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Efficient implementation of the
Hardy–Ramanujan–Rademacher formula

Fredrik Johansson

Abstract

We describe how the Hardy–Ramanujan–Rademacher formula can be implemented to allow the
partition function p(n) to be computed with softly optimal complexity O(n1/2+o(1)) and very
little overhead. A new implementation based on these techniques achieves speedups in excess of
a factor 500 over previously published software and has been used by the author to calculate
p(1019), an exponent twice as large as in previously reported computations. We also investigate
performance for multi-evaluation of p(n), where our implementation of the Hardy–Ramanujan–
Rademacher formula becomes superior to power series methods on far denser sets of indices than
previous implementations. As an application, we determine over 22 billion new congruences for
the partition function, extending Weaver’s tabulation of 76 065 congruences.

Supplementary materials are available with this article.

1. Introduction

Let p(n) denote the number of partitions of n, or the number of ways that n can be written as
a sum of positive integers without regard to the order of the terms [27, A000041]. The classical
way to compute p(n) uses the generating function representation of p(n) combined with Euler’s
pentagonal number theorem

∞∑
n=0

p(n)xn =
∞∏
k=1

1
1− xk

=
( ∞∑
k=−∞

(−1)kxk(3k−1)/2

)−1

(1.1)

from which one can construct the recursive relation

p(n) =
n∑
k=1

(−1)k+1

(
p

(
n− k(3k − 1)

2

)
+ p

(
n− k(3k + 1)

2

))
. (1.2)

Equation (1.2) provides a simple and reasonably efficient way to compute the list of values
p(0), p(1), . . . , p(n− 1), p(n). Alternatively, applying Fast Fourier Transform (FFT)-based
power series inversion to the right-hand side of (1.1) gives an asymptotically faster, essentially
optimal algorithm for the same set of values.

An attractive feature of Euler’s method, in both the recursive and FFT incarnations, is that
the values can be computed more efficiently modulo a small prime number. This is useful for
investigating partition function congruences, such as in a recent large-scale computation of
p(n) modulo small primes for n up to 109 (see [7]).

While efficient for computing p(n) for all n up to some limit, Euler’s formula is impractical
for evaluating p(n) for an isolated, large n. One of the most astonishing number-theoretical
discoveries of the 20th century is the Hardy–Ramanujan–Rademacher (HRR) formula, first
given as an asymptotic expansion by Hardy and Ramanujan in 1917 [15] and subsequently
refined to an exact representation by Rademacher in 1936 [31], which provides a direct and
computationally efficient expression for the single value p(n).
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Simplified to a first-order estimate, the HRR formula states that

p(n)∼ 1
4n
√

3
eπ
√

2n/3, (1.3)

from which one gathers that p(n) is a number with roughly n1/2 decimal digits. The full version
can be stated as

p(n) =
N∑
k=1

(√
3
k

4
24n− 1

)
Ak(n) U

(
C(n)
k

)
+R(n, N), (1.4)

U(x) = cosh(x)− sinh(x)
x

, C(n) =
π

6
√

24n− 1, (1.5)

Ak(n) =
k−1∑
h=0

δgcd(h,k),1 exp
(
πi

[
s(h, k)− 2hn

k

])
(1.6)

where s(h, k) is the Dedekind sum

s(h, k) =
k−1∑
i=1

i

k

(
hi

k
−
⌊
hi

k

⌋
− 1

2

)
(1.7)

and where the remainder satisfies |R(n, N)|<M(n, N) with

M(n, N) =
44π2

225
√

3
N−1/2 +

π
√

2
75

(
N

n− 1

)1/2

sinh

(
π

N

√
2n
3

)
. (1.8)

It is easily shown that M(n, cn1/2)∼ n−1/4 for every positive c. Rademacher’s bound (1.8)
therefore implies that O(n1/2) terms in (1.4) suffice to compute p(n) exactly by forcing
|R(n, N)|< 1/2 and rounding to the nearest integer. For example, we can take N = dn1/2e
when n> 65.

In fact, it was pointed out by Odlyzko [21, 26] that the HRR formula ‘gives an algorithm
for calculating p(n) that is close to optimal, since the number of bit operations is not much
larger than the number of bits of p(n)’. In other words, the time complexity should not be
much higher than the trivial lower bound Ω(n1/2) derived from (1.3) just for writing down
the result. Odlyzko’s claim warrants some elaboration, since the HRR formula ostensibly is a
triply nested sum containing O(n3/2) inner terms.

The computational utility of the HRR formula was, of course, realized long before the
availability of electronic computers. For instance, Lehmer [23] used it to verify Ramanujan’s
conjectures p(599)≡ 0 mod 53 and p(721)≡ 0 mod 112. Implementations are now available in
numerous mathematical software systems, including Pari/GP [29], Mathematica [40] and
Sage [34]. However, apart from Odlyzko’s remark, we find few algorithmic accounts of the
HRR formula in the literature, nor any investigation into the optimality of the available
implementations.

The present paper describes a new C implementation of the HRR formula. The code is freely
available as a component of the Fast Library for Number Theory (FLINT) [16], released under
the terms of the GNU General Public License. We show that the complexity for computing
p(n) indeed can be bounded by O(n1/2+o(1)), and observe that our implementation comes close
to being optimal in practice, improving on the speed of previously published software by more
than two orders of magnitude.

We benchmark the code by computing some extremely large isolated values of p(n). We also
investigate efficiency compared to power series methods for evaluation of multiple values, and
finally apply our implementation to the problem of computing congruences for p(n).
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2. Simplification of exponential sums

A naive implementation of formulas (1.4)–(1.7) requires O(n3/2) integer operations to evaluate
Dedekind sums, and O(n) numerical evaluations of complex exponentials (or cosines, since the
imaginary parts ultimately cancel out). In the following section, we describe how the number of
integer operations and cosine evaluations can be reduced, for the moment ignoring numerical
evaluation.

A first improvement, used for instance in the Sage implementation, is to recognize that
Dedekind sums can be evaluated in O(log k) steps using a GCD-style algorithm, as described
by Apostol [2], or with Knuth’s fraction-free algorithm [20] which avoids the overhead of
rational arithmetic. This reduces the total number of integer operations to O(n log n), which
is a dramatic improvement but still leaves the cost of computing p(n) quadratic in the size of
the final result.

Fortunately, the Ak(n) sums have additional structure as discussed in [14, 22, 24, 32, 39],
allowing the computational complexity to be reduced. Since numerous implementers of the
HRR formula until now appear to have overlooked these results, it seems appropriate that we
reproduce the main formulas and assess the computational issues in more detail. We describe
two concrete algorithms: one simple, and one asymptotically fast, the latter being implemented
in FLINT.

2.1. A simple algorithm

Using properties of the Dedekind eta function, one can derive the formula (which
Whiteman [39] attributes to Selberg)

Ak(n) =
(
k

3

)1/2 ∑
(3l2+l)/2≡−n mod k

(−1)l cos
(

6l + 1
6k

π

)
(2.1)

in which the summation ranges over 0 6 l < 2k and only O(k1/2) terms are nonzero. With a
simple brute force search for solutions of the quadratic equation, this representation provides
a way to compute Ak(n) that is both simpler and more efficient than the usual definition (1.6).

Although a brute force search requires O(k) loop iterations, the successive quadratic terms
can be generated without multiplications or divisions using two coupled linear recurrences.
This only costs a few processor cycles per loop iteration, which is a substantial improvement
over computing Dedekind sums, and means that the cost up to fairly large k effectively will
be dominated by evaluating O(k1/2) cosines, adding up to O(n3/4) function evaluations for
computing p(n).

A basic implementation of (2.1) is given as Algorithm 1. Here the variable m runs over
the successive values of (3l2 + l)/2, and r runs over the differences between consecutive m.
Various improvements are possible: a modification of the equation allows cutting the loop
range in half when k is odd, and the number of cosine evaluations can be reduced by counting
the multiplicities of unique angles after reduction to [0, π/4), evaluating a weighted sum∑
wi cos(θi) at the end, possibly using trigonometric addition theorems to exploit the fact

that the differences θi+1 − θi between successive angles tend to repeat for many different i.

2.2. A fast algorithm

From Selberg’s formula (2.1), a still more efficient but considerably more complicated
multiplicative decomposition of Ak(n) can be obtained. The advantage of this representation
is that it only contains O(log k) cosine factors, bringing the total number of cosine evaluations
for p(n) down to O(n1/2 log n). It also reveals exactly when Ak(n) = 0 (which is about half the
time). We stress that these results are not new; the formulas are given in full detail and with
proofs in [39].
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Algorithm 1 Simple algorithm for evaluating Ak(n)
Input: Integers k, n> 0
Output: s=Ak(n), where Ak(n) is defined as in (1.6)

if k 6 1 then
return k

else if k = 2 then
return (−1)n

end if
(s, r, m)← (0, 2, (n mod k))
for 0 6 l < 2k do

if m= 0 then
s← s+ (−1)l cos (π(6l + 1)/(6k))

end if
m←m+ r
if m> k then m←m− k {m←m mod k}
r← r + 3
if r > k then r← r − k {r← r mod k}

end for
return (k/3)1/2 s

First consider the case when k is a power of a prime. Clearly A1(n) = 1 and A2(n) = (−1)n.
Otherwise let k = pλ and v = 1− 24n. Then, using the notation (a|m) for Jacobi symbols to
avoid confusion with fractions, we have

Ak(n) =


(−1)λ(−1|m2)k1/2 sin(4πm2/8k) if p= 2
2(−1)λ+1(m3|3)(k/3)1/2 sin(4πm3/3k) if p= 3
2(3|k)k1/2 cos(4πmp/k) if p > 3

(2.2)

where m2, m3 and mp respectively are any solutions of

(3m2)2 ≡ v mod 8k (2.3)

(8m3)2 ≡ v mod 3k (2.4)

(24mp)2 ≡ v mod k (2.5)

provided, when p > 3, that such an mp exists and that gcd(v, k) = 1. If, on the other hand,
p > 3 and either of these two conditions do not hold, we have

Ak(n) =


0 if v is not a quadratic residue modulo k
(3|k)k1/2 if v ≡ 0 mod p, λ= 0
0 if v ≡ 0 mod p, λ > 1.

(2.6)

If k is not a prime power, assume that k = k1k2 where gcd(k1, k2) = 1. Then we can factor
Ak(n) as Ak(n) =Ak1(n1)Ak2(n2), where n1, n2 are any solutions of the following equations.
If k1 = 2, then {

32n2 ≡ 8n+ 1 mod k2

n1 ≡ n− (k2
2 − 1)/8 mod 2,

(2.7)

if k1 = 4, then {
128n2 ≡ 8n+ 5 mod k2

k2
2n1 ≡ n− 2− (k2

2 − 1)/8 mod 4,
(2.8)
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and if k1 is odd or divisible by 8, then{
k2

2d2en1 ≡ d2en+ (k2
2 − 1)/d1 mod k1

k2
1d1en2 ≡ d1en+ (k2

1 − 1)/d2 mod k2

(2.9)

where d1 = gcd(24, k1), d2 = gcd(24, k2), 24 = d1d2e.
Here (k2 − 1)/d denotes an operation done on integers, rather than a modular division. All

other solving steps in (2.2)–(2.9) amount to computing greatest common divisors, carrying
out modular ring operations, finding modular inverses, and computing modular square roots.
Repeated application of these formulas results in Algorithm 2, where we omit the detailed
arithmetic for brevity.

Algorithm 2 Fast algorithm for evaluating Ak(n)
Input: Integers k > 1, n> 0
Output: s=Ak(n), where Ak(n) is defined as in (1.6)

Compute the prime factorization k = pλ1
1 pλ2

2 . . . p
λj

j

s← 1
for 1 6 i6 j and while s 6= 0 do

if i < j then
(k1, k2)← (pλi

i , k/p
λi
i )

Compute n1, n2 by solving the respective case of (2.7)–(2.9)
s← s×Ak1(n1) {Handle the prime power case using (2.2)–(2.6)}
(k, n)← (k2, n2)

else
s← s×Ak(n) {Prime power case}

end if
end for
return s

2.3. Computational cost

A precise complexity analysis of Algorithm 2 should take into account the cost of integer
arithmetic. Multiplication, division, computation of modular inverses, greatest common divisors
and Jacobi symbols of integers bounded in absolute value by O(k) can all be performed with
bit complexity O(log1+o(1) k).

At first sight, integer factorization might seem to pose a problem. We can, however, factor
all indices k summed over in (1.4) in O(n1/2 log1+o(1) n) bit operations. For example, using
the sieve of Eratosthenes, we can precompute a list of length n1/2 where entry k is the largest
prime dividing k.

A fixed index k is a product of at most O(log k) prime powers with exponents bounded
by O(log k). For each prime power, we need O(1) operations with roughly the cost of
multiplication, and O(1) square roots, which are the most expensive operations.

To compute square roots modulo pλ, we can use the Tonelli–Shanks algorithm [33, 36]
or Cipolla’s algorithm [8] modulo p followed by Hensel lifting up to pλ. Assuming that
we know a quadratic nonresidue modulo p, the Tonelli–Shanks algorithm requires O(log3 k)
multiplications in the worst case and O(log2 k) multiplications on average, while Cipolla’s
algorithm requires O(log2 k) multiplications in the worst case [9]. This puts the bit complexity
of factoring a single exponential sum Ak(n) at O(log3+o(1) k), and gives us the following
result.
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Theorem 1. Assume that we know a quadratic nonresidue modulo p for all primes p up to
n1/2. Then we can factor all the Ak(n) required for evaluating p(n) using O(n1/2 log3+o(1) n)
bit operations.

The assumption in Theorem 1 can be satisfied with a precomputation that does not affect
the complexity. If n2(pk) denotes the least quadratic nonresidue modulo the kth prime number,
it is a theorem of Erdős [10, 30] that as x→∞,

1
π(x)

∑
pk6x

n2(pk)→
∞∑
k=1

pk
2k

= C < 3.675. (2.10)

Given the primes up to x= n1/2, we can therefore build a table of nonresidues by testing
no more than (C + o(1))π(n1/2) candidates. Since π(n1/2) =O(n1/2/ log n) and a quadratic
residue test takes O(log1+o(1) p) time, the total precomputation time is O(n1/2 logo(1) n).

In practice, it is sufficient to generate nonresidues on the fly since O(1) candidates need to
be tested on average, but we can only prove an O(logc k) bound for factoring an isolated Ak(n)
by assuming the Extended Riemann Hypothesis which gives n2(p) =O(log2 p) [1].

2.4. Implementation notes

As a matter of practical efficiency, the modular arithmetic should be done with as little overhead
as possible. FLINT provides optimized routines for arithmetic with moduli smaller than 32 or 64
bits (depending on the hardware word size) which are used throughout; including, among other
things, a binary-style GCD algorithm, division and remainder using precomputed inverses, and
supplementary code for operations on two-limb (64 or 128 bit) integers.

We note that since Ak(n) =Ak(n+ k), we can always reduce n modulo k, and perform
all modular arithmetic with moduli up to some small multiple of k. In principle, the
implementation of the modular arithmetic in FLINT thus allows calculating p(n) up to
approximately n= (264)2 ≈ 1038 on a 64-bit system, which roughly equals the limit on n
imposed by the availability of addressable memory to store p(n).

At present, our implementation of Algorithm 2 simply calls the FLINT routine for integer
factorization repeatedly rather than sieving over the indices. Although convenient, this
technically results in a higher total complexity than O(n1/2+o(1)). However, the code for
factoring single-word integers, which uses various optimizations for small factors and Hart’s
‘One Line Factor’ variant of Lehman’s method to find large factors [17], is fast enough that
integer factorization only accounts for a small fraction of the running time for any feasible n.
If needed, full sieving could easily be added in the future.

Likewise, the square root function in FLINT uses the Tonelli–Shanks algorithm and generates
a nonresidue modulo p on each call. This is suboptimal in theory but efficient enough in practice.

3. Numerical evaluation

We now turn to the problem of numerically evaluating (1.4)–(1.5) using arbitrary-precision
arithmetic, given access to Algorithm 2 for symbolically decomposing theAk(n) sums. Although
(1.8) bounds the truncation error in the HRR series, we must also account for the effects of
having to work with finite-precision approximations of the terms.

3.1. Floating-point precision

We assume the use of variable-precision binary floating-point arithmetic (a simpler but less
efficient alternative, avoiding the need for detailed manual error bounds, would be to use
arbitrary-precision interval arithmetic). Basic notions about floating-point arithmetic and error
analysis can be found in [18].
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If the precision is r bits, we let ε= 2−r denote the unit roundoff. We use the symbol x̂
to signify a floating-point approximation of an exact quantity x, having some relative error
δ = (x̂− x)/x when x 6= 0. If x̂ is obtained by rounding x to the nearest representable floating-
point number (at most 0.5 ulp error) at precision r, we have |δ|6 ε. Except where otherwise
noted, we assume correct rounding to nearest.

A simple strategy for computing p(n) is as follows. For a given n, we first determine an
N such that |R(n, N)|< 0.25, for example using a linear search. A tight upper bound for
log2 M(n, N) can be computed easily using low-precision arithmetic. We then approximate
the kth term tk using a working precision high enough to guarantee

|t̂k − tk|6
0.125
N

, (3.1)

and perform the outer summation such that the absolute error of each addition is bounded by
0.125/N . This clearly guarantees |p̂(n)− p(n)|< 0.5, allowing us to determine the correct value
of p(n) by rounding to the nearest integer. We might, alternatively, carry out the additions
exactly and save one bit of precision for the terms.

In what follows, we derive a simple but essentially asymptotically tight expression for a
working precision, varying with k, sufficiently high for (3.1) to hold. Using Algorithm 2, we
write the term to be evaluated in terms of exact integer parameters α, β, a, b, pi, qi as

tk =
α

β

√
a√
b
U

(
C

k

) m∏
i=1

cos
(
piπ

qi

)
. (3.2)

Lemma 2. Let p ∈ Z, q ∈ N+ and let r be a precision in bits with 2r >max(3q, 64). Suppose
that sin and cos can be evaluated on (0, π/4) with relative error at most 2ε for floating-point
input, and suppose that π can be approximated with relative error at most ε. Then we can
evaluate cos(pπ/q) with relative error less than 5.5ε.

Proof. We first reduce p and q with exact integer operations so that 0< 4p < q, giving an
angle in the interval (0, π/4). Then we approximate x= pπ/q using three roundings, giving x̂=
x(1 + δx) where |δx|6 (1 + ε)3 − 1. The assumption ε < 1/(3q) gives (q/(q − 1))(1 + δx)< 1
and therefore also x̂ ∈ (0, π/4).

Next, we evaluate f(x̂) where f =± cos or f =± sin depending on the argument reduction.
By Taylor’s theorem, we have f(x̂) = f(x)(1 + δ′x) where

|δ′x|=
|f(x̂)− f(x)|

f(x)
=
x|δx||f ′(ξ)|

f(x)
(3.3)

for some ξ between x and x̂, giving |δ′x|6 ( 1
4π
√

2)|δx|. Finally, rounding results in

f̂(x̂) = f(x)(1 + δ) = f(x)(1 + δ′x)(1 + δf )

where |δf |6 2ε. The inequality ε < 1/64 gives |δ|< 5.5ε. 2

To obtain a simple error bound for U(x) where x= C/k, we make the somewhat crude
restriction that n > 2000. We also assume k < n1/2 and x > 3, which are not restrictions: if N
is chosen optimally using Rademacher’s remainder bound (1.8), the maximum k decreases and
the minimum x increases with larger n. In particular, n > 2000 is sufficient with Rademacher’s
bound (or any tighter bound for the remainder).

We assume that C is precomputed; of course, this only needs to be done once during the
calculation of p(n), at a precision a few bits higher than that of the k = 1 term.

Lemma 3. Suppose n > 2000 and let r be a precision in bits such that 2r >max(16n1/2, 210).
Let x= C/k where C is defined as in (1.5) and where k is constrained such that k < n1/2
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and x > 3. Assume that Ĉ = C(n)(1 + δC) has been precomputed with |δC |6 2ε and that sinh
and cosh can be evaluated with relative error at most 2ε for floating-point input. Then we can
evaluate U(x) with relative error at most (9x+ 15)ε.

Proof. We first compute x̂= x(1 + δx) = (C/k)(1 + δC)(1 + δ0) where |δ0|6 ε. Next, we
compute

Û(x̂) = U(x̂)(1 + δU ) = U(x)(1 + δ′x)(1 + δU ) = U(x)(1 + δ) (3.4)

where we have to bound the error δ′x propagated in the composition as well as the rounding
error δU in the evaluation of U(x̂). Using the inequality x|δx|< 4xε < log 2, we have

|δ′x|6
x|δx|U ′(x+ x|δx|)

U(x)
6
x|δx| exp(x+ x|δx|)

2U(x)
6
x|δx| exp(x)

U(x)
6 3x|δx|. (3.5)

Evaluating U(x̂) using the obvious sequence of operations results in

|δU |=

∣∣∣∣(cosh(x̂)(1 + 2δ1)− sinh(x̂)
x̂

(1 + 2δ2)(1 + δ3)
)

(1 + δ4)− U(x̂)
∣∣∣∣

U(x̂)
(3.6)

where |δi|6 ε and x̂ > z where z = 3(1− 4ε). This expression is maximized by setting x̂ as
small as possible and taking δ1 = δ4 =−δ2 =−δ3 = ε, which gives

|δU |<
cosh(z)
U(z)

ε(3 + 2ε) +
sinh(z)
z U(z)

ε(2 + ε− 2ε2)< 5.5ε. (3.7)

Expanding (3.4) using (3.5) and (3.7) gives |δ|< ε(5.5 + 9x+ 56xε+ 33xε2). Finally, we
obtain 5.5 + 56xε+ 33xε2 < 15 by a direct application of the assumptions. 2

Put together, assuming floating-point implementations of standard transcendental functions
with at most 1 ulp error (implying a relative error of at most 2ε), correctly rounded arithmetic
and the constant π, we have the following theorem.

Theorem 4. Let n > 2000. For (3.1) to hold, it is sufficient to evaluate (3.2) using a
precision of r = max(log2 N + log2 |tk|+ log2(10x+ 7m+ 22) + 3, 1

2 log2 n+ 5, 11) bits.

Proof. We can satisfy the assumptions of Lemmas 2 and 3. In particular, 3q 6 24k < 24n1/2 <
2r. The top-level arithmetic operations in (3.2), including the square roots, amount to a
maximum of m+ 6 roundings. Lemmas 2 and 3 and elementary inequalities give the relative
error bound

|δ|< (1 + ε)m+6 (1 + 5.5ε)m (1 + (15 + 9x)ε)− 1 (3.8)

<

(
1 +

(m+ 6)ε
1− (m+ 6)ε

) (
1 +

5.5mε
1− 5.5mε

)
(1 + (15 + 9x)ε)− 1 (3.9)

=
21ε+ 6.5mε− 33mε2 − 5.5m2ε2 + 9xε

(1− 5.5εm)(1− ε(m+ 6))
(3.10)

< (10x+ 7m+ 22)ε. (3.11)

The result follows by taking logarithms in (3.1). 2

To make Theorem 4 effective, we can use m6 log2 k and bound |tk| using (1.4) with |Ak|6 k
and U(x)< ex/2, giving

log |tk|<
(24n− 1)1/2 π

6k
+

log k
2
− log(24n− 1) +

(
log 2 +

log 3
2

)
. (3.12)
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Naturally, for n6 2000, the same precision bound can be verified to be sufficient through
direct computation. We can even reduce overhead for small n by using a tighter precision,
say r = |tk|+O(1), up to some limit small enough to be tested exhaustively (perhaps much
larger than 2000). The requirement that r > 1

2 log2 n+O(1) always holds in practice if we set
a minimum precision; for n feasible on present hardware, it is sufficient to never drop below
IEEE double (53-bit) precision.

3.2. Computational cost

We assume that r-bit floating-point numbers can be multiplied in time M(r) =O(r log1+o(1) r).
It is well known (see [5]) that the elementary functions exp, log, sin etc. can be evaluated in
time O(M(r) log r) using methods based on the arithmetic–geometric mean (AGM). A popular
alternative is binary splitting, which typically has cost O(M(r) log2 r) but tends to be faster
than the AGM in practice.

To evaluate p(n) using the HRR formula, we must add O(n1/2) terms each of which can
be written as a product of O(log k) factors. According to (3.12) and the error analysis in the
previous section, the kth term needs to be evaluated to a precision of O(n1/2/k) +O(log n) bits.
Using any combination of O(M(r) logα r) algorithms for elementary functions, the complexity
of the numerical operations is

O

(n1/2∑
k=1

log k M

(
n1/2

k

)
logα

n1/2

k

)
=O(n1/2 logα+3+o(1) n) (3.13)

which is nearly optimal in the size of the output. Combined with the cost of the factoring
stage, the complexity for the computation of p(n) as a whole is therefore, when properly
implemented, softly optimal at O(n1/2+o(1)). From (3.13) with the best known complexity
bound for elementary functions, we obtain the following.

Theorem 5. The value p(n) can be computed in time O(n1/2 log4+o(1) n).

A subtle but crucial detail in this analysis is that the additions in the main sum must be
implemented in such a way that they have cost O(n1/2/k) rather than O(n1/2), since the latter
would result in an O(n) total complexity. If the additions are performed in-place in memory,
we can perform summations the natural way and rely on carry propagation terminating in an
expected O(1) steps, but many implementations of arbitrary-precision floating-point arithmetic
do not provide this optimization.

One way to solve this problem is to add the terms in reverse order, using a precision that
matches the magnitude of the partial sums. Or, if we add the terms in forward order, we can
amortize the cost by keeping separate summation variables for the partial sums of terms not
exceeding r1, r1/2, r1/4, r1/8, . . . bits.

3.3. Arithmetic implementation

FLINT uses the MPIR library, derived from GMP, for arbitrary-precision arithmetic, and
the MPFR library on top of MPIR for asymptotically fast arbitrary-precision floating-point
numbers and correctly rounded transcendental functions [11, 13, 25]. Thanks to the strong
correctness guarantees of MPFR, it is relatively straightforward to write a provably correct
implementation of the partition function using Theorem 4.

Although the default functions provided by MPFR are quite fast, order-of-magnitude
speedups were found possible with custom routines for parts of the numerical evaluation. An
unfortunate consequence is that our implementation currently relies on routines that, although
heuristically sound, have not yet been proved correct, and perhaps are more likely to contain
implementation bugs than the well-tested standard functions in MPFR.
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All such heuristic parts of the code are, however, well isolated, and we expect that they can
be replaced with rigorous versions with equivalent or better performance in the future.

3.4. Hardware arithmetic

Inspired by the Sage implementation, which was written by Jonathan Bober, our
implementation switches to hardware (IEEE double) floating-point arithmetic to evaluate (3.2)
when the precision bound falls below 53 bits. This speeds up evaluation of the ‘long tail’ of
terms with very small magnitude.

Using hardware arithmetic entails some risk. Although the IEEE floating-point standard
implemented on all modern hardware guarantees 0.5 ulp error for arithmetic operations,
accuracy may be lost, for example, if the compiler generates long-double instructions which
trigger double rounding, or if the rounding mode of the processor has been changed.

We need to be particularly concerned about the accuracy of transcendental functions.
The hardware transcendental functions on the Intel Pentium processor and its descendants
guarantee an error of at most 1 ulp when rounding to nearest [19], as do the software routines
in the portable and widely used FDLIBM library [35]. Nevertheless, some systems may be
equipped with poorer implementations.

Fortunately, the bound (1.8) and Theorem 4 are lax enough in practice that errors up
to a few ulp can be tolerated, and we expect any reasonably implemented double-precision
transcendental functions to be adequate. Most importantly, range reducing the arguments of
trigonometric functions to (0, π/4) avoids catastrophic error for large arguments which is a
misfeature of some implementations.

3.5. High-precision evaluation of exponentials

MPFR implements the exponential and hyperbolic functions using binary splitting at high
precision, which is asymptotically fast up to logarithmic factors. We can, however, improve
performance by not computing the hyperbolic functions in U(x) from scratch when k is
small. Instead, we precompute exp(C) with the initial precision of C, and then compute
(cosh(C/k), sinh(C/k)) from (exp(C))1/k; that is, by kth root extractions which have cost
O((log k)M(r)). Using the builtin MPFR functions, root extraction was found experimentally
to be faster than evaluating the exponential function up to approximately k = 35 over a large
range of precisions.

For extremely large n, we also speed up computation of the constant C by using binary
splitting to compute π (adapting code written by H. Xue [12]) instead of the default
function in MPFR, which uses arithmetic–geometric mean iteration. As has been pointed out
previously [41], binary splitting is more than four times faster for computing π in practice,
despite theoretically having a log factor worse complexity. When evaluating p(n) for multiple
values of n, the value of π should of course be cached, which MPFR does automatically.

3.6. High-precision cosines

The MPFR cosine and sine functions implement binary splitting, with similar asymptotics as
the exponential function. At high precision, our implementation switches to custom code for
evaluating α= cos(pπ/q) when q is not too large, taking advantage of the fact that α is an
algebraic number. Our strategy consists of generating a polynomial P such that P (α) = 0 and
solving this equation using Newton iteration, starting from a double precision approximation
of the desired root. Using a precision that doubles with each step of the Newton iteration, the
complexity is O(deg(P )M(r)).

The numbers cos(pπ/q) are computed from scratch as needed: caching values with small p and
q was found to provide a negligible speedup while needlessly increasing memory consumption
and code complexity.
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Our implementation uses the minimal polynomial Φn(x) of cos(2π/n), which has degree
d= φ(n)/2 for n> 3 [37]. More precisely, we use the scaled polynomial 2dΦ(x) ∈ Z[x]. This
polynomial is looked up from a precomputed table when n is small, and otherwise is generated
using a balanced product tree, starting from floating-point approximations of the conjugate
roots. As a side remark, this turned out to be around a thousand times faster than computing
the minimal polynomial with the standard commands in either Sage or Mathematica.

We sketch the procedure for high-precision evaluation of cos(pπ/q) as Algorithm 3, omitting
various special cases and implementation details (for example, our implementation performs the
polynomial multiplications over Z[x] by embedding the approximate coefficients as fixed-point
numbers).

Algorithm 3 High-precision numerical evaluation of cos(pπ/q)
Input: Coprime integers p and q with q > 3, and a precision r

Output: An approximation of cos(pπ/q) accurate to r bits
n← (1 + (p mod 2)) q
d← φ(n)/2
{Bound coefficients in 2d

∏d
i=1(x− α)}

b← dlog2 de+
⌈
log2

(
d
d/2

)⌉
{Use a balanced product tree and a precision of b+O(log d) bits}
Φ← 2d

∏deg(Φ)6d
i=1,gcd(i,n)=1(x− cos(iπ/n)) {Use base case algorithm for cos}

{Round to an integer polynomial}
Φ←

∑d
k=0

⌊
[xk]Φ + 1

2

⌋
xk

Compute precisions r0 = r + 8, r1 = r0/2 + 8, . . . , rj = rj−1/2 + 8< 50
x← cos(pπ/q) {To 50 bits, using base case algorithm}
for i← j − 1, j − 2 . . . 0 do
{Evaluate using the Horner scheme at ri + b bit precision}
x← x− Φ(x)/Φ′(x)

end for
return x

We do not attempt to prove that the internal precision management of Algorithm 3 is correct.
However, the polynomial generation can easily be tested up to an allowed bound for q, and
the function can be tested to be correct for all pairs p, q at some fixed, high precision r. We
may then argue heuristically that the well-behavedness of the object function in the root-
finding stage combined with the highly conservative padding of the precision by several bits
per iteration suffices to ensure full accuracy at the end of each step in the final loop, given an
arbitrary r.

A different way to generate Φn(x) using Chebyshev polynomials is described in [37]. One
can also use the squarefree part of an offset Chebyshev polynomial

P (x) =
T2q(x)− 1

gcd(T2q(x)− 1, T ′2q(x))

directly, although this is somewhat less efficient than the minimal polynomial.
Alternatively, since cos(pπ/q) is the real part of a root of unity, the polynomial xq − 1 could

be used. The use of complex arithmetic adds overhead, but the method would be faster for large
q since xq can be computed in time O((log q)M(r)) using repeated squaring. We also note that
the secant method could be used instead of the standard Newton iteration in Algorithm 3. This
increases the number of iterations, but removes the derivative evaluation, possibly providing
some speedup.
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In our implementation, Algorithm 3 was found to be faster than the MPFR trigonometric
functions for q < 250 roughly when the precision exceeds 400 + 4q2 bits. This estimate includes
the cost of generating the minimal polynomial on the fly.

3.7. The main algorithm

Algorithm 4 outlines the main routine in FLINT with only minor simplifications. To avoid
possible corner cases in the convergence of the HRR sum, and to avoid unnecessary overhead,
values with n < 128 (exactly corresponding to p(n)< 232) are looked up from a table. We only
use k, n, N in Theorem 4 in order to make the precision decrease uniformly, allowing amortized
summation to be implemented in a simple way.

Algorithm 4 Main routine implementing the HRR formula
Input: n> 128
Output: p(n)

Determine N and initial precision r1 using Theorem 4
C← π

6

√
24n− 1 {At r1 + 3 bits}

u← exp(C)
s1← s2← 0
for 1 6 k 6N do

Write term k as (3.2) by calling Algorithm 2
if Ak(n) 6= 0 then

Determine term precision rk for |tk| using Theorem 4
{Use Algorithm 3 if qi < 250 and rk > 400 + 4q2}
t← (−1)s

√
a/b

∏
cos(piπ/qi)

t← t× U(C/k) {Compute U from u1/k if k < 35}
{Amortized summation: r(s2) denotes precision of the variable s2}
s2← s2 + t
if 2rk < r(s2) then
s1← s1 + s2 {Exactly or with precision exceeding r1}
r(s2)← rk {Change precision}
s2← 0

end if
end if

end for
return bs1 + s2 + 1

2c

Since our implementation presently relies on some numerical heuristics (and in any case,
considering the intricacy of the algorithm), care has been taken to test it extensively. All n6 106

have been checked explicitly, and a large number of isolated n� 106 have been compared
against known congruences and values computed with Sage and Mathematica.

As a strong robustness check, we observe experimentally that the numerical error in the final
sum decreases with larger n. For example, the error is consistently smaller than 10−3 for n > 106

and smaller than 10−4 for n > 109. This phenomenon reflects the fact that (1.8) overshoots the
actual magnitude of the terms with large k, combined with the fact that rounding errors average
out pseudorandomly rather than approaching worst-case bounds.

4. Benchmarks

Table 1 and Figure 1 compare performance of Mathematica 7, Sage 4.7 and FLINT on a laptop
with a Pentium T4400 2.2 GHz CPU and 3 GB of RAM, running 64 bit Linux. To the author’s
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Figure 1. CPU time t in seconds for computing p(n): FLINT (blue squares), Mathematica 7 (green
circles), Sage 4.7 (red triangles). The dotted line shows t = 10−6n1/2, indicating the slope of an

idealized algorithm satisfying the trivial lower complexity bound Ω(n1/2) (the offset 10−6 is
arbitrary).

knowledge, Mathematica and Sage contain the fastest previously available partition function
implementations by far.

The FLINT code was run with MPIR version 2.4.0 and MPFR version 3.0.1. Since Sage 4.7
uses an older version of MPIR and Mathematica is based on an older version of GMP, differences
in performance of the underlying arithmetic slightly skew the comparison, but probably not
by more than a factor of two.

The limited memory of the aforementioned laptop restricted the range of feasible n to
approximately 1016. Using a system with an AMD Opteron 6174 processor and 256 GB RAM
allowed calculating p(1017), p(1018) and p(1019) as well. The last computation took just less
than 100 hours and used more than 150 GB of memory, producing a result with over 11 billion
bits. Some large values of p(n) are listed in Table 2.

Table 1. Timings for computing p(n) in Mathematica 7, Sage 4.7 and FLINT up to n = 1016 on the
same system, as well as FLINT timings for n = 1017–1019 (*) done on different (slightly faster)
hardware. Calculations running less than one second were repeated, allowing benefits from data
caching. The rightmost column shows the amount of time in the FLINT implementation spent

computing the first term.

n Mathematica 7 Sage 4.7 FLINT Initial (%)

104 69 ms 1 ms 0.20 ms
105 250 ms 5.4 ms 0.80 ms
106 590 ms 41 ms 2.74 ms
107 2.4 s 0.38 s 0.010 s
108 11 s 3.8 s 0.041 s
109 67 s 42 s 0.21 s 43

1010 340 s 0.88 s 53
1011 2 116 s 5.1 s 48
1012 10 660 s 20 s 49
1013 88 s 48
1014 448 s 47
1015 2 024 s 39
1016 6 941 s 45
1017 27 196* s 33
1018 87 223* s 38
1019 350 172* s 39
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As can be seen in Table 1 and Figure 1, the FLINT implementation exhibits a time complexity
only slightly higher than O(n1/2), with a comparatively small constant factor. The Sage
implementation is fairly efficient for small n but has a complexity closer to O(n), and is limited
to arguments n < 232 ≈ 4× 109.

The Mathematica implementation appears to have complexity slightly higher than O(n1/2)
as well, but consistently runs about 200–500 times slower than our implementation. Based on
extrapolation, computing p(1019) would take several years. It is unclear whether Mathematica is
actually using a nearly-optimal algorithm or whether the slow growth is just the manifestation
of various overheads dwarfing the true asymptotic behavior. The ratio compared to FLINT
appears too large to be explained by differences in performance of the underlying arithmetic
alone; for example, evaluating the first term in the series for p(1010) to required precision in
Mathematica only takes about one second.

We get one external benchmark from [4], where it is reported that Crandall computed p(109)
in three seconds on a laptop in December 2008, ‘using the HRR ‘finite’ series for p(n) along
with FFT methods’. Even accounting for possible hardware differences, this appears to be an
order of magnitude slower than our implementation.

4.1. Optimality relative to the first term

Table 1 includes time percentages spent on evaluating the first term, exp(C), in the FLINT
implementation. We find that this step fairly consistently amounts to just a little less than half
of the running time. Our implementation is therefore nearly optimal in a practical sense, since
the first term in the HRR expansion hardly can be avoided and at most a factor of two can be
gained by improving the tail evaluation.

Naturally, there is some potential to implement a faster version of the exponential function
than the one provided by MPFR, reducing the cost of the first term. Improvements on the level
of bignum multiplication would, on the other hand, presumably have a comparatively uniform
effect.

By similar reasoning, at most a factor of two can be gained through parallelization of our
implementation by assigning terms in the HRR sum to separate threads. Further speedup on a
multicore system requires parallelized versions of lower level routines, such as the exponential
function or bignum multiplication. (A simplistic multithreaded version of the FLINT partition
function was tested for n up to 1018, giving nearly a twofold speedup on two cores, but failed
when computing 1019 for reasons yet to be determined.) Fortunately, it is likely to be more
interesting in practice to be able to evaluate p(n) for a range of large values than just for a
single value, and this task naturally parallelizes well.

5. Multi-evaluation and congruence generation

One of the central problems concerning the partition function is the distribution of values of
p(n) mod m. In 2000, Ono [28] proved that for every prime m> 5, there exist infinitely many

Table 2. Large values of p(n). The table also lists the number of terms N in the HRR formula used
by FLINT (theoretically bounding the error by 0.25) and the difference between the floating-point

sum and the rounded integer.

n Decimal expansion Number of digits Terms Error

1012 6129000962 . . . 6867626906 1 113 996 264 526 2 × 10−7

1013 5714414687 . . . 4630811575 3 522 791 787 010 3 × 10−8

1014 2750960597 . . . 5564896497 11 140 072 2 350 465 −1 × 10−8

1015 1365537729 . . . 3764670692 35 228 031 7 043 140 −3 × 10−9

1016 9129131390 . . . 3100706231 111 400 846 21 166 305 −9 × 10−10

1017 8291300791 . . . 3197824756 352 280 442 63 775 038 5 × 10−10

1018 1478700310 . . . 1701612189 1 114 008 610 192 605 341 4 × 10−10

1019 5646928403 . . . 3674631046 3 522 804 578 582 909 398 4 × 10−11
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congruences of the type

p(Ak +B)≡ 0 mod m (5.1)

where A, B are fixed and k ranges over all nonnegative integers. Ono’s proof is nonconstructive,
but Weaver [38] subsequently gave an algorithm for finding congruences of this type when
m ∈ {13, 17, 19, 23, 29, 31}, and used the algorithm to compute 76 065 explicit congruences.

Weaver’s congruences are specified by a tuple (m, `, ε) where ` is a prime and ε ∈ {−1, 0, 1},
where we unify the notation by writing (m, `, 0) in place of Weaver’s (m, `). Such a tuple
corresponds to a family of congruences of the form (5.1) with coefficients

A=m`4−|ε| (5.2)

B =
m`3−|ε|α+ 1

24
+m`3−|ε|δ, (5.3)

where α is the unique solution of m`3−|ε|α≡−1 mod 24 with 1 6 α < 24, and where 0 6 δ < `
is any solution of {

24δ 6≡ −α mod ` if ε= 0
(24δ + α | `) = ε if ε=±1.

(5.4)

The free choice of δ gives `− 1 distinct congruences for a given tuple (m, `, ε) if ε= 0, and
(`− 1)/2 congruences if ε=±1.

Weaver’s test for congruence, described by [38, Theorems 7 and 8], essentially amounts to a
single evaluation of p(n) at a special point n. Namely, for given m, `, we compute the smallest
solutions of δm ≡ 24−1 mod m, rm ≡−m mod 24, and check whether p(mrm(`2 − 1)/24 + δm)
is congruent mod m to one of three values corresponding to the parameter ε ∈ {−1, 0, 1}. We
give a compact statement of this procedure as Algorithm 5. To find new congruences, we simply
perform a brute force search over a set of candidate primes `, calling Algorithm 5 repeatedly.

Algorithm 5 Weaver’s congruence test
Input: A pair of prime numbers 13 6m6 31 and `> 5, m 6= `

Output: (m, `, ε) defining a congruence, and Not-a-congruence otherwise

δm← 24−1 mod m {Reduced to 0 6 δm <m}
rm← (−m) mod 24 {Reduced to 0 6m< 24}
v← m− 3

2
x← p(δm) {We have x 6≡ 0 mod m}

y← p

(
m

(
rm(`2 − 1)

24

)
+ δm

)
f ← (3 | `) ((−1)vrm | `) {Jacobi symbols}
t← y + fx`v−1

if t≡ ω mod m where ω ∈ {−1, 0, 1} then

return (m, `, ω (3(−1)v | `))
else

return Not-a-congruence

end if
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5.1. Comparison of algorithms for vector computation

In addition to the HRR formula, the author has added code to FLINT for computing the vector
of values p(0), p(1), . . . , p(n) over Z and Z/mZ. The code is straightforward, simply calling the
default FLINT routines for power series inversion over the respective coefficient rings, which
in both cases invokes Newton iteration and FFT multiplication via Kronecker segmentation.

A timing comparison between the various methods for vector computation is shown in
Table 3. The power series method is clearly the best choice for computing all values up to
n modulo a fixed prime, having a complexity of O(n1+o(1)). For computing the full integer
values, the power series and HRR methods both have complexity O(n3/2+o(1)), with the power
series method expectedly winning.

Ignoring logarithmic factors, we can expect the HRR formula to be better than the power
series for multi-evaluation of p(n) up to some bound n when n/c values are needed. The factor
c≈ 10 in the FLINT implementation is a remarkable improvement over c≈ 1000 attainable
with previous implementations of the partition function. For evaluation mod m, the HRR
formula is competitive when O(n1/2) values are needed; in this case, the constant is highly
sensitive to m.

For the sparse subset of O(n1/2) terms searched with Weaver’s algorithm, the HRR formula
has the same complexity as the modular power series method, but as seen in Table 3 runs more
than an order of magnitude faster. On top of this, it has the advantage of parallelizing trivially,
being resumable from any point, and requiring very little memory (the power series evaluation
mod m= 13 up to n= 109 required over 40 GB memory, compared to a few megabytes with
the HRR formula). Euler’s method is, of course, also resumable from an arbitrary point, but
this requires computing and storing all previous values.

We mention that the authors of [7] use a parallel version of the recursive Euler method.
This is not as efficient as power series inversion, but allows the computation to be split across
multiple processors more easily.

5.2. Results

Weaver gives 167 tuples, or 76 065 congruences, containing all ` up to approximately 1000–3000
(depending on m). This table was generated by computing all values of p(n) with n < 7.5× 106

using the recursive version of Euler’s pentagonal theorem. Computing Weaver’s table from
scratch with FLINT, evaluating only the necessary n, takes just a few seconds. We are also
able to numerically verify instances of all entries in Weaver’s table for small k.

As a more substantial exercise, we extend Weaver’s table by determining all ` up to 106 for
each prime m. Statistics are listed in Table 4. The computation was performed by assigning
subsets of the search space to separate processes, running on between 40 and 48 active cores
for a period of four days, evaluating p(n) at 6(π(106)− 3) = 470 970 distinct n ranging up to
2× 1013.

Table 3. Comparison of time needed to compute multiple values of p(n) up to the given bound,
using power series inversion and the HRR formula. The rightmost column gives the time when only

computing the subset of terms that are searched with Weaver’s algorithm in the m = 13 case.

n Series (Z/13Z) Series (Z) HRR (all) HRR (sparse)

104 0.01 s 0.1 s 1.4 s 0.001 s
105 0.13 s 4.1 s 41 s 0.008 s
106 1.4 s 183 s 1430 s 0.08 s
107 14 s 0.7 s
108 173 s 8 s
109 2507 s 85 s
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We find a total of 70 359 tuples, corresponding to slightly more than 2.2 × 1010

new congruences. To pick an arbitrary, concrete example, one ‘small’ new congruence is
(13, 3797,−1) with δ = 2588, giving

p(711647853449k + 485138482133)≡ 0 mod 13

which we easily evaluate for all k 6 100, providing a sanity check on the identity as well as the
partition function implementation. As a larger example, (29, 999 959, 0) with δ = 999 958 gives

p(28995244292486005245947069k + 28995221336976431135321047)≡ 0 mod 29

which, despite our efforts, presently is out of reach for direct evaluation.
Complete tables of (`, ε) for each m are available at:

http://www.risc.jku.at/people/fjohanss/partitions/
http://sage.math.washington.edu/home/fredrik/partitions/.

6. Discussion

Two obvious improvements to our implementation would be to develop a rigorous, and perhaps
faster, version of Algorithm 3 for computing cos(pπ/q) to high precision, and to develop fast
multithreaded implementations of transcendental functions to allow computing p(n) for much
larger n. Curiously, a particularly simple AGM-type iteration is known for exp(π) (see [3]), and
it is tempting to speculate whether a similar algorithm can be constructed for exp(π

√
24n− 1),

allowing faster evaluation of the first term.
Some performance could also be gained with faster low-precision transcendental functions

(up to a few thousand bits) and by using a better bound than (1.8) for the truncation error.
The algorithms described in this paper can be adapted to evaluation of other HRR-type

series, such as the number of partitions into distinct parts

Q(n) =
π2
√

2
24

∞∑
k=1

A2k−1(n)
(1− 2k)2 0F1

(
2,

(n+ 1
24 )π2

12(1− 2k)2

)
. (6.1)

Using asymptotically fast methods for numerical evaluation of hypergeometric functions, it
should be possible to retain quasi-optimality.

Finally, it remains an open problem whether there is a fast way to compute the isolated
value p(n) using purely algebraic methods. We mention the interesting recent work by Bruinier
and Ono [6], which perhaps could lead to such an algorithm.
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Table 4. The number of tuples of the given type with ` < 106, the total number of congruences
defined by these tuples, the total CPU time, and the approximate bound up to which p(n) was

evaluated.

m (m, `, 0) (m, `,+1) (m, `, −1) Congruences CPU (h) Max n

13 6 189 6 000 6 132 5 857 728 831 448 5.9 × 1012

17 4 611 4 611 4 615 4 443 031 844 391 4.9 × 1012

19 4 114 4 153 4 152 3 966 125 921 370 3.9 × 1012

23 3 354 3 342 3 461 3 241 703 585 125 9.5 × 1011

29 2 680 2 777 2 734 2 629 279 740 1 155 2.2 × 1013

31 2 428 2 484 2 522 2 336 738 093 972 2.1 × 1013

All 23 376 23 367 23 616 22 474 608 014 3 461
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for pointing out that Erdős’ theorem about quadratic nonresidues gives a rigorous complexity
bound without assuming the Extended Riemann Hypothesis.

Finally, William Hart gave valuable feedback on various issues, and generously provided
access to the computer hardware used for the large-scale computations reported in this paper.
The hardware was funded by Hart’s EPSRC Grant EP/G004870/1 (Algorithms in Algebraic
Number Theory) and hosted at the University of Warwick.
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