].

(2) It is expected that the other divisibility follows from the work of Skinner and Urban [SU14]

on the three-variable main conjecture for f together with the generalization of Vastal’s result on

the vanishing of µ-invariant of the p-adic L-function Lp(K∞, f) [Vat03, CH12].

We obtain the following immediate consequence of Theorem 1 and [CH12, Theorem C].

Corollary 1. With the hypotheses in Theorem 1, the Λ-module Sel(K∞, Af ) is cotorsion and

its µ-invariant vanishes.

Combined with control theorems of Selmer groups and the interpolation formula of

Lp(K∞, f), the above theorem yields the following consequence.
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Corollary 2. With the hypotheses in Theorem 1, if the central L-value L(f/K, k/2) is
non-zero, then the minimal Selmer group Sel(K,Af ) is finite and

FittO(Sel(K,Af )) ·
∏
`|N+

Tam`(f) ⊃
(
L(f/K, k/2)

Ωf,N−

)
O,

where Tam`(f) = FittOH
1(Kur

` , Tf )
GK`
tor are the local Tamagawa ideals at ` | N+.

The reader might be aware of the missing local Tamagawa ideals at ` | N− in view of the
Bloch–Kato conjecture. This discrepancy is due to the complex number Ωf,N− being different
from the canonical period Ωf in general. When k = 2 and N is square-free, it is proved in [PW11]
that the ratio Ωf,N−/Ωf is precisely a product of local Tamagawa ideals at ` | N−.

The proof of Theorem 1 relies on the existence of an Euler system together with the first
and second explicit reciprocity laws à la Bertolini and Darmon for the Galois module Tf . This
is a generalization of the construction in [BD05] for elliptic new forms of weight two. To explain
the main idea of the construction of the Euler system, we introduce some notation. Let $ be a
uniformizer of O and let Λn = Λ ⊗O O/$nO for a positive integer n. Let Tf,n = Tf/$

nTf and
Af,n = ker{$n : Af → Af}. Following Bertolini and Darmon, we construct by the technique
of level-raising the Euler system En for each n arising from Heegner points in various Shimura
curves with wildly ramified level at p. This Euler system En is a collection of norm-compatible
cohomology classes κD(`)m ∈ H1(Km, Tf,n) for K∞/Km/K indexed by (`,D), where ` is an
n-admissible prime for f (Definition 1.1) and D = (∆, g) is an n-admissible form, a pair consisting
of ∆ = N− · S with S a square-free product of an even number of n-admissible primes and a
weight-two p-ordinary eigenform g on the definite quaternion algebra of discriminant ∆ such
that Hecke eigenvalues of g are congruent to those of f modulo $n (Definition 4.1). To each
n-admissible form D = (∆, g), we can associate a finitely generated compact Λn-module XD, the
Pontryagin dual of the ∆-ordinary Selmer group for Tf,n, and a theta element θD ∈ Λn obtained
by the evaluation of g at Gross points. The first reciprocity law gives a connection between
the Euler system κD(`) and the theta element θD, by which one can control the Selmer group
XD in terms of θD, and the second reciprocity law is a kind of level-raising argument at two
primes, which provides a decreasing induction on theta elements (or rather p-adic L-functions).
The main novelty in this paper is to establish the connection between this Euler system En and
the p-adic L-function Lp(K∞, f) of f modulo $n by the congruence between theta elements
attached to weight-two forms and higher-weight forms. A key observation is that when ∆ = N−,
we can construct an n-admissible form D0 = (N−, g0) such that XD0 = Sel(K∞, Af )∨ (mod$n)
and θ2

D0
≡ Lp(K∞, f) (mod$n) (Proposition 6.13). We remark that we do not make use of

the congruence among (definite quaternionic) modular forms of different weights but rather
we exploit the congruence between the evaluations of modular forms of weight two and higher
weight at Gross points. Thus, our approach does not provide perspective for the two-variable
main conjecture in [LV11] by varying f in Hida families, despite the fact that Hida theory is also
a key tool used to avoid the technical difficulties arising from the use of Shimura curves with
wildly ramified level at p in our proof.

The hypothesis (CR+) is responsible for a freeness result of the space of definite quaternionic
modular forms as Hecke modules in [CH12, Proposition 6.1]. The application of this freeness
result is twofold. On the algebraic side, it is used crucially in the level-raising argument for the
construction of Euler system and in the proof of second reciprocity law. On the analytic side, it
implies the equality between two periods Ωf and Ωf,N− up to a p-adic unit.The assumption (PO)
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roughly says that f is not congruent to an eigenform which is Steinberg at p. It is needed for
the application of the version of Ihara’s lemma proved in [DT94]. The hypothesis (CR+) is an
analogue of (CR) in [PW11] for the weight-two case. It might be weakened by a careful analysis
of the method of the proof of [CH12, Proposition 6.1]. However, it seems difficult to remove (PO)
unless one works out the p-adic Hodge theory used in [DT94] for the case of semi-stable
reduction.

Since we work in the higher-weight situation, one might look for the Euler system arising from
CM cycles on Kuga–Sato varieties over Shimura curves. Indeed, the first author in [Chi13] adopts
this construction and proves the first explicit reciprocity law for this Euler system without the
ordinary assumption for p. However, there remain issues to be addressed in arithmetic geometry
in order to prove the second explicit reciprocity law by a direct generalization of the proof of
Bertolini and Darmon, where the crucial ingredient is the surjectivity of the Abel–Jacobi map
from the supersingular part of the Jacobian of a Shimura curve over finite fields to the unramified
part of Galois cohomology H1

fin(K`, Tf,n) for n-admissible primes `. In this case, Bertolini and
Darmon are able to reduce this surjectivity to a version of Ihara’s lemma proved in [DT94], while
in the higher-weight case, we do not even know the surjectivity of the Abel–Jacobi map from
the Chow groups to the unramified part of Galois cohomology.

This paper is organized as follows. In § 1 we recall basic facts such as control theorems for
various Selmer groups. In §§ 2 and 3 we review the theory of p-adic modular forms on definite
quaternion algebras and Shimura curves. In §§ 4 and 5 we give the construction of the Euler
system and the proof of the explicit reciprocity laws. In § 6 we carry out the Euler system
argument and prove the main results.

Notation. We fix once and for all an embedding ι∞ : Q̄ ↪→ C and an isomorphism ι : C ' C`

for each rational prime `, where C` is the completion of the algebraic closure of Q`. Let ι` =
ιι∞ : Q̄ ↪→ C` be their composition. Let ord` : C` → Q ∪ {∞} be the `-adic valuation on C`

normalized so that ord`(`) = 1.
Denote by Ẑ the profinite completion of the ring Z of rational integers. For each place q,

denote by Zq the q-adic completion of Z. If M is an abelian group, let M̂ = M ⊗Z Ẑ and
Mq = M ⊗Z Zq. If R is a commutative ring, let MR = M ⊗Z R.

If L is a number field or a local field, denote by OL the ring of integers of L and by GL
the absolute Galois group. If L is a local field, denote by IL the inertia group and by Lur the
maximal unramified extension of L.

For a locally compact abelian group S, we denote by S∨ the Pontryagin dual of S.
The letter ` always denotes a rational prime.
We will retain the notation in the introduction. In this paper, in addition to (ST) and (ord),

we will assume that the prime p - NDK satisfies

p > k + 1 and #(F×p )k−1 > 5. (CR+1)

1. Selmer groups

1.1 Galois cohomology groups
Let L be an algebraic extension of Q. For a discrete GL-module M , we put

H1(L`,M) =
⊕
λ|`

H1(Lλ,M), H1(IL` ,M) =
⊕
λ|`

H1(ILλ ,M),
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where λ runs over all primes of L dividing `. Denote by res` : H1(L,M) → H1(L`,M) the
restriction map at `. Define the finite part of H1(L`,M) by

H1
fin(L`,M) = ker{H1(L`,M)→ H1(IL` ,M)},

and define the singular quotient of H1(L`,M) by

H1
sing(L`,M) = H1(L`,M)/H1

fin(L`,M).

The natural map induced by the restriction ∂` : H1(L,M)→ H1
sing(L`,M) is called the residue

map. For κ ∈ H1(L,M) with ∂`(κ) = 0, we let

v`(s) ∈ H1
fin(L`,M)

denote the image of κ under the restriction map at `.

1.2 Selmer groups
We will retain the notation in the Introduction. Recall that we work with the self-dual Galois
representation ρ∗f := ρf ⊗ ε(2−k)/2 : GQ→ AutO Tf attached to the new form f ∈ Snew

k (Γ0(N)).
Then it is known that ρ∗f satisfies the following properties:

(1) ρ∗f is unramified outside pN ;

(2) the restriction of ρ∗f to GQp is of the form
(
χ−1
p εk/2 ∗

0 χpε(2−k)/2

)
, where χp is unramified and

χp(Frobp) = αp(f);

(3) for all ` dividing N exactly, the restriction of ρ∗f to GQ`
is of the form

(
ε ∗
0 1

)
, where 1

denotes the trivial character.

Here the third property is a result of Carayol [Car86].
Fix a uniformizer $ of O. Let n be a positive integer. Let Tf,n = Tf/$

nTf and Af,n =
ker{$n : Af → Af}. As GQ-modules, we have Tf,n ' Af,n and Af,n ' HomO(Tf,n, E/O(1)).

Definition 1.1. A rational prime ` is said to be n-admissible for f if it satisfies the following
conditions:

(1) ` does not divide pN ;

(2) ` is inert in K/Q;

(3) p does not divide `2 − 1;

(4) $n divides `k/2 + `(k−2)/2 − ε`a`(f) with ε` ∈ {±1}.
Let L/K be a finite extension. In what follows, we introduce a GQ`

-invariant submodule
F+
` Af,n and define the ordinary part of H1(L`, Af,n) for ` a prime factor of pN− or an
n-admissible prime. For the prime p, we let F+

p Vf ⊂ V be the E-rank-one GQp-invariant

subspace on which the inertia group IQp acts via εk/2. Let F+
p Af be the image of F+

p Vf in

Af and F+
p Af,n = F+

p Af ∩ Af,n. If ` | N−, we let F+
` Vf ⊂ Vf be the unique E-rank-one

subspace on which GQ`
acts by either ε or ετ`, where ε is the p-adic cyclotomic character

and τ` is the non-trivial unramified quadratic character of GQ`
. Let F+

` Af be the image of
F+
` Vf in Af and F+

` Af,n = F+
` Af ∩ Af,n. If ` is n-admissible, then Vf is unramified at ` and

(Frob` − ε`)(Frob` − ε``) = 0 on Af,n for the Frobenius Frob` of GQ`
. We let F+

` Af,n ⊂ Af,n be
the unique O/($n)-corank-one submodule on which Frob` acts via the multiplication by ε``. In
all cases, define the ordinary part of H1(L`, Af,n) by

H1
ord(L`, Af,n) = ker{H1(L`, Af,n)→ H1(L`, Af,n/F

+
` Af,n)}.

The ordinary part H1
ord(L`, Tf,n) of H1(L`, Tf,n) can be defined in the same way.
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Let ∆ be a square-free integer such that ∆/N− is a product of n-admissible primes (so
N− | ∆) and let S be a square-free integer with (S, p∆N) = 1.

Definition 1.2. For M = Af,n or Tf,n, we define the ∆-ordinary Selmer group SelS∆(L,M)
attached to (f, n,∆, S) to be the group of elements s in H1(L,M) satisfying the following
properties:

(1) ∂`(s) = 0 for all ` - p∆S;

(2) res`(s) ∈ H1
ord(L`,M) at the primes ` | p∆;

(3) res`(s) is arbitrary at the primes ` | S.

When S = 1, we simply write Sel∆(L,M) for Sel1∆(L,M).

Let m be a non-negative integer. Denote by Hm the ring class field of conductor pm. Let
Gm = Gal(Hm/K) and let H∞ =

⋃∞
m=1Hm. Let Km = K∞ ∩Hm and Γm = Gal(Km/K). Then

K∞ =
⋃∞
m=1Km and Γ = lim

←−m Γm. Let Λ = OJΓK = lim
←−mO[Γm] be the one-variable Iwasawa

algebra over O and let mΛ be the maximal ideal of Λ. Let H1(K∞, Af,n) = lim−→m
H1(Km, Af,n)

and Ĥ1(K∞, Tf,n) = lim
←−mH

1(Km, Tf,n), where the injective limit is taken with respect to the
restriction maps and the projective limit is taken with respect to the corestriction maps. The
local cohomology groups H1

• (K∞,`, Af,n) and Ĥ1
• (K∞,`, Tf,n) for • ∈ {fin, sing, ord} are defined

in the same way. We define

Sel∆(K∞, Af,n) = lim−→
m

Sel∆(Km, Af,n),

Ŝel
S

∆(K∞, Tf,n) = lim
←−
m

SelS∆(Km, Tf,n).

Then Sel∆(K∞, Af,n) (respectively Ŝel
S

∆(K∞, Tf,n)) is a discrete (respectively compact) Λ-
module induced by the standard Γ-action. Recall that Sel(K∞, Af ) is the minimal Selmer group
in the introduction.

Proposition 1.3. Suppose that (CR+) holds. Then SelN−(K∞, Af ) = lim−→n
SelN−(K∞, Af,n) is a

Λ-submodule of Sel(K∞, Af ) with finite index. If SelN−(K∞, Af ) is Λ-cotorsion, then SelN−(K∞,
Af ) = Sel(K∞, Af ).

Proof. This is shown in the proof of [PW11, Proposition 3.6]. Note that Sel(K∞, fn) [PW11,
Proposition 3.6] is precisely our SelN−(K∞, Af,n). 2

1.3 Local cohomology groups and local Tate duality
We gather some standard results on the local cohomology groups in this subsection.

Lemma 1.4. Suppose that ` 6= p. Then:

(1) if ` is split in K/Q, then

Ĥ1
sing(K∞,`, Tf,n) = {0}, H1

fin(K∞,`, Af,n) = {0};

(2) if ` is non-split in K/Q, then

Ĥ1
sing(K∞,`, Tf,n) ' H1

sing(K`, Tf,n)⊗ Λ

and
H1

fin(K∞,`, Af,n) ' Hom(H1
sing(K`, Tf,n)⊗ Λ, E/O).
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Proof. This is [BD05, Lemmas 2.4 and 2.5]. The argument there holds even if ` | N . 2

Lemma 1.5. If ` is n-admissible, then:

(1) H1
sing(K`, Tf,n) and H1

fin(K`, Tf,n) are both isomorphic to O/$nO;

(2) Ĥ1
sing(K∞,`, Tf,n) and Ĥ1

fin(K∞,`, Tf,n) are free of rank one over Λ/$nΛ;

(3) we have the decompositions

Ĥ1(K∞,`, Tf,n) = Ĥ1
fin(K∞,`, Tf,n)⊕ Ĥ1

ord(K∞,`, Tf,n),

H1(K∞,`, Af,n) = H1
fin(K∞,`, Af,n)⊕H1

ord(K∞,`, Af,n).

Proof. Since Af,n is unramified at `, we have a direct sum Af,n = F+
` Af,n ⊕ F−` Af,n as GQ`

-
modules, where F−` Af,n = (Frob` − ε``)Af,n. An easy calculation shows that

H1
fin(K`, Af,n) = H1(Kur

` /K`, Af,n) = H1(Kur
` /K`, F

−
` Af,n) ' F−` Af,n.

We thus have

H1(K`, Af,n) =H1(K`, F
−
` Af,n)⊕H1(K`, F

+
` Af,n)

=H1
fin(K`, Af,n)⊕H1

ord(K`, Af,n).

Combined with Lemma 1.4(2), the lemma follows immediately. 2

Since Af,n and Tf,n are isomorphic to their Cartier duals, the pairing induced by the cup
product on the Galois cohomology gives rise to the collection of local Tate pairings at the primes
above ` over Km:

〈 , 〉m,` : H1(Km,`, Tf,n)×H1(Km,`, Af,n)→ E/O.
Taking the limit with m, we obtain a perfect pairing

〈 , 〉` : Ĥ1(K∞,`, Tf,n)×H1(K∞,`, Af,n)→ E/O.

These pairings are compatible with the action of Λ, so they induce an isomorphism of Λ-modules

Ĥ1(K∞,`, Tf,n) ' H1(K∞,`, Af,n)∨.

The following result is well known.

Proposition 1.6. Suppose that ` 6= p. H1
fin(K∞,`, Af,n) and Ĥ1

fin(K∞,`, Tf,n) are orthogonal

complements under the pairing 〈 , 〉`. In particular, H1
fin(K∞,`, Af,n) and Ĥ1

sing(K∞,`, Tf,n) are
the Pontryagin dual of each other.

Proof. This is well known. For example, see [Rub00, Proposition 1.4.3]. 2

Proposition 1.7. Suppose that ` is n-admissible or ` divides pN−. Assume, further, that (PO)
holds and

ρ̄f is ramified at ` if ` | N− and `2 ≡ 1 (mod p). (CR+3)

Then we have:

(1) H1
ord(K∞,`, Af,n) and Ĥ1

ord(K∞,`, Tf,n) are orthogonal complements under the local Tate
pairing;
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(2) if ` is n-admissible, then Ĥ1
fin(K∞,`, Tf,n) and H1

ord(K∞,`, Af,n) are the Pontryagin dual of
each other.

Proof. The assertions for n-admissible primes follow from Lemma 1.5 and Proposition 1.6. Let
` | N−. We prove part (1) for `. A simple calculation shows that

#(H1(K`, Af,n)) = #(A
GK`
f,n )2, #(H1

ord(K`, Af,n)) = #(A
GK`
f,n ).

Therefore, it suffices to show that H1
ord(K`, Af,n) and H1

ord(K`, Tf,n) are orthogonal to each
other. If ρ̄f is unramified at `, then `2 6≡ 1 (mod p) by (CR+3), and the orthogonality follows
from H2(K`,O/$nO(ε2)) = {0}. If ρ̄f is ramified at `, then

H1(Kur
` /K`, F

+
` Af,n)

∼
→ H1

fin(K`, Af,n) ↪→ H1
ord(K`, Af,n).

In addition, it is to easy to see that #(H1
fin(K`, Af,n)) = #(A

GK`
f,n ). This shows that H1

fin(K`,

Af,n) = H1
ord(K`, Af,n), and the assertion follows from Proposition 1.6.

We consider the case `= p. Let L/K be a finite extension in K∞. By the following Lemma 1.8,
we have the duality (F+

p Af,n)∨(1) ' Af,n/F+
p Af,n ' On(χpε

(2−k)/2) and by a simple calculation,

we find that H1(Lp, F
+
p Af,n)

∼
→ H1

ord(Lp, Af,n) and an exact sequence

0→ H1(Lp, F
+
p Af,n)→ H1(Lp, Af,n)→ H1(Lp, Af,n/F

+
p Af,n)→ 0.

The assertion for ` = p now follows from H2(Lp,On(εk)) = {0} for k > 1. 2

Lemma 1.8. Suppose that (PO) holds. Then H0(Lp, Af,n/F
+
p Af,n) = {0}.

Proof. Let T−f,n := Tf,n/F
+
p Tf,n. Let v be a place of L above p. Since Lv(µp−1) and Lur

v are linear

disjoint, the cyclotomic character ε : IL,v → Z×p → F×p is surjective. If k > 2, then

(T−f,n)IL,v = (On(ε1−k/2))ILv = 0 =⇒ (T−f,n)GLv = {0}.

If k = 2, then the Frobenius Frobv acts on T−f,n by a scalar αp(f)rv , where αp(f) is the unit root

of the Hecke polynomial X2 − ap(f)X + pk−1 and rv = 1 if p is split and rv = 2 if p is inert.
By (PO), αp(f)2 − 1 is a p-adic unit. Then we find that

(T−f,n)GLv = (T−f,n)[(Frobv)
ps − 1] = (T−f,n)[αp(f)rvp

s − 1] = {0}.
Here ps is the inertia degree of Lv/Kv. This completes the proof. 2

1.4 Global reciprocity

By the global reciprocity law of class field theory, for κ ∈ Ĥ1(K∞, Tf,n) and s ∈ H1(K∞, Af,n),
we have ∑

q: prime

〈resq(κ), resq(s)〉q = 0.

Since the local conditions of Ŝel
S

∆(K∞, Tf,n) and Sel∆(K∞, Af,n) are orthogonal at the

primes not dividing S, if κ belongs to Ŝel
S

∆(K∞, Tf,n) and s belongs to Sel∆(K∞, Af,n), then we
have ∑

q|S

〈∂q(κ), vq(s)〉q = 0. (1.1)
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1.5 Control theorem (I)
Let S be a square-free product of n-admissible primes. We prove control theorems for the discrete
Selmer groups SelS∆(K∞, Af,n). Let L/K be a finite extension in K∞.

Proposition 1.9. Suppose that (PO) holds and

the residual Galois representation ρ̄f : GQ→ AutO(Af,1) is absolutely irreducible. (Irr)

Then:

(1) the restriction maps

H1(K,Af,n)→ H1(L,Af,n)Gal(L/K), SelS∆(K,Af,n)→ SelS∆(L,Af,n)Gal(L/K)

are isomorphisms;

(2) SelS∆(L,Af,n) = SelS∆(L,Af )[$n].

Proof. Since K∞/Q is a Galois extension, by the residual irreducibility of ρf we have T
GK∞
f,n = 0,

and hence we have an isomorphism H1(K,Af,n) ' H1(L,Af,n)Gal(L/K). To show part (1), it
suffices to show:

(a) H1(Kur
` , Af,n)→ H1(Lur

` , Af,n) is injective for ` - p∆; and

(b) H1(K`, Af,n/F
+
` Af,n)→ H1(L`, Af,n/F

+
` Af,n) is injective for ` | p∆.

Since L/K is unramified outside p and anticyclotomic, for each place λ of L above ` 6= p, we
have Kur

λ = Lur
λ . This verifies (a). Part (b) for ` | ∆ follows from the fact that Kλ = Lλ for any

prime λ of L above ` which is non-split in K. Part (b) for ` = p is an immediate consequence of
Lemma 1.8.

Part (2) can be proved in the same way. The natural map SelS∆(L,Af,n) ↪→ SelS∆(L,Af )[$n]
is injective by virtue of the exact sequence

0→ Af,n→ Af
$n
→ Af → 0

and the fact that AGLf,n ⊂ A
GK∞
f,n = 0. To show the surjectivity, it remains to show:

(a1) H1(Lur
` , Af,n)→ H1(Lur

` , Af ) is injective for ` - p∆; and

(b1) H1(L`, Af,n/F
+
` Af,n)→ H1(L`, Af/F

+
` Af ) is injective for ` | p∆.

The injectivity in (a1) and (b1) for ` 6= p can be seen from the fact that the actions of IL,`
and GL` on Af and Af/F

+
` Af respectively are trivial, and that in (b1) for ` = p follows from

Lemma 1.8. 2

2. p-adic modular forms on definite quaternion algebras

2.1 Hecke algebras of quaternion algebras

Let B be a quaternion algebra over Q and let B̂ = B ⊗Z Ẑ be the profinite completion of B.
Denote by ∆B the absolute discriminant of B. If Σ is a positive integer, then B̂× = B̂(Σ)×B̂×(Σ),

where
B̂(Σ)× = {x ∈ B̂× | xq = 1∀q | Σ}; B̂×(Σ) = {x ∈ B̂× | xq = 1∀q - Σ}.

If U is an open compact subgroup of B̂× and x ∈ B̂×, we denote by Uq (respectively by xq) the
local component of U (respectively of b) for each prime q.
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The Hecke algebra H(B×,U) is the space of Z-valued bi-U-invariant functions on B̂× with
compact support, equipped with the convolution product

(α ∗ β)(x) =

∫
B̂×

α(y)β(y−1x) dy,

where dy is the Haar measure on B̂× normalized so that vol(U , dy) = 1. For each x ∈ B̂×, denote
by [UxU ] the characteristic function of the set UxU . For each prime q, we set

πq =

(
q 0
0 1

)
, zq =

(
q 0
0 q

)
∈ GL2(Qq). (2.1)

We fix an identification i : B̂(∆B) ' M2(Q̂(∆B)). Let M+ be a positive integer with (M+,
∆B) = 1 and let RM+ be the Eichler order in B of level M+ with respect to i. Suppose that
p - ∆B. For a non-negative integer n, we define a special open compact subgroup UM+,pn ⊂ B̂×
by

UM+,pn :=

{
x ∈ R̂×

M+

∣∣∣∣ xp ≡ (a b
0 a

)
(mod pn), a, b ∈ Zp

}
. (2.2)

Let U = UM+,pn . Let Σ := pnM+∆B. By definition, we have i : (B̂(Σ)×,U (Σ)) ' (GL2(Q̂(Σ)),

GL2(Ẑ(Σ))). Denote by T(Σ)
B (M+) the subalgebra of H(B×,U) generated by [UxU ] with x ∈

B̂(Σ)×. Then

T(Σ)
B (M+) = Z[Tq, Sq, S

−1
q | q - Σ ],

where Tq and Sq are the standard Hecke operators at the prime q given by

Tq = [U i−1(πq)U ], Sq = [U i−1(zq)U ]. (2.3)

We proceed to introduce Hecke operators at q | Σ. If q | ∆B, choose π′q ∈ B×q with N(π′q) = q.
Define the Hecke operator Uq at q |M+∆B by

Uq = [U i−1(πq)U ] if q |M+, Uq = [Uπ′qU ] if q | ∆B. (2.4)

If n = 0, then U = R̂×
M+ , and we define

TB(M+) = Z[{Tq, Sq, S−1
q | q - Σ}, {Uq | q | Σ}] = T(Σ)

B (M+)[{Uq | q | Σ}]. (2.5)

Suppose that n > 0. For the prime p, we define Hecke operators Up and 〈a〉 for each a ∈ Z×p by

Up = [U i−1(πp)U ], 〈a〉 = [U i−1(d(a))U ]

(
d(a) =

(
a 0
0 1

)
∈ GL2(Zp)

)
. (2.6)

Let TB(M+, pn) be the (commutative) subring of H(B×,U) generated by Hecke operators at all
primes. Namely,

TB(M+, pn) = Z[{Tq, Sq, S−1
q | q - Σ}, {Uq | q |M+∆B}, {Up, 〈a〉 | a ∈ Z×p }]

= T(Σ)
B (M+)[{Uq, 〈a〉 | q | Σ, a ∈ Z×p }]. (2.7)

We call TB(M+, pn) (TB(M+) if n = 0) the complete Hecke algebra of level U . For each prime

`, let T(`)
B (M+, pn) be the subring of TB(M+, pn) generated by Hecke operators at primes q 6= `.
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2.2 Definite quaternion algebras
We recall some notation from [CH12, § 2.1]. Let K be the imaginary quadratic field with the
discriminant −DK < 0 and let δ =

√−DK . Write z 7→ z for the complex conjugation on K.
Define θ ∈ K by

θ =
D′ + δ

2
, D′ =

{
DK if 2 - DK ,

DK/2 if 2 | DK .

Then OK = Z + Z · θ and θθ is a local uniformizer of primes that are ramified in K.
Let B be the definite quaternion algebra over Q with discriminant ∆B. Suppose that

N− | ∆B, (∆B, N
+) = 1 and p - ∆B. (2.8)

Assume further that every prime factor of ∆B/N
− is inert in K. Thus, we can regard K as a

subalgebra of B. Write T and N for the reduced trace and norm of B, respectively. Let p be the
prime of K above p induced by ιp : K ↪→ Cp. We choose a basis of B = K ⊕K · J over K such
that:

(a) J2 = β ∈ Q× with a square-free β < 0 and Jt = tJ for all t ∈ K;

(b) β ∈ (Z×q )2 for all q | N+ and β ∈ Z×q for q | DK .

The existence of such J can be seen as follows. We can always choose some J ′ ∈ B× satisfying (a)
by the Noether–Skolem theorem, and the strong approximation theorem ensures the existence
of J = βJ ′ with property (b) for some suitable β ∈ K×.

Fixing a square root
√
β ∈ Q̄ of β, we require the fixed isomorphism i =

∏
q-∆B

iq : B̂(∆B) '
M2(Q̂(∆B)) chosen so that for each finite place q | pN+, the isomorphism iq : Bq = B ⊗Q Qq '
M2(Qq) is given by

iq(θ) =

(
T(θ) −N(θ)

1 0

)
, iq(J) =

√
β ·
(
−1 T(θ)
0 1

)
(
√
β ∈ Z×q ), (2.9)

and for each finite place q - pN+∆B, iq : Bq 'M2(Qq) satisfies

iq(OK ⊗ Zq) ⊂M2(Zq). (2.10)

Hereafter, we shall identify B̂(∆B)× with M2(Q̂(∆B)) via i and let

U = UN+,pn

be the open compact subgroup as in (2.2). By definition,

U ⊃ Ẑ×, U` = GL2(Z`) if ` - pN+∆B. (2.11)

2.3 p-adic modular forms
Let A be a p-adic ring. Let k > 2 be an even integer and let Lk(A) = A[X,Y ]k−2 be the space of
homogeneous polynomials of degree k−2 over A. Let ρk : GL2(A)→ AutA Lk(A) be the unitary
representation defined by

ρk(h)P (X,Y ) = det(h)−(k−2)/2 · P ((X,Y )h) (h ∈ GL2(A), P (X,Y ) ∈ Lk(A)).

Define the space SBk (U , A) of p-adic modular forms on B× of weight k and level U by

SBk (U , A) = {f : B×\B̂×→ Lk(A) | f(bu) = ρk(u
−1
p )f(b), u = (uq) ∈ U}.
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The space SBk (U , A) is equipped with TB(N+, pn)-action defined by

[UxU ].f(b) =
∑

u∈U/U∩xUx−1

f(bux) if x ∈ B̂(p)×;

〈a〉.f(b) = ρk(d(a))f(bd(a)) (a ∈ Z×p );

Up.f(b) =
∑

u∈Up/Up∩πpUpπ−1
p

ρk(u)ρ̃k(πp)f(buπp)

(
πp =

(
p 0

0 1

)
∈ GL2(Qp)

)
,

(2.12)

where ρ̃k(πp) ∈ EndA Lk(A) is defined by ρ̃k(πp)P (X,Y ) := P (pX, Y ). If p is invertible in A,
then

Up.f(b) = p(k−2)/2 ·
∑

u∈Up/Up∩πpUpπ−1
p

ρk(uπp)f(buπp).

We note that the operator Sq acts trivially and Uq is an involution if q | ∆B on SBk (U , A).

2.4 Modular forms of weight two
We shall write SB(U , A) = SB2 (U , A) for the space of A-valued modular forms of weight two and
level U . Denote by XB(U) the finite set

XB(U) := B×\B̂×/U .

For each b ∈ B̂×, denote by [b]U the point in XB(U) represented by b. The Hecke algebra
TB(N+, pn) acts on the divisor group Z[XB(U)] by Picard functoriality. By definition, we have
a canonical identification:

SB(U ,Z) = {f : XB(U)→ Z} ' Z[XB(U)]. (2.13)

Define the Atkin–Lehner involution τn ∈ B̂×(pN+)
by τn,q =

( 0 1
pnN+ 0

)
if q | pnN+ and τn,q = 1

if q - pN+. Then τn normalizes U , and hence induces a right action on XB(U). Define a perfect
pairing 〈 , 〉U : SB(U , A)×SB(U , A)→ A by

〈f1, f2〉U =
∑

[b]U∈XB(U)

f1(b)f2(bτn) ·#((B× ∩ bUb−1)/Q×)−1. (2.14)

Then the action of TB(N+, pn) on SB(U , A) is self-adjoint with respect to 〈 , 〉U . Namely,

〈tf1, f2〉U = 〈f1, tf2〉U for all t ∈ TB(N+, pn).

3. Shimura curves

3.1 Notation
We recall some basic facts on the geometry of Shimura curves, following the exposition in [Nek12,
§ 1]. In this section, let ` - N+∆B be a rational prime which is inert in K and B′ be the indefinite
quaternion algebra over Q with discriminant ∆B`. We fix a Q-embedding t′ : K ↪→ B′ and an
isomorphism ϕB,B′ : B̂(`) ' B̂′(`) once and for all such that t′ induces the composite map

K̂(`)
→ B̂(`)

ϕB,B′−→ B̂′(`).

We put

U0(`) := UN+`,pn =

{
u ∈ U

∣∣∣∣ u` ≡ (∗ ∗0 ∗

)
(mod `)

}
.
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Let OB′` be the maximal order of B′`. Let U ′ be the open compact subgroup of B̂′× given by

U ′ := ϕB,B′(U (`))O×
B′`
. (3.1)

We denote by MU ′/Q the Shimura curve attached to B′ of level U ′. The complex uniformization
of MU ′ is given by

MU ′(C) = B′×\(C r R) × B̂′×/U ′.
For z ∈ C r R and b′ ∈ B̂′×, denote by [z, b′]U ′ the point of MU ′(C) represented by (z, b′).

3.2 `-adic uniformization of Shimura curves
There is an integral model MU ′ of MU ′ ⊗Q Q` over Z`, which is projective over Z` if U ′ is

sufficiently small [BC91, Theorem (3.4)]. We review the description of the completion M̂U ′ of
MU ′ along the special fibre due to Čerednik [Čer76] and Drinfeld [Dri76]. Let H` be Drinfeld’s
`-adic upper half plane, which is a rigid analytic variety over Q` and an analytic subspace of
P1,an

Q`
. The C`-valued points of H` are H`(C`) = P1(C`) r P1(Q`). Then M̂U ′ is canonically

identified with

B×\Ĥ` ⊗̂ Z`Ẑ
ur
` × B̂(`)×/U (`), (3.2)

where Ĥ` is a natural formal model of H` and b ∈ B× acts on Ĥ` (respectively on Ẑur
` ) via

the natural action of B× ⊂ B×`
i`' GL2(Q`) on P1,an

Q`
(respectively by Frob

ord`(N(b))
` ) [BC91,

Theorem 5.2]. Denote by Man
U ′ the rigid analytification of MU ′ ⊗Q`. Then Man

U ′ ' M̂U ′ ⊗Q`, the

generic fibre of M̂U ′ , and

Man
U ′ = B×\H` ⊗̂Q`

Q̂ur
` × B̂(`)×/U (`).

Since U (`) ⊃ Ẑ(`)×,

MU ′(C`) = B×\H`(C`) × B̂(`)×/U (`). (3.3)

3.3 Bad reduction of Shimura curves

Let T` = V(T`)
⊔ E(T`) be the dual graph of the special fibre of Ĥ`, where V(T`) and E(T`)

denote the set of vertices and edges of T` respectively. Then T` is the Bruhat–Tits tree of

B×` ' GL2(Q`). Let
−→E (T`) be the set of oriented edges. We have the identifications

V(T`) = B×` /U`Q×` ,
−→E (T`) = B×` /U0(`)`Q

×
` .

Let G = V(G)
⊔ E(G) be the dual graph of the special fibre of M̂U ′ ⊗Z` OK` . The set V(G)

of vertices of G consists of the irreducible components ofMU ′ ⊗Z` F`2 , and the set E(G) of edges

of G consists of the singular points in M̂U ′ ⊗Z` F`2 . Let red` : MU ′(C`)→ G = V(G)
⊔ E(G) be

the reduction map. By [Nek12, Proposition 1.5.5], (3.2) induces an identification

V(G) = B×\(V(T`) × Z/2Z × B̂(`)×/U (`)) = B×\(B×` /U`Q×` × Z/2Z × B̂(`)×/U (`))
∼
→ (B×\B̂×/U) × Z/2Z = XB(U) × Z/2Z,

(3.4)

where the last isomorphism is given by

B×(b`U`, j, b(`)U (`)) 7→ ([b`b
(`)]U , j + ord`(N(b`)))
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and −→E (G)
∼
→ (B×\B̂×/U0(`)) × Z/2Z = XB(U0(`)) × Z/2Z.

We will regard E(G) as a subset of
−→E (G) via

E(G) = XB(U0(`))
∼
→ XB(U0(`))×{0} ↪→ −→E (G). (3.5)

3.4 Bad reduction of the Jacobian of the Shimura curve
Let J(MU ′) be the Jacobian of the Shimura curveMU ′ . If L/Q is a field extension, let Div0MU ′(L)
be the group of divisors on J(MU ′)(L) of degree zero on each connected component of MU ′⊗QL.
For D ∈ Div0MU ′(L), denote by cl(D) ∈ J(MU ′)(L) the point represented by D. The prime-to-`
Hecke algebra H(`)(B′×,U ′) acts on J(MU ′) via the Hecke correspondence on MU ′ and Picard
functoriality (cf. [Nek12, § 1.3.4]). The isomorphism ϕB,B′ : B̂(`) ' B̂′(`) induces an isomorphism

ϕ∗ : H(`)(B×,U0(`))
∼
→ H(`)(B′×,U ′), [U0(`)xU0(`)] 7→ [U ′ϕB,B′(x)U ′] (x ∈ B(`)×).

We extend ϕ∗ to a ring homomorphism

ϕ∗ : TB(`N+, pn)� TB′(N+, pn)→ End(J(MU ′)/Q)

by defining ϕ∗(U`) := [U ′π′`U ′] for some π′` ∈ B′` with N(π′`) = `.
Let J be the Néron model of J(MU ′)/Q`

over Z`. The universal property of Néron models
induces a ring homomorphism

ϕ∗ : TB(`N+, pn)→ End(J(MU ′)/Q`
) = End(J ). (3.6)

Let Js be the special fibre J ⊗Z` F`2 and J ◦s be the connected component of the identity of Js.
Let ΦMU′ = Js/J ◦s be the group of connected components of Js. Then ΦMU′ is an étale group
scheme over F`2 with a natural TB(`N+, pn)-module structure induced by (3.6). Let

r` : J(MU ′)(K`)→ ΦMU′

be the reduction map.
We recall a description of ΦMU′ in terms of the graph G. Define the source and target maps

s, t :
−→E (G)→ V(G) so that for each oriented edge e, s(e) ∈ V(G) is the source of e and t(e) ∈ V(G)

is the target of e. Define the morphisms

Z[E(G)]
d∗=−s∗+t∗−−−−−−−→ Z[V(G)], Z[V(G)]

d∗=−s∗+t∗−−−−−−−→ Z[E(G)]. (3.7)

Let Z[V(G)]0 be the image of d∗ in Z[V(G)]. By [BLR90, § 9.6, Theorem 1], we have a canonical
isomorphism

Z[E(G)]/Im d∗
d∗∼
→ Z[V(G)]0/Im d∗d

∗ ' ΦMU′ (3.8)

such that the following diagram commutes:

Div0MU ′(K`)
cl //

rV
��

J(MU ′)(K`)

r`

��
Z[V(G)]0/Im d∗d

∗ ∼ // ΦMU′

(3.9)
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where rV : Div0MU ′(K`) → Z[V(G)]0 is the specialization map of divisors defined in [Nek12,
§ 1.6.6]. We briefly recall the definition of rV as follows. For each D ∈ Div0MU ′(K`), extending
D to a Cartier divisor D̃ on MU ′ ⊗Z` OK` by taking closure, define

rV(D) =
∑

C∈V(G)

(D̃ · C)C ∈ Z[V(G)]0, (3.10)

where (D̃ · C) is the intersection number in MU ′ ⊗Z` OK` .

3.5 A description of the group of connected components
We review a description of ΦMU′ in terms of spaces of weight-two modular forms [BD05, § 5.5].
Let α, β : XB(U0(`))→ XB(U) be the standard degeneracy maps given by

x = [b]U0(`) 7→ α(x) = [b]U , β(x) = [bπ−1
` ]U .

According to (3.4) and (3.5), the morphisms d∗ and d∗ in (3.7) are respectively identified with

SB(U0(`),Z)
δ∗=(−α∗,β∗)−−−−−−−−→ SB(U ,Z)⊕2, SB(U ,Z)⊕2 δ∗=−α∗+β∗−−−−−−−−→ SB(U0(`),Z).

Let (SB(U ,Z)⊕2)0 := Im δ∗ be the image of SB(U0(`),Z) via δ∗. A direct computation shows
that

δ∗δ
∗ = (−α∗, β∗)(α∗ − β∗) =

(
−`− 1 T`
T` −`− 1

)
∈M2(End(SB(U ,Z))).

Define a ring homomorphism TB(`N+, pn)→ End(SB(U ,Z)⊕2) by

t→ t̃ : (x, y) 7→ (tx, ty) if t ∈ T(`)
B (`N+, pn) = T(`)

B (N+, pn);

U`→ Ũ` : (x, y) 7→ (−`y, x+ T`y).

This makes SB(U ,Z)⊕2 a TB(`N+, pn)-module. Moreover, one can check that δ∗ is indeed a
TB(`N+, pn)-module homomorphism.

Proposition 3.1 [BD05, Proposition 5.13]. We have an isomorphism as TB(`N+, pn)-modules

(SB(U ,Z)⊕2)0/(Ũ
2
` − 1)SB(U ,Z)⊕2 ' ΦMU′ .

Proof. A direct computation shows that

Ũ2
` − 1 = δ∗δ

∗ ◦ τ, τ(x, y) = (x+ T`y, y).

Since τ is an automorphism of SB(U ,Z)⊕2, we can deduce the proposition from the identification
between Z[E(G)] and SB(U0(`),Z) as TB(`N+, pn)-modules combined with the canonical
isomorphism (3.8) and the compatibility of Hecke actions [Rib90, pp. 463–464] (cf. [BD05,
Proposition 5.8] and [Nek12, § 1.6.7]). 2

3.6 CM points in Shimura curves
Take a point z′ in C r R fixed by i∞(K×) ⊂ GL2(R). The set of CM points by K unramified
at ` on the curve MU ′ is defined as

CM`−ur
K (MU ′) := {[z′, b′]U ′ | b′ ∈ B̂′×, b′` = 1} ⊂MU ′(Kab).
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Let recK : K̂×→ Gal(Kab/K) be the geometrically normalized reciprocity law. Then Shimura’s
reciprocity law says that

recK(a)[z′, b′]U ′ = [z′, t′(a)b′]U ′ . (3.11)

This implies
ι` : CM`−ur

K (MU ′) ↪→MU ′(K`).

Let CM`−ur
K (MU ′)

0 be the subgroup of Div0MU ′(K`) generated by the degree-zero divisors
supported in CM`−ur

K (MU ′). Then the specialization map rV : CM`−ur
K (MU ′)

0
→ Z[V(G)]0 is

given by

rV

(∑
i

ni · [z′, b′i]U ′
)

=
∑
i

ni · [ϕ−1
B,B′(b

′
i)]U . (3.12)

4. Construction of the Euler system

4.1 The set-up
Let f ∈ Sk(Γ0(N)) be an elliptic new form of level N with q-expansion at the infinity cusp

f(q) =
∑
n>0

an(f)qn.

Let Q(f) be the Hecke field of f , i.e. the finite extension of Q generated by {an(f)}n. Let O be
a finite extension of Zp containing the ring of integers of Q(f). Then it is well known that aq(f)
belongs to O. We set

αp(f) = the p-adic unit root of X2 − ap(f)X + pk−1 in Cp, αq(f) := aq(f)q(2−k)/2 if q 6= p.

We define an O-algebra homomorphism

λf : TB(N+, p)O = TB(N+, p)⊗Z O→ O

by λf (Tq) = αq(f), λf (Sq) = 1 if q - pN and λf (Uq) = αq(f) if q | pN , λf (〈a〉) = a(k−2)/2 for
a ∈ Z×p .

4.2 Level-raising
Let n be a positive integer and let On = O/($n). Recall that we have introduced the notion of
n-admissible primes for f in Definition 1.1.

Definition 4.1. An n-admissible form D = (∆, g) is a pair consisting of a square-free integer ∆
of an odd number of prime factors and a p-adic quaternionic eigenform g ∈ SB(UN+,pn ,On) for
the definite quaternion algebra B over Q of discriminant ∆ such that the following conditions
hold:

(1) N− | ∆ and every prime factor of ∆/N− is n-admissible;

(2) g (mod$) 6≡ 0;

(3) g is a TB(N+, pn)-eigenform, and λg ≡ λf (mod$n), where λg : TB(N+, pn)O = TB(N+,
pn)⊗ZO�On is theO-algebra homomorphism induced by g. Namely, we have the following
equalities in On:

λg(Tq) = αq(f) for q - pN+∆, λg(Uq) = αq(f) for q | pN,
λg(〈a〉) = a(k−2)/2 for a ∈ Z×p .

879

https://doi.org/10.1112/S0010437X14007787 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007787


M. Chida and M.-L. Hsieh

We fix an n-admissible form D = (∆, g) and an n-admissible prime ` - ∆ with ε` · α` ≡
`+ 1 (mod$n), where ε` is the sign as in (4) of Definition 1.1. Let B be the definite quaternion
algebra over Q of discriminant ∆. Write U = UN+,pn ⊂ B̂× for the open compact subgroup

defined in (2.2). Let T = TB(N+, pn)O and T[`] = TB(`N+, pn)O. We extend λg to an O-algebra

homomorphism λ
[`]
g : T[`]

→ On by defining λ
[`]
g (U`) := ε`. Let Ig (respectively I [`]

g ) be the kernel

of λg : T→On (respectively λ
[`]
g : T[`]

→On). The eigenform g gives rise to a surjective O-module
map

ψg : SB(U ,O)/Ig � On, h 7→ ψg(h) := 〈g, h〉U .
Proposition 4.2. Assume that (CR+) holds. Then we have an isomorphism

ψg : SB(U ,O)/Ig ∼→ On.
Proof. Let Pk ⊂ Ig be the ideal of T generated by {〈a〉−a(k−2)/2 | a ∈ Z×p }. Let e = limn→∞ U

n!
p

be Hida’s ordinary projector on the space of p-adic modular forms on B. Let RN+ and RpN+ be

the Eichler orders of level N+ and pN+ in B. Let V = R̂×
N+ and V0(p) = R̂×

pN+ . By Hida’s theory

for definite quaternion algebras (the case q = 0 in [Hid88, Corollary 8.2 and Proposition 8.3]),
we have

e.SB(U ,On)[Pk] = e.SBk (V0(p),On).

Taking the Pontryagin dual, we find that

e.SB(U ,O)/($n, Pk) = e.SBk (V0(p),O)/($n).

Let e◦ = limn→∞ T
n!
p be the ordinary projector on SBk (V,O). Moreover, the p-stabilization map

gives rise to an isomorphism

e◦.SBk (V,O)
∼
→ e.SBk (V0(p),O), (4.1)

and induces a surjective map T→ e◦.TB(V)O, which takes Up 7→ up, where up is the unique unit
root solution of X2 − TpX + pk−1 in e◦.TB(V). Let m be the maximal ideal of T containing Ig.
Since Up − αp(f) ∈ m with αp(f) ∈ O×, we find that

SB(U ,O)m/($
n, Pk) = SBk (V0(p),O)m/($

n) ' SBk (V,O)m/($
n).

By [CH12, Proposition 6.8], SBk (V,O)m is a cyclic TB(N+, pn)m-module, and hence SB(U ,O)/Ig
is generated by some modular form h as a TB(N+, pn)-module. Since ψg is surjective and Hecke
operators in T are self-adjoint with respect to 〈 , 〉U , it follows that ψg(h) = 〈g, h〉U ∈ O×n and
the annihilator of h in T is Ig. Therefore,

SB(U ,O)/Ig ' T/Ig = On.
This completes the proof. 2

Let B′ be the indefinite quaternion algebra of discriminant ∆` and let M
[`]
n = MU ′ be the

Shimura curve attached to B′ of level U ′ introduced in § 3.1. Let J
[`]
n = J(M

[`]
n ) be the Jacobian

of M
[`]
n and let Φ[`] be the group of connected components of the special fibre of the Néron model

of J
[`]
n over OK` .

Theorem 4.3. Let Φ
[`]
O = Φ[`] ⊗Z O. We have an isomorphism

Φ
[`]
O /I [`]

g ' SB(U ,O)/Ig
ψg
∼
→ On.
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Proof. Let m[`] be the maximal ideal of T[`] containing I [`]
g . Let S = SB(U ,O)m[`] . The embedding

S ↪→ S⊕2, x 7→ (0, x) induces an isomorphism

S/(ε`T` − `− 1)
∼
→ S⊕2/(Ũ` − ε`).

It is shown in [Nek12, Proposition 1.5.9(1)] that the quotient SB(U ,O)⊕2/(SB(U ,O)⊕2)0 is
Eisenstein, so we find that S⊕2 = ((SB(U ,O)⊕2)0)m[`] (the ideal m[`] is not Eisenstein). By
Proposition 3.1 we have a TB(`N+, pn)-module isomorphism

(Φ
[`]
O )m[`] ' S⊕2/(Ũ2

` − 1) ' S⊕2/(Ũ` − ε`) ∼→ S/(ε`T` − `− 1).

In particular, we see that U` acts on Φ
[`]
O by ε`. Combined with Proposition 4.2, the theorem

follows. 2

Denote by Tp(J
[`]
n ) = lim

←−m J
[`]
n [pm](Q̄) the p-adic Tate module of J

[`]
n .

Corollary 4.4. We have an isomorphism as GQ-modules

Tp(J
[`]
n )O/I [`]

g ' Tf,n.

Proof. Let T [`] := Tp(J
[`]
n )O. The argument in [BD05, Theorem 5.17 and the remarks below],

based on the `-adic uniformization of J
[`]
n (Q̄`) and the Eichler–Shimura congruence relation

(cf. [Nek12, § 1.6.8]), yields T [`]/m[`] ' Tf,1 and the exact sequence

Φ
[`]
O /I [`]

g → H1(K`, T
[`]/I [`]

g )→ H1
fin(K`,X [`]

O /I [`]
g ), (4.2)

where X [`]
O = X [`]⊗ZO and X [`] is the character group of Φ[`]. In addition, by the proof of [BD05,

Lemma 5.16], Theorem 4.3 implies that T [`]/I [`]
g contains a cyclic O-submodule of order $n.

Thus, we find that T [`]/I [`]
g ' O/($n)e1 ⊕ O/($r)e2 with r 6 n. Since the residual Galois

representation ρf is absolutely irreducible, we have an equality

ρf (F[GQ]) = EndF(Tf,1) = EndO(T [`]/m[`]) (F = O/($)).

In particular, there exists an element h ∈ ρf (O[GQ]) such that

he2 = ae1 + be2, a ∈ O×, b ∈ O.

This implies that $re1 = 0, and hence r = n. 2

Let r̃` : J
[`]
n (Km)→ Φ

[`]
O ⊗On[Γm] be the reduction map

r̃`(D) =
∑
σ∈Γm

r`(ι`(σ(D)))σ.

Theorem 4.5. (1) There is an isomorphism

ψg : Φ
[`]
O /I [`]

g
∼
→ H1

sing(K`, Tf,n)

which is canonical up to the choice of an identification of Tp(J
[`]
n )/I [`]

g with Tf,n.
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(2) There is a commutative diagram

J
[`]
n (Km)/I [`]

g
//

r̃`
��

H1(Km, Tf,n)

∂`

��
Φ

[`]
O /I

[`]
g ⊗O On[Γm]

ψg

∼
// H1

sing(Km,`, Tf,n)

where the top horizontal map arises from the natural Kummer map, and ∂` is the residue map.
Moreover, there is a similar commutative diagram

Ĵ
[`]
n (K∞)/I [`]

g
//

r̃`
��

Ĥ1(K∞, Tf,n)

∂`
��

Φ
[`]
O /I

[`]
g ⊗O OnJΓK

ψg

∼
// Ĥ1

sing(K∞,`, Tf,n)

Proof. This is a direct generalization of [BD05, Corollary 5.18]. See also [Nek12, § 1.7.3]. In part
(2), the lower horizontal map is deduced from the map ψg in part (1) by using the identification
H1

sing(Km,`, Tf,n) ∼= H1
sing(K`, Tf,n)⊗O On[Γm] as in Lemma 1.4. 2

4.3 Construction of the cohomology class κD(`)

In this section, we associate a cohomology class κD(`) in the Selmer group Ŝel∆`(K∞, Tf,n) to
an n-admissible form D = (∆, g) and an n-admissible prime ` - ∆.

4.3.1 Adelic Heegner points. Fix a decomposition N+OK = N+N+ once and for all. For
each q | N+, define ςq ∈ GL2(Qq) by

ςq =δ−1

(
θ θ
1 1

)
∈ GL2(Kw) = GL2(Qq) if q = ww̄ is split with w | N+. (4.3)

For each positive integer m, we define ς
(m)
p ∈ GL2(Qp) as follows. If p = pp splits in K, we put

ς(m)
p =

(
θ −1
1 0

)(
pm 0
0 1

)
∈ GL2(Kp) = GL2(Qp). (4.4)

If p is inert in K, then we put

ς(m)
p =

(
0 1
−1 0

)(
pm 0
0 1

)
. (4.5)

We set

ς(m) := ς(m)
p

∏
q|N+

ςq ∈ GL2(Q̂(pN+)) ' B̂×(pN+)
↪→ B̂×. (4.6)

Let Rm = Z + pmOK be the order of K of conductor pm. It is not difficult to verify immediately
that

(ς(m))−1R̂×mς(m) ⊂ UN+,pn if m > n. (4.7)

We define a map

xm : PicRm = K×\K̂×/R̂×m→ XB(U), K×aR̂×m 7→ xm(a) = [aς(m)]U .
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4.3.2 The construction. Let U ′ = ϕB,B′(U (`))O×B` ⊂ B̂
′× and let M

[`]
n = MU ′ be the Shimura

curve of level U ′. Let m be a non-negative integer. To each a ∈ K̂×, we associate the Heegner
point Pm(a) defined by

Pm(a) := [(z′, ϕB,B′(a
(`)ς(m)τn))]U ′ ∈M [`]

n (C), (4.8)

where τn ∈ B̂×(pN+)
is the Atkin–Lehner involution defined in § 2.4. Note that the level subgroup

UN+,pn contains the subgroup Ẑ×, so from (4.7) and Shimura’s reciprocity law (3.11), we deduce
that

Pm(a) ∈M [`]
n (Hm) ∩ CM`−ur

K (M [`]
n ) if m > n

and that Pm(b)σ = Pm(ab) for σ = recK(a) ∈ Gm = Gal(Hm/K).
Choose an auxiliary prime q0 - p`N+∆ such that 1 + q0 − αq0 ∈ O×. We define

ξq0 : DivM [`]
n (Hm)→ J [`]

n (Hm)O = J [`]
n (Hm)⊗Z O,

P 7→ ξq0(P ) = cl((1 + q0 − Tq0)P )⊗ (1 + q0 − αq0)−1.

Let Pm := Pm(1). Define

Dm =
∑

σ∈Gal(Hm/Km)

ξq0(P σm) ∈ J [`]
n (Km)O.

Denote by Kum : J
[`]
n (Hm)⊗Z O→ H1(Hm, Tp(J

[`]
n )O) the Kummer map. Define

κD(`)m := αp(f)−m ·Kum(Dm) (mod I [`]
g ) ∈ H1(Km, Tp(J

[`]
n )O/I [`]

g ) = H1(Km, Tf,n).

Note that κD(`)m is independent of the choice of the auxiliary prime q0. The following lemma
says that the collection of classes {κD(`)m}m form a norm-compatible system.

Lemma 4.6. corKm+1/Km(Dm+1) = Up ·Dm.

Proof. This is a standard fact. For example, see Longo and Vigni [LV11, Proposition 4.8] (their
setting is slightly different, but the proof is identical). It is basically a consequence of Shimura’s
reciprocity law. 2

Finally, define the cohomology class κD(`) associated to an n-admissible form D = (∆, g)
and an n-admissible prime ` by

κD(`) = (κD(`)m)m ∈ Ĥ1(K∞, Tf,n).

Proposition 4.7. The cohomology class κD(`) belongs to Ŝel∆`(K∞, Tf,n).

Proof. This should be well known to experts. We sketch a proof here for the convenience of the
reader. We need to show that for each integer m > n:

(1) ∂q(κD(`)m) = 0 for q - p∆`;
(2) resq(κD(`)m) ∈ H1

ord(Km,q, Tf,n) for q | p`∆.

Part (1) follows from the fact that J
[`]
n has good reduction at primes q - p∆`N+ and Lemma 1.4(1)

for q | N+. If q | `∆, then part (2) is a standard consequence of the description of the q-adic

uniformization of J
[`]
n at toric reduction primes q | ∆`. It remains to show part (2) for q = p.
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Let I = I [`]
g and let m[`] be the maximal ideal of T[`] containing I. Let T = Tp(J

[`]
n )O. Then the

localization Tm[`] at m[`] is a direct summand of T , and we have maps as T[`][GQ]-modules

T → Tm[`] → Tm[`]/I = T/I ' Tf,n.

Let E be the fractional field of O. The GQ-module Vm[`] := Tm[`] ⊗O E is a direct sum of
p-adic Galois representations ρg ⊗ ε attached to p-ordinary elliptic new forms g of weight two
and nebentype ε−2 with ρg⊗ ε ≡ ρf ((2− k)/2) (modmO). In addition, there is an exact sequence
as T[`][GQp ]-modules

0−→F+
p Vm[`]−→Vm[`]−→Vm[`]/F+

p Vm[`]−→0

such that the inertia group of GQp acts on F+
p Vm[`] (respectively Vm[`]/F+

p Vm[`]) via εTε

(respectively ε−1
T ), where εT : GQp → (T[`])×, σ 7→ 〈ε(σ)〉. Let F+

p Tm[`] := F+
p Vm[`] ∩ Tm[`] . Then

it is not difficult to see that F+
p Tm[`]/I ' F+

p Tf,n as GQp-modules. Consider the commutative
diagram

H1(Km,p, Tm[`])
α //

β

��

H1(Km,p, Tm[`]/F+
p Tm[`])

β−

��
H1(Km,p, Vm[`])

αE // H1(Km,p, Vm[`]/F+
p Vm[`])

Let κ(Dm)m be the image of κ(Dm) in H1(Km,p, Tm[`]). To prove the proposition, it suffices to
show that α(κ(Dm)m) = 0.

By [BK90, Example 3.11], β(κ(Dm)m) belongs to the local Bloch–Kato Selmer group
H1
f (Km,p, Vm[`]), which in turn implies that κ(Dm)m lies in the kernel of the composition

αE ◦ β = β− ◦ α in view of [Nek06, Proposition 12.5.8]. On the other hand, the map β− is
injective by (PO) (since H0(Km,p, Tm[`]/F+

p Tm[`] ⊗O E/O) = 0 in view of Lemma 1.8), so we
conclude that α(κ(Dm)m) = 0. 2

5. First and second explicit reciprocity laws

5.1 First explicit reciprocity law
Let D = (∆, g) be an n-admissible form. Define

Θm(D) = αp(f)−m
∑

[a]m∈Gm

g(xm(a))[a]m ∈ On[Gm].

Here [a]m := recK(a)|Hm ∈ Gm is the map induced by the geometrically normalized reciprocity
law. Then Θm−1(D) coincides with the image of Θm(D) under the natural quotient map Gm→
Gm−1, since g is a Up-eigenform with eigenvalue αp(f). Let πm : Gm → Γm = Gal(Km/K) be
the natural quotient map and let

θm(D) = πm(Θm(D)) ∈ On[Γm], θ∞(D) = (θm(D))m ∈ OnJΓK. (5.1)

Theorem 5.1 (First explicit reciprocity law). For m > n > 0, we have

∂`(κD(`)m) = θm(D) ∈ On[Γm].

Therefore,

∂`(κD(`)) = θ∞(D) ∈ OnJΓK.
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Proof. It follows from the commutative diagram (3.9) and (3.12) that

ψg(r`(D
σ
m)) =

∑
[b]m∈Gal(Hm/Km)

〈g, xm(ab)τn〉U =
∑

[b]m∈Gal(Hm/Km)

g(xm(ab))

(σ = πm([a]m) ∈ Gal(Km/K), a ∈ K̂×).

Therefore, by Theorem 4.5,

∂`(κD(`)m) =
∑
σ∈Γm

ψg(r`(D
σ
m))σ

=
∑

[a]m∈Gm

g(xm(a))πm([a]m) = θm(D). 2

Remark. This equality depends on the choices of the embedding ι` : Q̄ ↪→ C` and the

isomorphism Tp(J
[`]
n )/I [`]

g ' Tf,n. Different choices result in a unit factor in OJΓK.

5.2 Ihara’s lemma
In this subsection we retain the notation in § 3. Ihara’s lemma is the key ingredient in the
proof of the second explicit reciprocity law in [BD05]. We recall the following version of Ihara’s
lemma due to Diamond and Taylor [DT94, Theorem 2]. Let B′ be an indefinite quaternion
algebra of discriminant ∆B′ . Let V be an open compact subgroup V of B̂′×. Let MV be the
associated Shimura curve. For each p-adic ring A, let Fk(A) be the local system on MV/Cp
attached to Lk(A) and let Lk(V, A) = H1

ét(MV/Cp ,Fk(A)). Then L2(V,F) = H1
ét(MV/Cp ,F). If

q is a prime, let V0(q) = V ∩ R′q, where R′q is an Eichler order of level ` in B′. Let ` - p∆B′ be
a rational prime. Denote by F = O/($) the residue field of O. Let m be the maximal ideal of

TB′(N+, pn) ' TB(`N+, pn) containing the kernel of the ring homomorphism λ
[`]
g defined below

Definition 4.1. Then m is an ordinary and non-Eisenstein maximal ideal.

Theorem 5.2 (Ihara’s lemma). If V is maximal at the prime p and `, then we have an injective
map

1 + η` : Lk(V,F)⊕2
m ↪→ Lk(V0(`),F)m,

where η` is the degeneracy map at `.

We will need Ihara’s lemma for the open compact subgroup U ′. However, U ′ = U ′N+,pn is not
maximal at p, so we cannot apply Theorem 5.2 directly.

Lemma 5.3. Suppose that (PO) holds. Then

Lk(V,F)m ' Lk(V0(p),F)m.

Proof. We first note that the assumption (PO) implies that the injective map

Lk(V,Cp)m→ Lk(V0(p),Cp)m (5.2)

is an isomorphism. Indeed, by the Eichler–Shimura isomorphism, the cokernel C of the map (5.2)
is two copies of the space of ordinary modular forms on B′ which are new at p and hence U2

p−pk−2

annihilates C. We thus conclude that the cokernel of the injective map

i : Lk(V,O)m ↪→ Lk(V0(p),O)m

is torsion. By [DT94, Lemma 4], for a sufficiently small open compact subgroup U , Lk(U ,O)m
is torsion-free and Lk(U ,O)m⊗F = Lk(U ,F)m. This implies that i is an isomorphism, and so is
i⊗ F. 2

885

https://doi.org/10.1112/S0010437X14007787 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007787


M. Chida and M.-L. Hsieh

Corollary 5.4. Let U ′ = U ′N+,pn . Suppose that (PO) holds. Then

1 + η` : L2(U ′,F)m[Pk]
⊕2
→ L2(U ′0(`),F)m

is injective.

Proof. Let R′N+ be an Eichler order of level N+ in B′. Let V = R̂′×
N+ . By Hida theory for indefinite

quaternion algebras (the case q = 1 in [Hid88, Corollary 8.2 and Proposition 8.3]), we have

L2(U ′,F)m[Pk] ' Lk(V0(p),F)m, L2(U ′0(`),F)m[Pk] ' Lk(V0(`p),F)m.

Combined with Theorem 5.2 and Lemma 5.3, the corollary follows immediately. 2

5.3 Second explicit reciprocity law

Let `1, `2 - ∆ be two n-admissible primes. Let B′′ be the definite quaternion algebra of

discriminant ∆B′′ = ∆`1`2. Let ` = `2. We briefly discuss the reduction of CM points Pm ∈
M

[`1]
n (Hm) modulo `, where M

[`1]
n is the Shimura curve defined in the same manner in § 4.3.2.

LetM[`1]
n be the Kottwitz model of M

[`1]
n ⊗QK` over Z`2 = OK` . We recall that, for a Z`2-algebra

R and a geometric point s in SpecR, M[`1]
n (R) consists of prime-to-` isogeny classes of triples

[(A, ι, ηU ′)], where:

– A is an abelian surface over R;

– ι : OB′ ↪→ EndA⊗ Z(`) satisfies the Kottwitz determinant condition;

– η : B̂′(`) ' V (`)(As) = T (`)(As)⊗Q is an isomorphism of OB′-modules in the sense that

η(bx) = ι(b)η(x) for all b ∈ OB′ ,

and ηU ′ = {η · u | u ∈ U ′} is a U ′-equivalence class of isomorphisms. Here η · u(x) := η(xu).

Now let E/H0
be an elliptic curve with CM by OK defined over the Hilbert class field H0 of

K and let E be the Néron model of E ⊗H0,ι` K` over OK` . Let A = E×OK`E and As = A⊗ F`2 .

Then B′′ = End0
B′(As) is the commutant of B′ in End0(As) = M2(D), where D is the definite

quaternion algebra ramified at ` and ∞. With a suitable endomorphism and level structure (ιA,

ηA) on A, the CM point P0 = [z′, 1]U ′ is represented by [(A, ιA, ηAU ′)] ∈M [`1]
n (K`) =M[`1]

n (OK`).
Let ϕB′′,B′ : B̂′′(`)× ' B̂′(`)× be the unique isomorphism such that the following diagram

commutes.

B̂′(`)×
∼
η
//

right multiplication by ϕB′′,B′ (b
′′)
��

V (`)(As)

b′′

��
B̂′(`)×

∼
η
// V (`)(As)

Let U ′′ = ϕ−1
B′′,B′(U ′(`))O×B′′` ⊂ B̂′′×. Henceforth, we will identify B̂(`1`)× ' B̂′′(`1`)× via ϕ−1

B′′,B′ ◦
ϕB,B′ .

Theorem 5.5 (Second explicit reciprocity law). Assume that (CR+) holds. Then there exists

an n-admissible form D′′ = (∆`1`2, g
′′) such that

v`1(κD(`2)) = v`2(κD(`1)) = θ∞(D′′) ∈ OnJΓK.
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Proof. Let

γ : XB′′(U ′′) = B′′×\B̂′′×/U ′′ = (B′′× ∩ O×
B′′`2

)\B̂′′(`2)×/U ′′(`2) −→M[`1]
n (F`22)

be the map identifying XB′′(U ′′) with the set of supersingular points in M[`1]
n (F`22) defined by

γ([b′′]U ′′) = [(As, ιs, ηs · ϕB′′,B′(b′′)U ′))]
(b′′ ∈ B̂′′(`2)×, (As, ιs, ηs) = (A, ιA, ηA)⊗ F`22).

By the definition (4.8) of Heegner points, we have

Pm(a) = [(A, ιA, ηA · ϕB,B′(xm(a)τn)U ′)],

and hence

Pm (mod `) = γ(xm(a)τn).

Let J [`1]
n = Pic0

M[`1]
n /Z`

. Then γ in turn induces a T(`2)
B′′ (N+, pn)-module (via Picard functoriality)

map

γ∗ : Z[XB′′(U ′′)]→ J [`1]
n (F`22)O/I [`1]

g , x 7→ ξq0(γ(x)) = cl((Tq0 − q0− 1)γ(x))⊗ (αq0 − 1− q)−1.

By a result of Ihara [Iha99, Remark G, p. 19] and Ihara’s lemma (Corollary 5.4), γ∗ is indeed

surjective. Therefore, we obtain a surjective map

γ∗ : Z[XB′′(U ′′)]� J [`1]
n (F`22)O/I [`1]

g � H1
fin(K`2 , Tf,n) ' On.

Therefore, γ∗ gives rise to a unique modular form g′′ ∈ SB′′(U ′′,On) such that γ∗(h) =

〈h, g′′〉U ′′ for all h ∈ Z[XB′′(U ′′)] via the identification (2.13). By definition, g′′ is an eigenform

of T(`1)
B′′ (N+, pn). Moreover, by [BD05, Lemma 9.1], g′′ is an eigenform of the U`2-operator with

eigenvalue ε`2 . Define an O-algebra homomorphism λ
[`1`2]
f : TB′′(N+, pn)O → On by t 7→ λf (t)

if t ∈ T(`1`2)
B′′ (N+, pn), U`1 7→ ε`1 and U`2 7→ ε`2 . Then we conclude that g′′ is an eigenform

of TB′′(N+, pn) such that t · g′′ = λ
[`1`2]
f (t)g′′. Such an eigenform is unique up to O×, since

SB′′(U ′′,O)m′′ is a cyclic TB′′(N+, pn)O-module by [CH12, Proposition 6.8]. By definition, we

verify that

v`2(κD(`1)m) =
∑

[a]m∈Gm

γ∗(xm(a)τn)π([a]m)

=
∑

[a]m∈Gm

〈xm(a)τn, g
′′〉U ′′π([a]m)

=
∑

[a]m∈Gm

g′′(xm(a))π([a]m).

The rest of the assertions follow from the discussion in [BD05, pp. 61–62]. 2
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6. Euler system argument

6.1 Preliminaries for Euler system argument
In this subsection we assume (Irr), (PO) and (CR+3). Let H = ρ̄∗f (GQ) ⊂ GL2(F̄p) be the image
of the residual Galois representation ρ̄∗f = ρf ((2− k)/2) (mod$).

Lemma 6.1. The group H contains the scalar matrix −1.

Proof. Let Z be the centre of H. By (Irr), Z must be contained in the group F̄×p of scalar
matrices. If p | #H, then it is well known that H contains a conjugate of SL2(Fp) (cf. [Rib97,
Corollary 2.3]), and hence −1 ∈ H. Assume that H has prime-to-p order; then H/Z must be
cyclic, dihedral, or the three exceptional groups S4, A4, A5. By (Irr), H/Z cannot be cyclic. Let
Ip be the image of an inertia group at the prime p in H/Z, which is a cyclic group of order
greater than 5 by the assumption #(F×p )k−1 > 5 in (CR+1). This excludes the possibility of H/Z
being the other three exceptional groups. Therefore, H/Z is dihedral and Ip is contained in the
cyclic group of even order (k − 1 is odd). This implies that the centre of H/Z is of order two or
four, from which it is easy to deduce that Z contains an element of order two. 2

Lemma 6.2. There exists an element h ∈ H such that Tr(h) = det(h)+1 with det(h) 6= ±1 ∈ Fp.

Proof. If p does not divide `2−1 for some ` | N−, then we can take h to be the Frobenius Frob`.
Otherwise, ρ̄f is ramified at at least one prime ` | N− by (CR+3), so H contains the image of
an inertia group at ` whose order is divisible by p. We will show by arguments in [Rib97] that
H contains a conjugate of GL2(Fp), and the lemma follows immediately. Since p | #H and H is
irreducible, we may assume H/Z ⊂ PGL2(F ) ⊂ PGL2(F̄p) and H contains the group PSL2(F ) for
some finite extension F/Fp by a well-known result of Dickson. In other words,H ⊂ F̄×p GL2(F ) and
SL2(F ) ⊂ HF̄×p . In particular, H contains the commutator [H,H] ⊃ [SL2(F ), SL2(F )] = SL2(F ).
Let C := H ∩GL2(F ) be a normal subgroup of H. Then SL2(F ) ⊂ C ⊂ GL2(F ). Let γ ∈ H be a
generator of the image of an inertia group Ip at the prime p. Then det γ = u with u a generator
of F×p , and the trace Tr(σ) = uk/2 + u1−(k/2) ∈ F×p is non-zero as #(F×p )k−1 > 2. On the other
hand, write γ = γ0λ with γ0 ∈ GL2(F ) and λ ∈ F̄×p . Then λ = Tr(γ0)/Tr(γ) ∈ F×. We find that
γ ∈ C and detC = F×p . From this analysis, we conclude that

C = {h ∈ GL2(F ) | deth ∈ F×p } ⊂ H

and H contains GL2(Fp). This completes the proof. 2

Theorem 6.3. Let s 6 n be positive integers. Let κ be a non-zero element in H1(K,Af,s). Then
there exist infinitely many n-admissible primes ` such that ∂`(κ) = 0 and the map

v` : 〈κ〉→ H1
fin(K`, Af,s)

is injective, where 〈κ〉 is the O-submodule of H1(K,Af,s) generated by κ.

Proof. We follow the proof of [BD05, Theorem 3.2] with some modification. Suppose that 〈κ〉 '
O/$rO. Since the map H1

fin(K`, Af,1)→ H1
fin(K`, Af,s) induced by the inclusion is injective for

all n-admissible primes `, replacing κ by $r−1κ, we may assume s = 1 and κ ∈ H1(K,Af,1).

Let Fn = Q
Kerρn

be the finite extension cut out by ρn := ρ∗f (mod$n) : GQ → AutO(Af,n) =
GL2(On). Since ρn is unramified outside Np and (DK , Np) = 1, K and Fn are linearly disjoint.
Put M = KF . Let τ be the non-trivial element in Gal(K/Q). Then Gal(M/Q) = Gal(K/
Q)×Gal(Fn/Q) can be identified with the subgroup of 〈τ〉×AutO(Af,n). Therefore we may write
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an element of Gal(M/Q) as a pair (τ j , σ) with j ∈ {0, 1} and σ ∈ AutO(Af,n). By Lemma 6.1 the
image H contains the scalar matrix −1, which in turn implies that ρn(Gal(Fn/Q)) also contains
the scalar matrix −1. It follows that H1(M/K,Af,n) = H1(F/Q, Af,n) = 0 [BD94, Lemma 2.13].
Therefore, the restriction mapH1(K,Af,1)→H1(M,Af,1) = Hom(GM , Af,1) is injective. LetMκ

be the (non-trivial) extension on M cut out by the image κ of κ under the restriction to H1(M,
Af,1) = Hom(GM , Af,1). Let Cκ := κ̄(Gal(Mκ/M)) ⊂ Af,1 be an Fp[Gal(M/Q)]-submodule, and
dimFp Cκ = 2 by (Irr).

Assume without loss of generality that κ belongs to an eigenspace for the action of τ so that
τκ = δκ for some δ ∈ {±1}. Under this assumption, the extension Mκ/Q is Galois. Moreover,
Gal(Mκ/Q) is identified with the group Aκ o Gal(M/Q), where Gal(M/Q) acts on Aκ by the
rule (τ j , σ)(v) = δjρ1(σ)v for (τ j , σ) ∈Gal(M/Q) and v ∈ Aκ. As −1 ∈ ρn(Gal(Fn/Q)), it follows
from Lemma 6.2 that we can choose a triple (v, τ, σ) as an element of Gal(Mκ/Q) such that:

(i) ρn(σ) ∈ GL2(On) has eigenvalues δ(= ±1) and λ, where λ ∈ (Z/pnZ)× is not equal to
±1 (mod pn) and the order of λ is prime to p;

(ii) the element v 6= 0 ∈ Aκ and belongs to the δ-eigenspace for σ.

By the Chebotarev density theorem, there exist infinitely many primes ` with ` - N such that `
is unramified in Mκ/Q and satisfies

Frob`(Mκ/Q) = (v, τ, σ).

Then Frob`(M/Q) = (τ, σ) implies that ` is n-admissible. For each prime l of M above `, let d
be the (even) degree of the residue field corresponding to l. Then we have

Frobl(Mκ/M) = (v, τ, σ)d = v + δσv + σ2v + · · ·+ δσd−1 = dv.

Since d is prime to p, κ(Frobl(Mκ/M)) = dκ(v) 6= 0 and hence v`(κ) = (κ(Frobl(Mκ/M)))l|` 6= 0.
This finishes the proof. 2

Let ∆ be a square-free integer such that ∆/N− is a product of n-admissible primes.

Definition 6.4 (n-admissible set). A finite set S of primes is said to be n-admissible for f if:

(1) all ` ∈ S are n-admissible for f ;

(2) the map Sel∆(K,Tf,n)→
⊕

`∈S H
1
fin(K`, Tf,n) is injective.

Proposition 6.5. Any finite collection of n-admissible primes can be enlarged to an n-admissible
set.

Proof. This is a simple application of Theorem 6.3. 2

6.2 Control theorem (II)
Let S be an n-admissible set for f . In this subsection we prove control theorems for the compact

Selmer group Ŝel
S

∆(K∞, Tf,n). We begin with some preparations. Let L/K be a finite extension
in K∞.

Lemma 6.6. The natural map

Sel∆(L, Tf,n)→
⊕
`∈S

H1
fin(L`, Tf,n)

is injective.
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Proof. Let C be the kernel of the map Sel∆(L, Tf,n) →
⊕

`∈S H
1
fin(L`, Tf,n). If C is non-zero,

then there exists a non-trivial element κ in C fixed by Gal(L/K) as Gal(L/K) is a p-group.
Thus, κ belongs to Sel∆(K,Af,n) by Proposition 1.9, and the image of κ under the map Sel∆(K,
Tf,n)→

⊕
`∈S H

1
fin(K`, Tf,n) is zero. This contradicts the definition of n-admissible sets. 2

Lemma 6.7. We have an exact sequence

0→ Sel∆(L, Tf,n)→ SelS∆(L, Tf,n)→
⊕
`∈S

H1
sing(L`, Tf,n)→ Sel∆(L, Tf,n)∨→ 0.

Proof. We have seen in Propositions 1.6 and 1.7 that the local conditions defining the Selmer
group Sel∆(L, Tf,n) and Sel∆(L,Af,n) are orthogonal complements of each other. Therefore, by
Poitou–Tate duality (cf. [Rub00, Theorem 1.7.3]) we have an exact sequence

0→ Sel∆(L, Tf,n)→ SelS∆(L, Tf,n)→
⊕
`∈S

H1
sing(L`, Tf,n)→ Sel∆(L,Af,n)∨.

The last map is indeed surjective by Lemma 6.6. 2

Proposition 6.8. The On[Gal(L/K)]-module SelS∆(L, Tf,n) is free of rank #S.

Proof. This is a direct generalization of the proof of [BD94, Theorem 3.2] after we replace [BD94,
Lemmas 2.19 and 3.1] with Proposition 1.9 and Lemma 6.7, respectively. 2

Remark. If f is a new form attached to an elliptic curve E over Q, the assumption (PO) implies
that #E(kv) is prime to p for all places v in K above p, where kv is the residue field of Kv, i.e.
p is anomalous for E.

Corollary 6.9. If S is an n-admissible set for f , then:

(1) the natural map Ŝel∆(K∞, Tf,n)→ Sel(Km, Tf,n) is surjective;

(2) Ŝel
S

∆(K∞, Tf,n) is free of rank #S over Λ/$nΛ.

Proof. Part (2) is an easy consequence of part (1) and Proposition 6.8. Note that Proposition 6.8
implies that the corestriction map corm : SelS∆(Km+1, Tf,n)→ SelS(Km, Tf,n) is surjective for all
m by a cardinality consideration. Part (1) follows. 2

Proposition 6.10. If S is an n-admissible set, then we have isomorphisms

Ŝel
S

∆(K∞, Tf,n)/mΛ ' Ŝel
S

∆(K,Tf,1), Ŝel
S

∆(K∞, Tf,n)/$Λ ' Ŝel
S

∆(K∞, Tf,1).

Proof. This is a consequence of the combination of Proposition 6.8 and Corollary 6.9. 2

6.3 Divisibility
6.3.1 Notation. Let ϕ : Λ → Oϕ be an O-algebra homomorphism, where Oϕ is a discrete

valuation ring of characteristic 0. Let $ϕ be an uniformizer of Oϕ and mϕ the maximal ideal of
Oϕ. If M is a finitely generated Oϕ-module, for each x ∈M we define

ord$ϕ(x) := sup{m ∈ Z>0 | x ∈ $m
ϕM}.

It is clear that x = 0 if and only if ord$ϕ(x) = ∞. If M is a Λ-module, we let M ⊗ϕ Oϕ :=
M ⊗Λ,ϕ Oϕ.
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6.3.2 Proof of the main theorem. For a finitely generated Λ-module M , we denote the
characteristic ideal attached to M by charΛ(M). Recall the following result of Bertolini and
Darmon [BD05, Proposition 3.1].

Lemma 6.11. Let M be a finitely generated Λ-module and L be an element of Λ. Suppose that
for any homomorphism ϕ : Λ→ Oϕ,

lengthOϕ(M ⊗ϕ Oϕ) 6 ord$ϕ(ϕ(L)).

Then L ∈ charΛ(M).

Let n be a positive integer and let ∆ > 1 be a square-free product of an odd number of
prime factors which satisfies Definition 4.1(1). For each n-admissible form D = (∆, fn) as in
Definition 4.1, we define two non-negative integers:

sD = lengthOϕ Sel∆(K∞, Af,n)∨ ⊗ϕ Oϕ;

tD = ord$ϕϕ(θ∞(D)) (ϕ(θ∞(D)) ∈ OnJΓK⊗ϕ Oϕ = Oϕ/($n
ϕ)).

The following key proposition is the analogue of [PW11, Proposition 4.3]. The proof will be
given in § 6.4.

Proposition 6.12. Assume that (CR+) and (PO) hold. Let t∗ 6 n be a non-negative integer.
Let Dt∗ = (∆, fn+t∗) be an (n + t∗)-admissible form and let D0 = Dt∗ (mod$n) := (∆,
fn+t∗ (mod$n)) be an n-admissible form. Suppose that tD0 6 t

∗. Then we have sD0 6 2tD0 .

Note that if D = (∆, fn+t∗) is an (n + t∗)-admissible form, then D (mod$n) = (∆,
fn+t∗ (mod$n)) is an n-admissible form.

Let π be the unitary cuspidal automorphic representation of GL2(A) attached to the new
form f . Let

θ∞ := Θ∞(π,1) ∈ Λ

be the theta element with trivial branch character defined in [CH12, p. 21].

Proposition 6.13. If ∆ = N−, there exists an n-admissible form Dfn = (N−, f
†,[k−2]
n ) such that

θ(Dfn) ≡ θ∞ (mod$n).

Proof. Let ∆ = N− and let B be the definite quaternion algebra of absolute discriminant N−.
Let λ◦f : TB(N+) → O be the ring homomorphism defined by λ◦f (Tq) = αq(f), λ◦f (Sq) = 1 if
q - N and λ◦f (Uq) = αq(f) if q | N . By the Jacquet–Langlands correspondence, there exists a

modular form f ∈ SBk (R̂×
N+ ,O) such that f 6≡ 0 (mod$) and f is an eigenform of TB(N+) and

tf = λ◦f (t)f for all t ∈ TB(N+). Let f † ∈ SBk (R̂×
pN+ ,O) be the p-stabilization of f defined by

f †(b) = f(b)− p(k−2)/2A−1
p · f

(
b

(
p−1 0
0 1

))
.

The theta element θ∞ is essentially constructed from the evaluation of f † at Gross points

(see [CH12, Definition 4.1]). Define f
†,[k−2]
n ∈ SB(UN+,pn ,On) by

f †,[k−2]
n (b) :=

√
β

(2−k)/2 · 〈Xk−2, f †(b)〉k (mod$n).

Following the argument in the proof of [CH12, Theorem 5.7], one can show that f
†,[k−2]
n 6≡

0 (mod$), and Dfn := (N−, f
†,[k−2]
n ) is the desired n-admissible form. 2
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We deduce our main theorem (Theorem 1) from the above propositions.

Theorem 6.14. With the hypotheses (CR+) and (PO), we have

charΛSel(K∞, Af ) ⊃ (Lp(K∞, f)).

Proof. Let ϕ : Λ→Oϕ be anO-algebra homomorphism. If ϕ(Lp(K∞, f)) = 0, then ϕ(Lp(K∞, f))
clearly belongs to FittOϕ(Sel(K∞, Af )∨⊗ΛOϕ). Therefore we may assume that ϕ(Lp(K∞, f)) 6=
0. Choose t∗ larger than the Oϕ-valuation of ϕ(Lp(K∞, f)). For each positive integer n, consider

the (n+t∗)-admissible form Dfn+t∗ = (N−, f
†,[k−2]
n+t∗ ) in Proposition 6.13. Applying Proposition 6.12

to Dfn+t∗ and Df
n = Dfn+t∗ (mod$n), we find that ϕ(Lp(K∞, f)) (mod$n) = ϕ(θ∞(Dfn)2) belongs

to FittOϕ(SelN−(K∞, Af,n)∨ ⊗ϕ Oϕ) for all ϕ and n. By Lemma 6.11, Lp(K∞, f) belongs to
∩∞n=1 FittΛ SelN−(K∞, Af,n)∨ = FittΛ SelN−(K∞, Af )∨. By [Vat03, CH12], Lp(K∞, f) 6= 0, so
SelN−(K∞, Af ) is Λ-cotorsion. The theorem thus follows from Proposition 1.3. 2

Corollary 6.15. With the hypotheses (CR+) and (PO), if the central L-value L(f/K, k/2) is
non-zero, then the minimal Selmer group Sel(K,Af ) is finite. Assume, further, that ρf is ramified
at all ` | N−. Then

lengthO(Sel(K,Af )) +
∑
`|N+

tf (`) 6ord$

(
L(f/K, k/2)

Ωf

)
,

where tf (`) is the Tamagawa exponent at `.

Proof. Note that H1
ord(K`, Af ) = {0} for ` | N−, so we have an exact sequence

0→ Sel(K,Af )→ SelN−(K,Af )
γ−→

∏
`|N+

H1
fin(K`, Af ).

By the interpolation formula (0.2) of Lp(K∞, f) at the trivial character 1 and the fact that
ep(f,1) is a p-adic unit under (PO), we find that

1(Lp(K∞, f)) = u · L(f/K, k/2)

Ωf
for some u ∈ O×.

By Proposition 1.9 and Theorem 6.14,

lengthO(SelN−(K,Af )) = ord$

(
L(f/K, k/2)

Ωf

)
<∞.

In particular, SelN−(K,Af ) is finite, and by [Gre99, Proposition 4.13] the map γ is surjective.
Therefore,

lengthO(SelN−(K,Af )) = lengthO(Sel(K,Af )) +
∑
`|N+

lengthO(H1
fin(K`, Af ))

= lengthO(Sel(K,Af )) +
∑
`|N+

tf (`).

This finishes the proof. 2
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6.4 Proof of Proposition 6.12
We will prove Proposition 6.12 by induction on tD0 . If tD0 =∞ or sD0 = 0 then sD0 6 2tD0 holds
trivially. Therefore, without loss of generality, we may assume that:
– tD0 <∞ ⇐⇒ ϕ(θ∞(D0)) 6= 0;
– sD0 > 0 ⇐⇒ Sel∆(K∞, Af,n)⊗ϕ Oϕ is non-trivial.
We write t = tD0 . Consider the (n+ t)-admissible form

D := (∆, fn+t∗ (mod$n+t)).

Let ` be an (n+t)-admissible prime which does not divide ∆. Enlarge {`} to an (n+t)-admissible
set S with (S,∆) = 1 and let

κD(`) ∈ Ŝel∆`(K∞, Tf,n+t) ⊂ Ŝel
S

∆(K∞, Tf,n+t)

be the cohomology class attached to D and ` constructed in § 4.3. By Corollary 6.9, the module

Mn := Ŝel
S

∆(K∞, Tf,n)⊗ϕ Oϕ is free over Oϕ/ϕ($n)Oϕ for all n. Denote by κD,ϕ(`) the image
of κD(`) in Mn+t and let

eD(`) := ord$ϕ(κD,ϕ(`))

(which definition also depends on an auxiliary choice of S). It follows from Theorem 5.1 that

eD(`) 6 ord$ϕ(∂`κD,ϕ(`)) = ord$ϕ(ϕ(θ∞(D))) = ord$ϕ(ϕ(θ∞(D0))) = t.

Choose an element κ̃D,ϕ(`) ∈Mn+t which satisfies $
eD(`)
ϕ · κ̃D,ϕ(`) = κD,ϕ(`). Note that κ̃D,ϕ(`)

is well defined up to the kernel of the homomorphism Mn+t→Mn. Let κ′D,ϕ(`) be the natural
image of the cohomology class κ̃D,ϕ(`) in Mn.

Lemma 6.16. The cohomology class κ′D,ϕ(`) ∈ Ŝel
S

∆(K∞, Tf,n) ⊗ϕ Oϕ satisfies the following
properties:

(1) ord$ϕ(κ′D,ϕ(`)) = 0;

(2) ord$ϕ(∂`(κ
′
D,ϕ(`))) = t− eD(`);

(3) ∂q(κ
′
D,ϕ(`)) = 0 for all q - ∆`;

(4) resq(κ
′
D,ϕ(`)) ∈ Ĥ1

ord(K∞,q, Tf,n)⊗ϕ Oϕ for all q | ∆`.

Proof. By Proposition 6.10, the map Mn+t/$ϕMn+t → Mn/$ϕMn is an isomorphism, so
we have ord$ϕ(κ′D,ϕ(`)) = ord$ϕ(κ̃D,ϕ(`)) = 0. Part (1) follows immediately. Part (2) is a
direct consequence of Theorem 5.1. Part (3) and (4) follow from the fact that κD(`) belongs

to Ŝel∆`(K∞, Tn+t) ⊗ϕ Oϕ and the freeness result of the ordinary cohomology group at ` in
Lemma 1.5. 2

Lemma 6.17. Let η` be the natural homomorphism

η` : Ĥ1
sing(K∞,`, Tf,n)⊗ϕ Oϕ→ Sel∆(K∞, Af,n)∨ ⊗ϕ Oϕ

sending κ to η`(κ) : s 7→ 〈κ, v`(s)〉`. Then η`(∂`(κ
′
D,ϕ(`))) = 0.

Proof. Let s ∈ Sel∆(K∞, Af,n)[kerϕ]. By Lemma 6.16(3), (4), we see that 〈∂q(κ′D,ϕ(`)), vq(s)〉q =
0 for all q 6= `. The lemma thus follows from the global reciprocity law (1.1). 2

Lemma 6.18. If t = 0, then sD0 = 0, i.e. Sel∆(K∞, Af,n)∨ ⊗ϕ Oϕ is trivial.
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Proof. If t = 0, then ϕ(θ∞(D0)) is a unit in Oϕ/($n
ϕ). By Theorem 5.1, this implies that

∂`(κD,ϕ(`)) generates Ĥ1
sing(K∞,`, Tn) ⊗ϕ Oϕ for any admissible prime `. Therefore the map η`

in the Lemma 6.17 is trivial for all admissible primes. Assume that Sel∆(K∞, Af,n)∨ ⊗ϕ Oϕ is
non-trivial. By Nakayama’s lemma,(

Sel∆(K∞, Af,n)∨ ⊗ϕ Oϕ
)/

mOϕ = (Sel∆(K∞, Af,n)[mΛ])∨ ⊗ϕ Oϕ/mOϕ
is non-zero. Let s be a non-trivial element in Sel∆(K∞, Af,n)[mΛ]. By Proposition 1.9(1),
Sel∆(K∞, Af,n)[mΛ] = Sel∆(K,Af,1), so s can be viewed as an element in H1(K,Af,1). By
Theorem 6.3, we can choose an n-admissible prime ` - ∆ such that ∂`(s) = 0 and v`(s) 6= 0.
Since the local Tate pairing 〈 , 〉` is perfect, η` is non-zero. This is a contradiction. 2

In view of Lemma 6.18, we may assume that t > 0. Let Π be the set of rational primes `
satisfying the following conditions:

(1) ` is (n+ t∗)-admissible and ` - ∆;

(2) the integer eD(`) = ord$ϕ(κD,ϕ(`)) is minimal among ` satisfying the condition (1).

Then Π 6= ∅ by Theorem 6.3. Let e = eD(`) for any ` ∈ Π.

Lemma 6.19. We have e < t.

Proof. Suppose that e = t. Then eD(`) = t for all (n + t∗)-admissible primes ` since eD(`) 6 t.
By Proposition 1.9(1), H1(K,A1)→ H1(K∞, An)[mΛ] is an isomorphism. Hence there exists a
non-zero element

s 6= 0 ∈ Sel∆(K∞, Af,n)[mΛ] ⊂ H1(K,A1)⊗ϕ Oϕ.
By Theorem 6.3(1), there exists an (n + t∗)-admissible prime ` such that v`(s) is non-zero in
H1

fin(K,A1) ⊗ϕ Oϕ. On the other hand, by Lemma 6.16(4), the image of ∂`(κ
′
D,ϕ(`)) in H1(K`,

Tf,1)⊗ϕOϕ is non-zero. Moreover, by Lemma 6.17, the image of ∂`(κ
′
D,ϕ(`)) in H1(K`, Tf,1)⊗ϕOϕ

is orthogonal to v`(s) with respect to the local Tate pairing. Since the local Tate pairing

H1
fin(K,Af,1)⊗ϕ Oϕ ×H1

sing(K,Tf,1)⊗ϕ Oϕ→ Oϕ/$ϕOϕ

is perfect and H1
fin(K,Af,1) ⊗ϕ Oϕ and H1

sing(K,Tf,1) ⊗ϕ Oϕ are one-dimensional vector spaces
over Oϕ/$ϕOϕ, this is a contradiction. 2

Let `1 ∈ Π and S be an (n+ t∗)-admissible set containing `1. Let κ1 be the image of κ′D,ϕ(`1)
in

Ŝel
S

∆(K∞, Tf,n)⊗ϕ Oϕ/$ϕOϕ = Ŝel
S

∆(K∞, Tf,n)/mΛ ⊗ϕ Oϕ ↪→ H1(K,Tf,1)⊗ϕ Oϕ,

where the last map induced by the corestriction is injective by Proposition 6.10. Hence, κ1 is
a non-zero element in H1(K,Tf,1) ⊗ϕ Oϕ. By the first part of Theorem 6.3, there exists an
(n+ t∗)-admissible prime `2 - ∆ such that ∂`2(κ1) = 0 and

v`2(κ1) 6= 0 ∈ H1
fin(K,Tf,1)⊗ϕ Oϕ.

It follows from the fact that v`2(κ1) 6= 0 and the minimality of e = eD(`1) = ord$ϕ(κD,ϕ(`1))
that

ord$ϕ(v`2(κD,ϕ(`1))) = ord$ϕ(κD,ϕ(`1)) 6 ord$ϕ(κD,ϕ(`2)) 6 ord$ϕ(v`1(κD,ϕ(`2)))
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(the last inequality is due to the fact that v`1 is a homomorphism). By the second explicit
reciprocity law (Theorem 5.5), there exists an (n+ t∗)-admissible form D′′t∗ = (∆`1`2, gn+t∗) such
that

v`2(κD(`1)) = v`1(κD,ϕ(`2)) = θ∞(D′′t ) (D′′t = (∆`1`2, gn+t∗ (mod$n+t))).

In particular, ord$ϕ(v`1(κD,ϕ(`2))) = ord$ϕ(v`1(κD,ϕ(`1))). We thus conclude that

ord$ϕ(v`2(κD,ϕ(`1))) = eD(`1) = eD(`2) = e and `2 ∈ Π.

Let D′′0 := (∆`1`2, gn+t∗ (mod$n)). Then we have

tD′′0 = ord$ϕ(ϕ(θ∞(D′′0))) = e < t = tD0 6 t
∗.

Therefore, we can apply the induction hypothesis to D′′t∗ and conclude that sD′′0 6 2tD′′0 . To finish
the proof, it suffices to show that

sD0 6 sD′′0 + 2(t− tD′′0 ). (6.1)

Let S[`1`2] denote the subgroup of Sel∆(K∞, Tf,n) consisting of classes which are locally trivial
at the primes dividing `1 and `2. By definition, there are two exact sequences of Λ-modules:

Ĥ1
sing(K∞,`1 , Tf,n)⊕ Ĥ1

sing(K∞,`2 , Tf,n)
ηs−→ Sel∆(K∞, Af,n)∨→ S∨[`1`2]→ 0 (6.2)

and

Ĥ1
fin(K∞,`1 , Tf,n)⊕ Ĥ1

fin(K∞,`2 , Tf,n)
ηf−→ Sel∆`1`2(K∞, Af,n)∨→ S∨[`1`2]→ 0, (6.3)

where ηs and ηf are induced by the local pairing 〈 , 〉`1 ⊕ 〈 , 〉`2 . Let ηϕs (respectively ηϕf ) denote

the map induced from ηs (respectively ηϕf ) after tensoring with Oϕ via ϕ. Fixing an isomorphism⊕2
i=1 Ĥ

1
sing(K∞,`iTf,n)⊗ϕ Oϕ ' O⊕2

ϕ , from Lemma 6.17 we deduce that ηϕs factors through the
quotient

Oϕ/(∂`1(κ′D,ϕ(`1)))⊕Oϕ/(∂`2(κ′D,ϕ(`2))).

Moreover, by Lemma 6.16(4), we have

t− tD′′0 = ord$ϕ(∂`1κ
′
D,ϕ(`1)) = ord$ϕ(∂`2κ

′
D,ϕ(`2)).

Hence, from (6.2) we obtain the exact sequence

(Oϕ/($
t−tD′′0
ϕ ))⊕2 ηϕs−→ Sel∆(K∞, Af,n)∨ ⊗ϕ Oϕ→ S∨[`1`2] ⊗ϕ Oϕ→ 0. (6.4)

Lemma 6.20. The kernel of ηϕf contains the elements (0, v`2(κ′D,ϕ(`1))) and (v`1(κ′D,ϕ(`2)), 0).

Proof. Let s ∈ Sel∆`1`2(K∞, Af,n)[kerϕ]. By Lemmas 1.7 and 6.16(3), (4), we have

〈∂q(κ′D,ϕ(`1)), vq(s)〉q = 0 for q - ∆`1 and 〈res`1(κ′D,ϕ(`1)), res`1(s)〉`1 = 0.

By the global reciprocity law, we find that 〈v`2(κ′D,ϕ(`1)), res`2(s)〉`2 = 0. The same argument
shows that 〈v`1(κ′D,ϕ(`2)), res`1(s)〉`1 = 0. This completes the proof. 2
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Fixing an isomorphism
⊕2

i=1 Ĥ
1
fin(K∞,`iTf,n)⊗ϕ Oϕ ' O⊕2

ϕ , from (6.3) and Lemma 6.20 we
deduce the exact sequence

Oϕ/(v`2(κ′D,ϕ(`1)))⊕Oϕ/(v`1(κ′D,ϕ(`2)))
ηϕf−→ Sel∆`1`2(K∞, Af,n)∨ ⊗ϕ Oϕ→ S∨[`1`2] ⊗ϕ Oϕ→ 0.

Note that

ord$ϕ(v`2(κ′D,ϕ(`1))) = ord$ϕ(v`1(κ′D,ϕ(`2))) = tD′′0 − e = 0.

We thus find that

Sel∆`1`2(K∞, Af,n)∨ ⊗ϕ Oϕ ∼→ S∨[`1`2] ⊗ϕ Oϕ. (6.5)

Now it is clear that (6.1) follows from (6.4) and (6.5).
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Čerednik et de Drinfeld, Astérisque (1991) no. 196–197, 7, 45–158 (1992), Courbes modulaires et
courbes de Shimura (Orsay, 1987/1988).

Car86 H. Carayol, Sur les représentations l-adiques associées aux formes modulaires de Hilbert, Ann.
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