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Abstract
We study the noise sensitivity of the minimum spanning tree (MST) of the n-vertex complete graph
when edges are assigned independent random weights. It is known that when the graph distance is
rescaled by n1/3 and vertices are given a uniform measure, the MST converges in distribution in the
Gromov–Hausdorff–Prokhorov (GHP) topology. We prove that if the weight of each edge is resampled
independently with probability ε � n−1/3, then the pair of rescaled minimum spanning trees – before and
after the noise – converges in distribution to independent random spaces. Conversely, if ε � n−1/3, the
GHP distance between the rescaled trees goes to 0 in probability. This implies the noise sensitivity and
stability for every property of the MST that corresponds to a continuity set of the random limit. The
noise threshold of n−1/3 coincides with the critical window of the Erdős-Rényi random graphs. In fact,
these results follow from an analog theorem we prove regarding the minimum spanning forest of critical
random graphs.
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1. Introduction
The minimum spanning tree (MST) of a weighted graph is a classical object in discrete mathe-
matics, whose research goes back to Borůvka’s Algorithm from 1926 (see [22]). Denote by Mn
the MST of the n-vertex complete graph Kn assigned with independent U[0, 1]-distributed edge
weights Wn = (we)e∈Kn . Frieze [10] famously showed that the expected total weight of Mn con-
verges to ζ (3), initiating an extensive study of the distribution of the total weight (e.g., [14, 16]).
From a purely graph-theoretic perspective, a decade old fundamental work on the metric struc-
ture of Mn by Addario-Berry, Broutin, Goldschmidt, and Miermont [4], which plays a key role
in this paper, discovered the existence of a scaling limit of Mn as a measured metric space. An
explicit construction of the limit was recently obtained in ref. [9]. In addition, the local weak limit
ofMn was studied in refs. [1, 6].

The notion of noise sensitivity of Boolean functions, that was introduced by Benjamini, Kalai,
and Schramm in ref. [7], can be directly applied to the randomMST. Namely, let ε = εn be a noise
parameter, and Wε

n = (wε
e )e∈Kn be obtained from Wn by resampling each we independently with

probability ε. The MST of Kn with respect to the new weights Wε
n is denoted by Mε

n. Suppose
fn is a sequence of Boolean functions defined on n-vertex trees, such that E[fn(Mn)] is bounded
away from 0 and 1 as n→ ∞. We say that the sequence fn is ε-noise sensitive (resp. stable) if
Cov(fn(Mn), fn(Mε

n))→ 0 (resp. 1) as n→ ∞. This paper deals with the noise sensitivity and
stability of (functions that depend on) the scaled measured metric structure ofMn.
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1.1 Themetric structure of the randomMST
The tree Mn is closely related to the Erdős-Rényi random graph. Kruskal’s algorithm [17] com-
putes the tree Mn by starting from an empty n-vertex graph and adding edges according to
their (uniformly random) increasing weight order, unless the addition of an edge forms a cycle.
Therefore, the minimum spanning forest (MSF) M(n, p) of the random graph G(n, p) := {e ∈
Kn :we ≤ p} (endowed with the random weights from Wn) is a subgraph of Mn. Indeed, M(n, p)
is one of the forests en route Mn in Kruskal’s algorithm. In addition, M(n, p) can be obtained
from G(n, p) using a cycle-breaking algorithm, i.e., by repeatedly deleting the heaviest edge
participating in a cycle until the graph becomes acyclic (see section 2).

Fix λ ∈R and let p(n, λ)= 1/n+ λ/n4/3. We denote the critical random graph Gn,λ :=
G(n, p(n, λ)) and its MSF Mn,λ := M(n, p(n, λ)). These graphs play a key role in the study of
the MST. It is shown in ref. [4] (in a sense we precisely specify below), that for a large con-
stant λ, ‘most’ of the global metric structure of Mn is present in its subgraph Mn,λ. The size
and structure of the connected components of Gn,λ have been studied extensively [20]. In his
work on multiplicative coalescence, Aldous [5] determined the limit law of the random sequence
of the sizes of the connected components of Gn,λ, given in decreasing order and rescaled by
n−2/3. The limit law is beautifully expressed via a reflected Brownian motion with a parabolic
drift. A breakthrough result of Addario-Berry, Broutin and Goldschmidt [2] discovered the scal-
ing limit in Gromov–Hausdorff distance of the connected components of Gn,λ viewed as metric
spaces.

In ref. [4], these authors and Miermont extended this result to measured metric spaces in the
Gromov–Hausdorff–Prokhorov (GHP) distance. In addition, by applying a continuous cycle-
breaking algorithm on the scaling limit of the components, they discovered the scaling limit of
Mn. More formally, let M be the space of isometry-equivalence classes of compact measured
metric spaces endowed with the GHP distance. Denote by Mn ∈M the measured metric space
obtained fromMn by rescaling graph distances by n−1/3 and assigning a uniform measure on the
vertices. The main theorem in ref. [4] asserts that there exists a random compact measured metric
space M such that Mn

d−→ M in the space (M, dGHP) as n→ ∞. The limit M is an R-tree that,
remarkably, differs from the well-studied CRT [12].

1.2 Noise sensitivity and stability
Noise sensitivity of Boolean functions captures whether resampling only a small, ε-fraction, of the
input bits of a function leads to an almost independent output. Since its introduction in ref. [7],
this concept has found various applications in theoretical computer science [21] and probability
theory [13]. Lubetzky and Steif [19] initiated the study of the noise sensitivity of critical random
graphs. Denote byGε

n,λ the graph that is obtained by independently resampling each edge accord-
ing to its original Ber(p(n, λ)) distribution with probability ε. They proved that the property that
the graph contains a cycle of length in (an1/3, bn1/3) is noise sensitive provided that ε � n−1/3.
Heuristically, a threshold of n−1/3 for noise sensitivity of such ‘global’ graph properties seems
plausible. Indeed, if ε � n−1/3, then the edges that are not resampled, and appear in the graph
both before and after the noise operation, form a subcritical random graph in which the property
in question is degenerate.

Roberts and Şengül [23] established the noise sensitivity of properties related to the size of the
largest component of Gn,λ, under the stronger assumption that ε � n−1/6. Afterwards, the above
heuristic was made rigour in ref. [18] by Lubetzky and the second author, establishing that if
ε � n−1/3 both (i) the rescaled sizes and (ii) the rescaled measured metric spaces, obtained from
the components of Gn,λ and Gε

n,λ, are asymptotically independent (where the entire sensitivity
regime was completed in ref. [11]). On the other hand, if ε � n−1/3 the effect of the noise was
shown to be negligible. Rossignol identified non-trivial correlations when ε = tn−1/3 [24].
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In the same manner, the measured metric space Mn ∈M is obtained from Mn, let Mε
n ∈M

denote the measured metric space obtained from Mε
n by rescaling the graph distances by n−1/3

and assigning a uniform measure on the vertices. Our main theorem establishes a noise threshold
of n−1/3 for any sequence of functions that depend on the scaled measured metric space. This
threshold coincides with the noise threshold for critical random graphs and, accordingly, with the
width of the critical window in the Erdős-Rényi phase transition.

Theorem 1.1. Let ε = εn > 0. Then, as n→ ∞,

1. If ε3n→ ∞ then the pair
(
Mn,Mε

n
)
converges in distribution to a pair of independent copies

of M in (M, dGHP).

2. If ε3n→ 0 then dGHP(Mn,Mε
n)

p→ 0.

For any sequence fn(Mn) := 1Mn∈S of Boolean functions, where S is a continuity set of the limit
space M, our theorem implies ε-noise sensitivity if ε � n−1/3 in Part (1), and ε-noise stability if
ε � n−1/3 in Part (2). For concrete examples, indicator functions of properties such as ‘the diam-
eter of the tree is at most b · n1/3’, or ‘the average distance between a pair of vertices is greater than
a · n1/3’ naturally arise. However, we leave the verification that these examples indeed correspond
to continuity sets of M for future work (see Section 5), noting that it appears to follow from the
recent explicit construction of M as the Brownian parabolic tree [9].

1.3 The randomminimum spanning forest
Following [4], our approach for Theorem 1.1 starts by investigating the effect of the noise oper-
ator on the metric structure of Mn,λ. The forest Mε

n,λ denotes the MSF of the graph Gε
n,λ := {e ∈

Kn :wε
e ≤ p(n, λ)} endowed with weights fromWε

n .
For an n-vertex graph G and an integer j≥ 1, let Sj(G) be obtained from the j-th largest con-

nected component of G by rescaling the graph distances by n−1/3 and assigning each vertex a
measure of n−2/3. We denote by S(G) the sequence S(G)= (Sj(G))j≥1 of elements inM. We con-
sider the two sequences of scaled measured metric spaces, given byMn,λ := S(Mn,λ) andMε

n,λ :=
S(Mε

n,λ). For every two sequences S, S′ of elements in M, let d4GHP(S, S′)= (
∑

j dGHP(Sj, Sj′)4)
1
4

and set L4 = {S ∈MN:
∑

j dGHP(Sj, Z)4 < ∞} where Z is the zero metric space.
It is shown in ref. [4] that there exists a sequence Mλ := (Mλ,j)j≥1 of random compact

measured metric spaces such thatMn,λ → Mλ as n→ ∞ in distribution in (L4, d4GHP). The con-
nection betweenMn andMn,λ from [4, Theorem 1.2] that was mentioned above can be now stated
precisely. That is, if we let M̂λ,1 be obtained from Mλ,1 by renormalizing its measure to a prob-
ability measure, then M̂λ,1

d−→ M in dGHP as λ → ∞. Hence, Theorem 1.1 is derived from the
following theorem.

Theorem 1.2. Let λ ∈R and ε = εn > 0.

1. If ε3n→ ∞ as n→ ∞, then the pair
(
Mn,λ,Mε

n,λ
)
converges in distribution to a pair of

independent copies of Mλ in (L4, d4GHP).

2. If ε3n→ 0 as n→ ∞, then d4GHP(Mn,λ,Mε
n,λ)

p→ 0.

The noise sensitivity of critical random graphs from [18] and [11] establishes that if ε3n→ ∞
then the scaled measure metric spaces of the components of Gn,λ and Gε

n,λ are asymptotically
independent. This fact seemingly excludes any non-negligible correlation between the scaledmea-
sure metric spaces of Mn,λ and Mε

n,λ, which are obtained from Gn,λ and Gε
n,λ respectively by

https://doi.org/10.1017/S0963548324000129 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000129


4 O. Israeli and Y. Peled

the cycle-breaking algorithm. However, the existence of ‘bad’ edges that participate in cycles in
both graphs, and with the same (not resampled) weight, may correlate the two runs of the cycle-
breaking algorithm. We analyse the joint cycle-breaking algorithm and prove that if ε3n→ ∞
then, with high probability, the number of such ‘bad’ edges is too small to generate a non-
negligible correlation. For the stability part, we show that if ε3n→ 0 then, typically, the two runs
of the cycle-breaking algorithm are identical.

The remainder of the paper is organized as follows. Section 2 contains some preliminaries and
additional background material needed for the proof of the main results. In Section 3, we prove
both parts of Theorem 1.2, and in Section 4, we complete the proof of Theorem 1.1. We conclude
with some open problems in Section 5.

2. Preliminaries
2.1 Notations
For clarity, we briefly recall the notations that were interspersed within the introduction and
present some additional concepts needed in the proofs. Let n be an integer and Kn the com-
plete n-vertex graph. The edges of Kn are assigned independent and U[0, 1]-distributed weights
Wn := (we)e∈Kn . Given a noise parameter ε = εn, we define the weightsWε

n := (wε
e )e∈Kn by

wε
e :=

{
we be = 0
w′e be = 1

,

where be is an independent Ber(ε) random variable and w′e is an independent U[0, 1]-distributed
weight. In words, we independently, with probability ε, resample the weight of each edge.

All the random graphs we study are measurable with respect to Wn,Wε
n . Namely, Mn,Mε

n
are the minimum spanning trees (MST) of Kn under the weights Wn,Wε

n respectively. In addi-
tion, we always refer to p as p := p(n, λ)= 1/n+ λ/n4/3, where λ ∈R, and denote the random
graphs

Gn,λ := {e ∈Kn :we ≤ p}, andG
ε
n,λ := {e ∈Kn :wε

e ≤ p} .
Note that as random (unweighted) graphs, Gε

n,λ is obtained from Gn,λ by applying the stan-
dard ε-noise operator that independently, with probability ε, resamples each edge. We denote
the intersection of these two graphs by I := Gn,λ ∩Gε

n,λ, and its subgraph

Ǐ= {e ∈Gn,λ ∩G
ε
n,λ : be = 0},

consisting of the edges that appear in Gn,λ and whose weight was not resampled – and thus also
appear in Gε

n,λ. We denote by Mn,λ (resp. Mε
n,λ) the minimum spanning forest (MSF) of Gn,λ

(resp.Gε
n,λ) when endowed with edge weights fromWn (resp.Wε

n).
To some of the random graphs above, we associate a scaled measured metric space in M.

Recall that S(G) is a sequence of elements in M that is obtained from an n-vertex graph G by
ordering its components in decreasing size, rescaling the graph distances by n−1/3 and assigning
each vertex ameasure of n−2/3.We denoteMn,λ = S(Mn,λ), Mε

n,λ = S(Mε
n,λ), Gn,λ = S(Gn,λ) and

Gε
n,λ = S(Gε

n,λ). We sometime refer to specific elements in these sequences, e.g.,Mn,λ,j denotes the
measured metric space obtained from the j-th largest component Cj(Gn,λ) of the graph Gn,λ. In
addition, given a connected graph G, let Ŝ(G) be obtained from G by rescaling the graph distance
by n−1/3 and assigning a uniform probabilitymeasure on its vertices.We viewMn = Ŝ(Mn),Mε

n =
Ŝ(Mε

n) as elements ofM.
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2.2 The joint cycle-breaking algorithm
An alternative approach to the well-known Kruskal’s algorithm for finding the MSF of a weighted
graph is the cycle-breaking algorithm, aka the reverse-delete algorithm, which was also introduced
by Kruskal in ref. [17]. Consider conn(G), the set of edges of G that participate in a cycle. In other
words, e ∈ conn(G) if removing it does not increase the number of connected components. The
algorithm finds the MSF of a given weighted graph G by sequentially removing the edge with the
largest weight from conn(G). Once the remaining graph is acyclic, its edges form the MSF of G.

For a graph G, let K∞(G) denote the random MSF of G if the edges are given exchangeable,
distinct random weights. In such a case, K∞(G) can be sampled by running a cycle-breaking
algorithm on G that removes a uniformly random edge from conn(G) in each step. Indeed, the
heaviest edge in conn(G) is uniformly distributed, regardless of which edges were exposed as the
heaviest in the previous steps of the algorithm. For example, conditioned on (the edge set of)Gn,λ,
the forestMn,λ is K∞(Gn,λ)-distributed.

Given two finite graphs G1,G2 and a common subgraph H ⊂G1 ∩G2, letWi := (wi
e)e∈Gi , i=

1, 2, be two exchangeable random weights given to the edges of G1 and G2 that are distinct except
that w1

e =w2
e ⇐⇒ e ∈H. We denote by K∞

joint(G1,G2,H) the joint distribution of the pair of
minimum spanning forests of G1,G2 under the above random edge weightsW1,W2.

Clearly, the marginal distributions of K∞
joint(G1,G2,H) are K∞(G1) and K∞(G2). In addition,

ifH ∩ conn(G1)∩ conn(G2)= ∅ thenK∞
joint(G1,G2,H)=K∞(G1)×K∞(G2), i.e., the joint cycle-

breaking algorithm can be carried out by two independent cycle-breaking algorithms on G1 and
G2. On the other extreme, if conn(G1)= conn(G2) and conn(G1)⊆H, then the exact same set of
edges is removed in both graphs during the run of the joint cycle-breaking algorithm. In such a
case, if (M1,M2)∼K∞

joint(G1,G2,H) thenM1 ∼K∞(G1) andM2 is then deterministically defined
byM2 =G2 \ (G1 \M1).

The example prompting this definition in our study is that, conditioned on (the edge sets of)
Gn,λ,Gε

n,λ, Ǐ defined in section 2.1, the distribution of the pair (Mn,λ,Mε
n,λ) isK∞

joint(Gn,λ,Gε
n,λ, Ǐ).

Indeed, among the edges inGn,λ ∪Gε
n,λ, only those in Ǐ have the same weight inWn andWε

n , and
all the other weights are independent. Roughly speaking, the two extreme cases for H mentioned
above describe what typically occurs in the noise sensitivity and stability regimes.

2.3 Scaling limits
We conclude this section by briefly reviewing previous works regarding the scaling limits of the
measured metric spaces obtained from the random graphs that appear in our work. In ref. [4]
(building on results from [2]), it is proved that there exists a sequence Gλ = (Gλ,j)j≥1 of random

elements in M such that Gn,λ
d−→ Gλ in (L4, d4GHP) as n→ ∞. Furthermore, by defining a con-

tinuous version of the cycle-breaking algorithm (whose distribution is also denoted by K∞), they
obtain a sequenceMλ = (Mλ,j)j≥1 of random elements inMwhich isK∞(Gλ)-distributed condi-

tioned on Gλ. They prove thatMn,λ
d−→ Mλ in (L4, d4GHP) as n→ ∞ by establishing the continuity

of K∞, and that the scaling limit M ofMn is obtained by renormalizing the measure of Mλ,1 to a
probability measure and taking λ → ∞ (as mentioned in section 1).

3. Proof of Theorem 1.2
3.1 Noise sensitivity of the MSF
We saw that the pair (Mn,λ,Mε

n,λ) is obtained by a joint cycle-breaking algorithm and that
it is K∞

joint(Gn,λ,Gε
n,λ, Ǐ) - distributed. Our first goal is to show that, if ε3n→ ∞, the joint
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cycle-breaking is close to two independent runs of the cycle-breaking algorithm. We start by
bounding the number of edges that participate in a cycle in both graphs, and, as a result, can
potentially correlate the two forests during the joint cycle-breaking.

Lemma 3.1. Fix λ ∈R and let ε3n→ ∞, Gn,λ,Gε
n,λ as defined in §2, and J= conn(Gn,λ)∩

conn(Gε
n,λ). Then,

P(|J| > ωε−1)→ 0 ,

as n→ ∞ for every diverging sequence ω = ω(n)→ ∞.

In the proof below, we denote by G− e the subgraph of G on the same vertex set with the edge
set E(G) \ {e}, and by G \A the subgraph of G induced by the vertices that are not in the vertex
subset A.

Proof. Recall that I denotes the intersection Gn,λ ∩Gε
n,λ. The graph I is a G(n, θ) random graph,

where

θ := p(1− ε + εp)= 1− ε(1+ o(1))
n

.

Fix some edge e= {u, v} in Kn. We consider two disjoint possibilities for the occurrence of the
event e ∈ J:

1. The event A=Ae = {e ∈ conn(I)} where e belongs to a cycle that is contained in both
graphs, or

2. the event B= Be = {e ∈ J \ conn(I)} where there are two distinct cycles in Gn,λ and Gε
n,λ

both containing e, and there is no cycle in I containing e.

We bound the probability of A by observing it occurs if and only if e ∈ I and there is a path in
the graph I− e from v to u. By enumerating all the paths from v to uwith k≥ 1 additional vertices
we find that

P(A)≤ θ
∑
k≥1

nkθk+1 ≤ θ3n
1− θn

= 1+ o(1)
εn2

, (3.1)

where the last inequality follows from the relations θ ≤ 1/n and 1− θn= ε(1+ o(1)).
Next, we turn to bound the probability of B. Let Cx, for x ∈ {u, v}, denote the com-

ponent of the vertex x in the graph I− e. We further denote K1 := Gn,λ \ (Cu ∪ Cv) and
K2 := Gε

n,λ \ (Cu ∪ Cv).

Claim 3.2. For every Cu, Cv,K1,K2 as above there holds

P(B | Cu, Cv,K1,K2)≤ 1Cu �=Cv · θ · (|Cu||Cv|)2 ·
2∏

i=1

⎛
⎝ρ + ρ2

∑
j≥1

|Cj(Ki)|2
⎞
⎠ ,

where ρ := pε(1− p)/(1− θ).

Proof. Wefirst note thatCu is either equal or disjoint toCv, and that in the former case there exists
a path from v to u in I− e. We observe that if Cu = Cv then the event B does not occur, hence both
sides in the claimed inequality are equal to 0. Indeed, this is derived directly by combining the
facts B⊆ {e ∈ I} ∩Ac and A= {e ∈ I} ∩ {Cu = Cv}.

Suppose that Cu ∩ Cv = ∅, and consider the edge sets

F0 := {{a, b} : a ∈ Cu, b ∈ Cv} \ {e},
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(a)
(b)

(c)

Figure 1. The three combinations of internal and external paths between u and v that can cause the occurrence of B.

and

F1 := {{a, b} : a ∈ Cu ∪ Cv, b /∈ Cu ∪ Cv}.
Note that for every f ∈ F0 ∪ F1, the only information that is exposed by our conditioning is that
f /∈ I. Therefore, for every two edge subsets L1, L2 ⊂ F0 ∪ F1 there holds

P(L1 ⊆Gn,λ, L2 ⊆G
ε
n,λ | Cu, Cv)≤ ρ|L1|+|L2| (3.2)

Indeed, if L1 ∩ L2 �= ∅ then this conditional probability is 0 since no edge of F0 ∪ F1 is in I.
Otherwise, by the independence between the different edges, (3.2) follows from the fact that, for
every edge f , P(f ∈Gn,λ | f /∈ I)= P(f ∈Gε

n,λ | f /∈ I)= ρ.
We consider two different partitions of F1 given by

F1 =
⋃

j≥1,x∈{u,v}
Fx,j,i, i= 1, 2 ,

where Fx,j,i consists of all the edges between Cx and the j-th largest connected component Cj(Ki)
of the graph Ki. A path from v to u in Gn,λ − e can either be internal and involve an edge from
F0, or be external and involve one edge from Fv,j,1 and one from Fu,j,1 for some j≥ 1, using the
edges from Cj(K1) to complete the path. Clearly, a similar statement holds forGε

n,λ where Fx,j,1 is
replaced by Fx,j,2 for both x ∈ {u, v} (See Fig. 1). Therefore, we claim that
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P(B | Cv, Cu,K1,K2)≤

≤ 1Cu �=Cv · θ ·
⎛
⎝ρ2|F0|2 + ρ3|F0|

2∑
i=1

∑
j≥1

|Fv,j,i||Fu,j,i| + ρ4
2∏

i=1

∑
j≥1

|Fu,j,i||Fv,j,i|
⎞
⎠

= 1Cu �=Cv · θ ·
2∏

i=1

⎛
⎝ρ|F0| + ρ2

∑
j≥1

|Fu,j,i||Fv,j,i|
⎞
⎠ . (3.3)

Indeed, every term in the second line corresponds to a different combination of internal and exter-
nal paths. The first term corresponds to having two internal paths so we have |F0|2 choices for
having an edge from F0 in both graphs, and the probability that the two edges actually appear is
at most ρ2 by (3.2). Similarly, the second term accounts for having one internal and one external
path, where for the external path, say in Gn,λ, we need to choose the component Cj(K1) we use,
as well as an edge from Fu,j,1 and an edge from Fv,j,1. We multiply by ρ3 · |F0|, since in addition
to having these two edges appear in Gn,λ, we also choose an edge from F0 to appear in Gε

n,λ. The
last term is derived by considering the case of two external paths, as we need to choose, for both
graphs Ki, a component Cj(Ki), and edges from Fv,j,i and Fu,j,i. To conclude, note the multiplica-
tive term θ accounting for the event e ∈ I. Alternatively, (3.3) can be understood as letting each
of the graphs Gn,λ,Gε

n,λ either choose an internal path with a cost of ρ or an external path with
a cost of ρ2. The product of these two terms appears due to the negative correlations from (3.2).
The claim is derived from (3.3) by noting that |F0| < |Cu||Cv|, |Fx,j,i| = |Cx||Cj(Ki)| for every x, j
and i, and a straightforward manipulation. �

We proceed by observing that∑
j≥1

|Cj(K1)|2 ≤
∑
j≥1

|Cj(Gn,λ)|2 and
∑
j≥1

|Cj(K2)|2 ≤
∑
j≥1

|Cj(Gε
n,λ)|2 , (3.4)

sinceK1,K2 are subgraphs ofGn,λ,Gε
n,λ respectively.

Next, for a positive c ∈R, denote by Ec the event that

max

⎧⎨
⎩

∑
j≥1

|Cj(Gn,λ)|2,
∑
j≥1

|Cj(Gε
n,λ)|2

⎫⎬
⎭ ≤ cn4/3,

and recall that [18, Theorem 1], [11] establish that if ε3n→ ∞ then the pair

n−2/3 · ((|Cj(Gn,λ)|)j≥1, (|Cj(Gε
n,λ)|)j≥1

)
weakly converges in �2 to a pair of independent copies of a random sequence whose law was
identified by Aldous [5]. Therefore,

lim
c→∞ lim

n→∞ P(Ec)= 1. (3.5)

By combining (3.4) and Claim 3.2 we find that

P (B, Ec | Cv, Cu) ≤ 1Cu �=Cv · θ · (|Cu||Cv|)2 · (ρ + c · ρ2n4/3
)2 . (3.6)

Let Y denote the size of the connected component of a fixed vertex in a G(n, θ) random graph.
Note that for every choice of Cu, the random variable 1Cu �=Cv |Cv|2 is stochastically bounded from
above by Y2. Indeed, If v ∈ Cu then 1Cu �=Cv = 0. Otherwise, Cv is the component of v in the
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G(n− |Cu|, θ) random graph I \ Cu. As a result, |Cv| is indeed dominated by Y . Therefore,

E[1Cu �=Cv(|Cu||Cv|)2]=E
[|Cu|2 ·E [

1Cu �=Cv |Cv|2
∣∣ Cu

]]
≤E

[|Cu|2
]
E[Y2]

≤E[Y2]2. (3.7)

In addition,

E[Y2]= 1
n
EG∼G(n,θ)

⎡
⎣∑

j≥1
|Cj(G)|3

⎤
⎦ ≤ 1

(1− nθ)3
= 1+ o(1)

ε3
, (3.8)

where the first equality is derived by averaging over the vertices and accounting for the contribu-
tion of each connected component, the inequality follows from the work of Janson and Łuczak
on subcritical random graphs [15], and the second equality by 1− nθ = (1− o(1))ε. By assigning
(3.7), (3.8), and the relations θ < 1/n and ρ = (1+ o(1))ε/n in (3.6), we find that

P(B, Ec)≤ 1+ o(1)
ε6n

·
(

ε

n
+ cε2

n2/3

)2
= 1+ o(1)

εn2
(
(ε3n)−1/2 + c(ε3n)−1/6)2 . (3.9)

Therefore, we derive from (3.1), (3.9) and ε3n→ ∞ that

E[|J| · 1Ec]=
(
n
2

)
P(e ∈ J, Ec)≤ n2

2
(P(A)+ P(B, Ec))≤ 1+ o(1)

2ε
.

Finally, note that by Markov’s inequality,

P(|J| > ωε−1)≤ P(Ecc)+ P(|J| · 1Ec > ωε−1)

≤ 1− P(Ec)+ 1+ o(1)
2ω

.

This concludes the proof using (3.5) and the assumption that ω → ∞ as n→ ∞. �
We now apply Lemma 3.1 to show that the K∞

joint(Gn,λ,Gε
n,λ, Ǐ)-distributed pair (Mn,λ,Mε

n,λ)
is close to (Fn,λ, Fε

n,λ), a pair of random forests that, conditioned on Gn,λ,Gε
n,λ, is K∞(Gn,λ)×

K∞(Gε
n,λ)-distributed. In other words, to sample (Fn,λ, Fε

n,λ), we first sample the pair (Gn,λ,Gε
n,λ)

and then apply two independent runs of the cycle-breaking algorithm. We stress that, uncondi-
tionally, Fn,λ and Fε

n,λ are not independent, due to the dependence between Gn,λ and Gε
n,λ. To

state this claim accurately, we consider the scaled versions Fn,λ := S(Fn,λ) and Fε
n,λ := S(Fn,λ).

Lemma 3.3. Fix λ ∈R and let ε3n→ ∞. There exists a coupling of (Mn,λ,Mε
n,λ) and (Fn,λ, Fε

n,λ)
such thatMn,λ = Fn,λ and

d4GHP(M
ε
n,λ, F

ε
n,λ)

p−→ 0 , (3.10)

as n→ ∞.

Proof. Recall that J= conn(Gn,λ)∩ conn(Gε
n,λ), and Ǐ= {e ∈Kn :we ≤ p, be = 0} is the random

graph consists of the edges in Gn,λ ∩Gε
n,λ whose weight had not been resampled. We sample the

graphsGn,λ,Gε
n,λ,Mn,λ,Mε

n,λ usingWn,Wε
n (See section 2), and set Fn,λ := Mn,λ. In addition, let

Fε
n,λ be the MSF ofGε

n,λ endowed with the following edge weights:

w̃e =
{
wε
e e ∈Gε

n,λ \ (Ǐ∩ J),
p ·w′

e e ∈ Ǐ∩ J,

where w′
e is an independent U[0, 1] variable. First, we claim that the forests Fn,λ, Fε

n,λ are retained
respectively from Gn,λ,Gε

n,λ by independent cycle-breaking algorithms. Namely, conditioned on
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Gn,λ,Gε
n,λ, the pair (Fn,λ, Fε

n,λ) is K∞(Gn,λ)×K∞(Gε
n,λ)-distributed. This follows from the fact

that conditioned onGn,λ,Gε
n,λ and Ǐ, the weights

(we)e∈conn(Gn,λ) and (w̃e)e∈conn(Gε
n,λ),

which determine the edges that are removed in the cycle-breaking algorithms, are i.i.d. Indeed,
the only dependency between weights can occur via an edge from J but for every such an edge e,
the weights in both graphs are independent either due to resampling (if e /∈ Ǐ) or by the definition
of w̃e (if e ∈ Ǐ).

Next, we bound the distance d4GHP(M
ε
n,λ, F

ε
n,λ). Denote by Bj, j≥ 1, the event that the trees

Cj(Mε
n,λ) and Cj(Fε

n,λ) are different. Note that the forests M
ε
n,λ and Fε

n,λ are retained from Gε
n,λ

by the cycle-breaking algorithm using, respectively, the edge weights (wε
e )e∈Gε

n,λ
and (w̃e)e∈Gε

n,λ
,

which differ only on Ǐ∩ J. Therefore, if Bj occurs then there exists a cycle γ in Cj(Gε
n,λ) and an

edge f ∈ γ ∩ Ǐ∩ J that is the heaviest in γ with respect to one of the edge weights. Otherwise, the
two runs of the cycle-breaking algorithms on Cj(Gε

n,λ) must be identical.
Let S denote the number of distinct simple cycles in Cj(Gε

n,λ), R the length of the shortest cycle
in Cj(Gε

n,λ) (or R= ∞ if the component is acyclic), and let γ be a cycle in Cj(Gε
n,λ). Conditioned

on Gε
n,λ and J, the probability that the heaviest edge of γ (in each of the weights) belongs to J is

bounded from above by |J|/R, since |γ | is bounded from below by R. Hence, by taking the union
bound over all the cycles in the component and the two edge weights we find that P(Bj |Gε

n,λ, J)≤
2 · S · |J|/R. Therefore, for every ω > 0, the probability of Bj conditioned on the event C that |J| <
ωε−1, S< ω, and R> n1/3ω−1, is bounded by

P
(
Bj | C

) ≤ 2 · ω · (ωε−1)
n1/3ω−1 .

Consequently,

P(Bj)≤ P(|J| ≥ ωε−1)+ P(S≥ ω)+ P(R≤ n1/3ω−1)+ 2 · ω · (ωε−1)
n1/3ω−1 . (3.11)

Suppose thatω = ω(n)→ ∞ as n→ ∞. Lemma 3.1 asserts that first term in (3.11) is negligible.
In addition, the second and third terms are also negligible by known results on critical random
graphs. Namely, S converges in distribution to an almost-surely finite limit by [5, 20], and the fact
that n−1/3ωR almost surely diverges follows from [3] for unicyclic components, and from [20]
for complex components (components with more than one cycle). Choosing ω = ω(n) such that
ω → ∞ and ω3/(εn1/3)→ 0 as n→ ∞ results in P(Bj)→ 0, for every j≥ 1.

To complete the proof, observe that for every η > 0 and N ≥ 1 there holds

P(d4GHP(M
ε
n,λ, F

ε
n,λ)> η)≤

N−1∑
j=1

P(Bj)+ P

⎛
⎝ ∞∑

j=N
dGHP(Mε

n,λ,j, F
ε
n,λ,j)

4 > η

⎞
⎠ .

The first sum is negligible as n→ ∞ since P(Bj)→ 0 for every j≥ 1. In addition, by the fact that
bothMε

n,λ and Fε
n,λ converge in distribution as n→ ∞ in (L4, d4GHP) we have that

lim
N→∞ lim sup

n→∞
P

⎛
⎝ ∞∑

j=N
dGHP(Mε

n,λ,j, F
ε
n,λ,j)

4 > η

⎞
⎠ = 0,

which completes the proof of the lemma. �
Next, we turn to derive the asymptotic independence of the rescaled measured metric spaces

Fn,λ and Fε
n,λ.
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Lemma 3.4. Fix λ ∈R and suppose that ε3n→ ∞ as n→ ∞. Then, the pair (Fn,λ, Fε
n,λ) converges

in distribution to a pair of independent copies of Mλ in (L4, d4GHP) as n→ ∞.

Proof. We start by describing, in very high-level terms, how the space Mλ is constructed. Recall
the random measured metric space Gλ that was introduced in refs. [2], [4], and was shown to be
the limit of Gn,λ in distribution, as n→ ∞, in (L4, d4GHP). The random space Mλ was defined
conditioned on Gλ as beingK∞(Gλ)-distributed, whereK∞ is the continuous analog of the cycle-
breaking algorithm.

Next, denote by (s(Gn,λ,i))i≥1 and (s(Gλ,i))i≥1 the sequence of surpluses of the components in
Gn,λ and Gλ respectively. In addition, let (r(Gn,λ,i))i≥1 and (r(Gλ,i))i≥1 be the sequence of minimal
length of a core edge in each component. We refer the reader to [4] for precise definitions. The
following claim follows from the proof of [4, Theorem 4.4].

Claim 3.5. Let � be a probability space in which Gn,λ, Gλ are commonly defined such that �-
almost-surely there holds that

Gn,λ → Gλ in (L4, d4GHP),
(s(Gn,λ,i))i≥1 → (s(Gλ,i))i≥1,
(r(Gn,λ,i))i≥1 → (r(Gλ,i))i≥1,

as n→ ∞. Then, for every continuity set S of (L4, d4GHP) for Mλ, the convergence

P(Mn,λ ∈ S |Gn,λ)→ P(Mλ ∈ S | Gλ) , as n→ ∞,

of random variables occurs �-almost surely. Here, conditioned onGn,λ and Gλ,Mn,λ is K∞(Gn,λ)-
distributed, Mn,λ := S(Mn,λ) and Mλ is K∞(Gλ)-distributed.

In fact, it is proved in ref. [4, Theorem 4.4] that under the conditions of Claim 3.5, the cycle-
breaking algorithms carried out onGn,λ, Gλ can be coupled such that the convergence ofMn,λ →
Mλ in (L4, d4GHP) also occurs �-almost-surely.

Back to noise sensitivity, the results in refs. [18, Theorem 2] and [11, Theorem 9.1.1], establish
that if ε3n→ ∞ as n→ ∞ then

(Gn,λ,Gε
n,λ)

d−→ (Gλ, G ′
λ), and (3.12)

(
(s(Gn,λ,i))i≥1, (s(Gε

n,λ,i))i≥1
) d−→ (

(s(Gλ,i))i≥1, (s(G ′
λ,i))i≥1

)
, (3.13)

where G ′
λ is an independent copy of Gλ. Here the first convergence is in (L4, d4GHP), and the second

in the sense of finite dimensional distributions,
The proof of [4, Theorem 4.1] shows that this convergence can be extended to the minimal

lengths of core edges, implying that
(
(r(Gn,λ,i))i≥1, (r(Gε

n,λ,i))i≥1
) d−→ (

(r(Gλ,i))i≥1, (r(G ′
λ,i))i≥1

)
, (3.14)

as n→ ∞.
Using Skorohod’s representation theorem, we may work in a probability space � in which the

convergences. Equations (3.12),(3.13) and (3.14) occur almost surely. In addition, we can con-
sider the distributions of Fn,λ, Fε

n,λ,Mλ and its independent copy M ′
λ by constructing them via �.

Namely, conditioned on Gn,λ,Gε
n,λ, Gλ, G ′

λ sampled in �, we consider the (distributions of the)
following random elements:

• The pair (Fn,λ, Fε
n,λ) is K∞(Gn,λ)×K∞(Gε

n,λ)-distributed, Fn,λ := S(Fn,λ) and Fε
n,λ =

S(Fε
n,λ), and

• The pair (Mλ,M ′
λ) is K∞(Gλ)×K∞(G ′

λ)-distributed.
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We observe that the pair (Fn,λ, Fε
n,λ) is conditionally independent given Gn,λ,Gε

n,λ, and the pair
(Mλ,M ′

λ) is independent and identically distributed.
Our goal is to show that for every continuity sets S, S′ of (L4, d4GHP) for the distribution of Mλ

there holds
P(Fn,λ ∈ S, Fε

n,λ ∈ S′)→ P(Mλ ∈ S)P(Mλ
′ ∈ S′)

as n→ ∞.
Note that by our assumption on the almost-sure convergences in �, we can apply Claim 3.5

twice and obtain that for every two such continuity sets S, S′ there holds that both convergences
P(Fn,λ ∈ S |Gn,λ)→ P(Mλ ∈ S | Gλ) , as n→ ∞, (3.15)

and
P(Fε

n,λ ∈ S′ |Gε
n,λ)→ P(M ′

λ ∈ S′ | G ′
λ) , as n→ ∞ (3.16)

occur �-almost surely. Consequently, the proof is concluded as follows:
P(Fn,λ ∈ S, Fε

n,λ ∈ S′)= E[P(Fn,λ ∈ S, Fε
n,λ ∈ S′ |Gn,λ,Gε

n,λ)]
= E[P(Fn,λ ∈ S |Gn,λ) · P(Fε

n,λ ∈ S′ |Gε
n,λ)]

→ E[P(Mλ ∈ S | Gλ) · P(M ′
λ ∈ S′ | G ′

λ)]
= E[P(Mλ ∈ S | Gλ)] ·E[P(M ′

λ ∈ S′ | G ′
λ)]

= P(Mλ ∈ S) · P(M ′
λ ∈ S′).

The first equality holds by the law of total expectation, and the second equality is due to the con-
ditional independence of Fn,λ, Fε

n,λ given Gn,λ,Gε
n,λ. The convergence, which occurs as n→ ∞,

is obtained from the �-almost-sure convergences (3.15), (3.16) and using the dominated conver-
gence theorem. The next equality is obtained by the independence of Gλ, G ′

λ which is where the
noise sensitivity of the measured metric structure of Gn,λ,Gε

n,λ is being used. The last equality
follows from the law of total expectation.

We conclude this subsection with a proof of the noise sensitivity of the MSF ofGn,λ, which we
derive from the following well-known theorem.

Theorem 3.6 ([8, Theorem 3.1]). Let S be a Polish space with metric ρ and (Xn, Yn) be random
elements of S× S. If Yn

d−→ X and ρ(Xn, Yn)
p−→ 0 as n→ ∞, then Xn

d−→ X.

Proof of Theorem 1.2, Part (1). Denote the polish metric space S= (L4, d4GHP)
2 endowed with

some product metric ρ. Suppose that the random elements
((Mn,λ,Mε

n,λ), (Fn,λ, F
ε
n,λ)) ∈ S× S

are sampled via the coupling from Lemma 3.3. Lemma 3.4 asserts that (Fn,λ, Fε
n,λ) converges in

distribution to a pair of independent copies of Mλ. In addition, by Lemma 3.3,

ρ((Mn,λ,Mε
n,λ), (Fn,λ, F

ε
n,λ))

p−→ 0 ,
as n→ ∞. Consequently, we derive from Theorem 3.6 that (Mn,λ,Mε

n,λ) converges in distribution
to a pair of independent copies of Mλ, as claimed. �

3.2 Noise stability of the MSF
We now assume that ε3n→ 0 as n→ ∞. In this case, the noise stability of the MSF follows from
the similarity between the cycle-breaking algorithms. Namely, theK∞

joint(Gn,λ,Gε
n,λ, Ǐ)-distributed

https://doi.org/10.1017/S0963548324000129 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000129


Combinatorics, Probability and Computing 13

pair (Mn,λ,Mε
n,λ) is obtained by removing the exact same set of edges from both graphs.We derive

this from the following claim which asserts that all the cycles in Gn,λ and Gε
n,λ appear in their

common subgraph Ǐ consisting of the edges whose weight was not resampled.

Claim 3.7. Let λ ∈R, j≥ 1, ε3n→ 0, and Gn,λ and Ǐ defined as in section 2.1. Let Bj denote the
event that conn(Cj(Gn,λ))= conn(Cj(Ǐ)). Then, P(Bj)→ 1 as n→ ∞.

Proof. We observe that conditioned on Gn,λ, the graph Ǐ is obtained from Gn,λ by removing
each edge independently with probability ε. Therefore, by [18, Lemma 5.4], the event Aj that
Cj(Ǐ)⊆ Cj(Gn,λ) occurs with probability tending to 1 as n→ ∞. In addition, under the event Aj,
the event Bj does not occur only if there exists an edge e ∈ conn(Cj(Gn,λ)) that Ǐ did not retain.
Therefore, for every ω = ω(n)> 0,

P(Bcj |Aj)≤ P(|conn(Cj(Gn,λ))| > ωn1/3)+ εωn1/3, (3.17)

where the second term bounds the expected number of edges from conn(Gn,λ) that Ǐ did not
retain, conditioned on |conn(Cj(Gn,λ))| ≤ ωn1/3. We derive the claim by combining P(Aj)→ 1
and assigning in (3.17) a sequenceω = ω(n) such thatω → ∞ and εωn1/3 → 0 as n→ ∞. Indeed,
in such a case we have that P(n−1/3|conn(Cj(Gn,λ))| > ω)→ 0, since the maximum number of
cycles in Gn,λ is bounded in probability [20], and so is the length of the largest cycle in Cj(Gn,λ)
divided by n1/3 [3, 20]. �

Note that the assertion in Claim 3.7 also holds forGε
n,λ since (Gn,λ, Ǐ)

d= (Gε
n,λ, Ǐ). We now turn

to conclude the proof of Theorem 1.2.

Proof of Theorem 1.2 Part 2. Denote by M̌ theMSF of the graph Ǐ endowed with the edge weights
fromWn, and let M̌ := S(M̌). First, we argue that for every fixed j≥ 1,

dGHP(Mn,λ,j, M̌j)
p−→ 0 (3.18)

as n→ ∞. By Claim 3.7, we can condition on the event Bj. Under this event, the joint cycle-
breaking algorithm running on Cj(Gn,λ) and Cj(Ǐ) removes the same edges in both graphs. Since
Ǐ is a subgraph of Gn,λ, we deduce that Cj(Mn,λ) is obtained from Cj(M̌) by the addition of the
forest Cj(Gn,λ) \ Cj(Ǐ). We derive (3.18) by the proof of [18, Theorem 2], which shows that with
probability tending to 1 as n→ ∞, the graph Cj(Gn,λ) is contained in a neighbourhood of radius
o(n1/3) around Cj(Ǐ), and that the two graphs differ by o(n2/3) vertices.

Since (Gn,λ, Ǐ,Wn)
d= (Gε

n,λ, Ǐ,Wε
n), we can use the same argument forGε

n,λ instead ofGn,λ, and
find that

dGHP(Mn,λ,j,Mε
n,λ,j)

p−→ 0,

as n→ ∞. To conclude Theorem 1.2 Part 2 we need to extend the component-wise con-
vergence to

(
L4, d4GHP

)
. This is carried out exactly as in the proof of Lemma 3.3, following

[4, Theorems 4.1, 4.4]. �

4. Proof of Theorem 1.1
The connection between the scaling limits of the MST Mn and the largest component of the
MSFMn,λ was established in [4, Proposition 4.8]. Let Mn = Ŝ(Mn,λ) and M̂n,λ,1 = Ŝ(Mn,λ,1) (see
section 2.1). Then, for every η > 0,
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lim
λ→∞ lim sup

n→∞
P

(
dGHP(Mn, M̂n,λ,1)> η

)
= 0, (4.1)

and a similar statement holds forMε
n, M̂ε

n,λ,1.
In addition, let M̂λ,1 be the measured metric space obtained from the scaling limit Mλ,1 by

renormalizing its measure to a probability measure. The so-called principle of accompanying laws
[25, Theorem 9.1.13] yields that Mn

d−→ M in (M, dGHP), where the random measured metric
space M is the limit of M̂λ,1

d−→ M in dGHP as n→ ∞. Given this background, Theorem 1.1
follows directly from Theorem 1.2.

Proof of Theorem 1.1. For Part 1, we let ρ be some product metric on (M, dGHP)2, and deduce
from (4.1) that for every η > 0,

lim
λ→∞ lim sup

n→∞
P

(
ρ((Mn,Mε

n), (M̂n,λ,1, M̂ε
n,λ,1))> η

)
= 0.

In addition, Theorem 1.1 Part 1 implies that(
M̂n,λ,1, M̂ε

n,λ,1

) d−→
(
M̂λ,1, M̂ ′

λ,1
)
,

in (M, dGHP)2, as n→ ∞. Let M̂
′
λ,1 to be an independent copy of M̂λ,1, hence(

M̂λ,1, M̂ ′
λ,1

) d−→ (
M,M ′) ,

as λ → ∞ in dGHP, where M and M ′ are i.i.d. Therefore, by the principle of accompanying laws,
as n→ ∞, the pair (Mn,Mε

n)
d−→ (

M,M ′) in dGHP.
For Part 2, note that for every η > 0 and every λ ∈R there holds

P(dGHP(Mn,Mε
n)> η)≤ P(D1)+ P(D2)+ P(D3),

where D1,D2 and D3 are the events that the GHP distance between
(
Mn, M̂n,λ,1

)
,
(
Mε

n, M̂ε
n,λ,1

)
and

(
M̂n,λ,1, M̂ε

n,λ,1

)
is greater than η/3, respectively.

Part 2 of Theorem 1.2 implies that dGHP
(
M̂n,λ,1, M̂ε

n,λ,1

) p−→ 0 as n→ ∞, thereby P(D3)→ 0.

By applying (4.1) to both
(
Mn, M̂n,λ,1

)
and

(
Mε

n, M̂ε
n,λ,1

)
, we find that

lim
λ→∞ lim sup

n→∞
P(D1)+ P(D2)= 0,

therefore P(dGHP(Mn,Mε
n)> η)→ 0 as n→ ∞, as claimed. �

5. Open problems
We conclude with three open problems that naturally arise from our work. First, it will be interest-
ing to study the joint limit law of the scaled MSTs (Mn,Mε

n) and of the scaled MSFs (Mn,λ,Mε
n,λ)

in the critical noise regime ε = tn−1/3, t ∈R. Rossignol [24] identified a non-trivial correlation
between Gn,λ and Gε

n,λ, but we suspect that the correlations between the MSFs are even more
involved. Namely, in this regime the subgraphs conn(Gn,λ) and conn(Gε

n,λ) share a positive frac-
tion of their weighted edges. Hence, on top of the correlations between Gn,λ and Gε

n,λ, the joint
cycle-breaking algorithm retainingMn,λ,Mε

n,λ is also non-trivially correlated.
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Second, even though this paper considers U[0, 1]-distributed weights, our setting can be equiv-
alently described in discrete terms. It is also natural to consider similar problems in a continuous
noise model, e.g., by letting (we,wε

e ) be identically distributed normal variables with covariance ε.
We ask: what is the sensitivity-stability noise threshold of the scaled MST in this model? is it still
aligned with the critical window of the Erdős-Rényi random graphs?

Third, it is interesting to explore for which functions of the MST our theorem establishes noise
sensitivity and stability. This requires a better understanding of the limit M and its continuity
sets. For example, consider the diameter of M or the distance between two independent random
points in it. Are these random variables continuous?What are their support? It is not entirely clear
to us how to answer these questions using the construction in ref. [4] of M as the limit of Mλ as
λ → ∞. However, it appears that the recent explicit construction of M as the Brownian parabolic
tree [9] can be quite useful here.
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