J. Austral. Math. Soc. Ser. B 27 (1985), 238-244

STRONG PSEUDO-CONVEXITY AND SYMMETRIC
DUALITY IN NONLINEAR PROGRAMMING

M. S. MISHRA, S. NANDA AND D. ACHARYA!

(Received 15 November 1983; revised 25 July 1984)

Abstract

In this note, the weak duality theorem of symmetric duality in nonlinear programming
and some related results are established under weaker (strongly Pseudo-convex/strongly
Pseudo-concave) assumptions. These results were obtained by Bazaraa and Goode [1]
under (stronger) convex/concave assumptions on the function.

1. Infroduction

We use the following notation and terminology throughout the paper. Let §/(x, y)
be a real-valued twice-differentiable function, defined on an open set in R"*™
containing C; X C,, where C; and C, are closed convex cones with non-empty
interiors in R" and R™ respectively. Let C§ be the polar of C,, that is

C¥ = { z - x'z < 0 for each x € C, where x‘ represents the transpose of x } .
(1)
C7 is defined similarly. v,y (x,, y,) denotes the gradient vector of ¢ with respect

to x at the point (x¢, ¥p), V,¥(X, ¥o) is defined similarly. v, (x,, y,) denotes
the matrix (Hessian) of second partial derivative with respect to x evaluated at

(X0> Y0)- Ve, ¥(x05 Y0)» V. ¥(xg, o) and V,,¥(xg, ¥o) are defined similarly.

DEFINITION 1. If f is a scalar-valued differentiable function on a convex set
I' € R", and K(x, y) is an arbitrary positive scalar function satisfying

K(x, »){f(») - f(x)} = (» — x)'0f(x), ()
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then we say that f is strongly Pseudo-convex with respect to K(x, y) (see [2], [5]). If
K(x, y) = 1 then (2) reduces to the definition of convex function.

DEFINITION 2. If f is a scalar-valued differentiable function on a convex set
I' € R™ and K(x, y) is an arbitrary positive scalar function satisfying

K(x, ){F(») = f(x)} < (y = x)'9f(x), (3)
then we say that fis strongly Pseudo-concave with respect to K(x, y). If K(x, y) =1
then (3) reduces to the definition of concave function.

It may be noted that strong Pseudo-convexity is weaker than convexity and
stronger than Pseudo-convexity.
It may be remarked here that strong Pseudo-convexity is not a modification of

the usual pseudoconvexity, but rather is a special case of invex, as mentioned by
Mond {7]. Thus

f(») = f(x) = [h(x, »)]'Vf(x),
with h(x, y) = (y — x)/K(x, y), shows the invex property.

We say that i is strongly Pseudo-convex /strongly Pseudo-concave on C; X C, if
and only if Y (-, y) is strongly Pseudo-convex with respect to a positive scalar
function K, on C, for each given y € C, and J(x, -) is strongly Pseudo-concave
with respect to a positive scalar function K, on C, for each given x € C,.

Let us consider a pair of nonlinear programs, as follows.

P, (Primal): Minimize {f(x, y) =¥ (x, y) = y'v,¥(x, »)}

subject to (x, y) € C, X C;, v,¥(x, y) € C¥.
Dy (Dual):  Maximize {g(x,y)=v¥(x,y)-x'v4(x,y)}

subject to (x, y) € C, X C,, -V ¥(x, y) € C}.

For notational convenience, the sets of feasible solutions of P, and D, are
denoted by P and D respectively, that is

P={(x,y) € C X C: v ¥(x,y) €t}
and
D= {(X, )’) € C‘1 X CZ: —Vx‘ll(xa y) € Cf}

2. Main results

THEOREM 1. Let ) be strongly Pseudo-convex /strongly Pseudo-concave on C; X C,
with respect to scalar-valued functions K, > 1 and K, > 1 respectively. Then

Inf f(x,y)> Sup g(x,y).
(x,y)EP (x,y)eD
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PrROOEF. Let (x, y) € P and (u, v) € D. It is sufficient to prove that f(x, y) >
g(u,v).

Since ¢ is strongly Pseudo-convex/strongly Pseudo-concave on C; X C, with
respect to the scalar-valued functions K| > 1 and K, > 1 respectively, the follow-
ing two inequalities hold.

Kl(ui x){lll('y’ "’) I’ ‘) = (X - u)‘vu.‘fl’(z"r U)
or
(x —u)’
#00,0) = 9(,0) > FEL T (w0), @
Ky (., 0){¥(x,0) =¥ (x, »)} < (0 = »)'v,9(x, »)
or
R T B e A TC 0 NG
By multiplying by —1 in (5) and adding it to (4), we get
(x =~ w)'vb(u,v) _=9)'ve(x )
05 y(u,0) + Sy (x,y) = T RS (6)
_ x' Vb (4,0)  w' v, (u, v)
TV R ) T Ka(wx)
eyt v, ¥ (x, y) L v,¥(x, y)

Ky(y,v) K,(y,v)

Since v € C; and -V, Y (u,v)€ C¥ = —u'V Y(u,v) < 0, by the definition of
polar, we have

-u'v y(u,v)

K (u, x)
Similarly y € C, and v y(x, y) € C} = 'V, ¥(x, y) < 0. So we have
y'v(x, y)

> —u'vy(u,v) asK;(u,x)>1. (7)

Kz(y’ U) >y’Vy\P(X, )’) aus()’, U)> 1, (8)
x’IZ—u(dt/z(,“x,)_U) >0 as-x'v¥(u,v) <0 and K (u,x)>1, ©)

20 asv'v y(x,y)<0 and K,(y,v)>1. 10
Kz(y,l)) y‘p( y) Z(y ) ( )
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Using (7), (8), (9) and (10) in (6), we get

0> ¢ (u,0) — u'v(u,0) = {¥(x, ») = y'v,¥(x, »)}

= g(u,u) _f(xa y) =:.f(-x7 )’) 2 g(u! U).
This completes the proof.

Theorem 1 was motivated by the works of Bazaraa and Goode [1] and Dantzig
et al. [4], who proved the same result under stronger assumptions on the cone and
the function. In [4], the cone was taken to be non-negative orthant and the
function convex/concave. Bazaraa and Goode [1] generalized the results of [4] to
arbitrary cones. In Theorem 1 we assume the function to be strongly Pseudo-con-
vex /strongly Pseudo-concave, which is weaker than convex /concave.

It may be noted here that the result does not hold only under Pseudo-convex-
ity /Pseudo-concavity assumptions, and this follows from the following example:
Let n=m=1 Let C;={x: x>0}, C,={y: y=>0}. Let y(x,y)=
exp(x — y2). Then it is easy to check that y is Pseudo-convex /Pseudo-concave on
C, X C,. But in this case

£(0,2) =9¢~% < g(0,0) = 1,

which contradicts Theorem 1. However, the conclusion of Theorem 1 holds under
Pseudo-convexity /Pseudo-concavity, provided we make use of an additional
feasibility assumption. This has been discussed in [6].

The following results are also true under weaker assumptions on the function.
Since the proofs use ideas similar to those used in [1], we state the theorems
without proofs.

THEOREM 2. Suppose that (x,, y,) solves Py, and suppose that V¥ (X0, Yo) is
negative definite. Then (x,, y,) € D and f(xq, ¥y) = 8(xq, ¥p). Further, if ¢ is
strongly Pseudo-convex /strongly Pseudo-concave with respect to scalar-valued func-
tions K, > 1 and K, > 1, then (x, y,) is an optimal solution of problem D,

THEOREM 3. Suppose that (xy, y,) solves Dy, and v, y(xq, y,) is positive

definite. Then (x, o) € P and f(xg, o) = 8(X0, o) = W(xo. Yo). Further, if ¥ is
strongly Pseudo-convex /strongly Pseudo-concave with respect to scalar-valued func-
tions K|, > 1 and K, > 1, then (x, y,) is an optimal solution of problem P,,.
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3. Special case

We now consider a special case of the symmetric dual programs, namely the
case when the vector y and the corresponding cone C, are deleted from the
formulation. Denoting y/(x, y) by f(x) and C, by C, these two problems arise as
special cases of Py and D,,.

P (Primal): Minimize f{x) subjeciio x € C.

D, (Dual):  Maximize f(x) — x*vf(x) subject to x € C and ~vf(x) € C*.
Theorem 1 holds, that is x € C, u € C with —-vf(u) € C* when f is strongly

Pseudo-convex with respect to a scalar function K > 1. To prove this, observe
that fis strongly Pseudo-convex with respect to scalar function K > 1. So we have

K(u, x){f(x) = f(u)} > (x = u)'vf(u) = x'Vf(u) - u'vf(u)

> -u'vf(u) asx'vf(u) >0,
that is

-u'vf(u)
K(u, x)
that is f(x) > f(u) — u’vf(u), and this completes the proof.
It may be noted that since y is deleted from the problem, a direct application of
Theorem 2 does not hold. However, the theorem is indeed true, that is, if x, solves
P, then it solves D,. In order to show this we need the following Lemma.

f(x)—f(u) > > -u'vf(u) asK(u,x)>1,

LeEMMA. Consider the problem: minimize f(x) subject to x € C, where C is a
closed convex cone. If x solves the problem, then - f(x) € C* and x{Vf(xy) = 0.
If f is strongly Pseudo-convex with respect to an arbitrary positive scalar function K,
then conditions are sufficient for x to solve the problem.

PrOOF. The first part of the proof is same as that of Lemma ({1}, page 7) where
no strong Pseudo-convexity is required. The second part of the proof is as follows.
If x, solves the problem then ~-vf(x,) € C* and x{Vf(x,) = 0. Now assume
that f is strongly Pseudo-convex with respect to an arbitrary positive scalar
function X, and x, € C with —vf(x,) € C* and x{Vf(x,) = 0. Then, for each
x € C, we have
K(xq, x){ f(x) = f(x0)} > (x = x0) W[ (x0) = x"Vf(xo) = x49/(x,)
=x'Uf(xy) asxiVf(x,)=0
>0 asxe C and -Vf(x,) € C*
=f(x)-f(x0)>0 askK>0
= f(x) > f(x,).

This completes the proof.
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It may be noted that if x, is an optimal solution of the primal problem P, then
-Vf(x,) € C*, x, is indeed a feasible solution of the dual D,. In other words the
optimality of P, ensures the feasibility of D,. The following theorem gives a
parallel of Theorem 2.

THEOREM 4. Suppose that f is strongly Pseudo-convex with respect to a scalar
function K > 1, and x, solves the problem P,. Then x solves the problem D,.

PROOF. Let x be a feasible solution of D,, that is x € C and —-vf(x) € C*.
Since x solves the problem P, then by the above lemma -vf(x,) € C* and
x§Vf(xq) = 0. Since f is strongly Pseudo-convex with respect to a scalar function
K > 1, we have

K(x, x0){ f(x0) = f(x)} > (xo = x)'9f(x) = x49f(x) — x'Vf(x)
> -x'vf(x) asx{vf(x)=>1,

that is

“x'vf(u) —x'vf(x),

f(x0) = f(x) = K(x.x;)

as —x'vf(x) < 0 and K(x, x;) > 1, that is
f(x0) = f(x) — x*9f(x),
that is

f(x0) = x69f(x0) > f(x) = x'vf(x),

as xjvf(x) = 0.
This shows that x solves D,. The converse of this theorem can be obtained as a
special case of Theorem 3, as long as vV, f(x,) is positive definite.
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