

Compositio Mathematica **124:** 11–16, 2000. © 2000 Kluwer Academic Publishers. Printed in the Netherlands.

Homogeneity of Certain Invariant Distributions on the Lie Algebra of p-adic GL_n

STEPHEN DEBACKER

Department of Mathematics, The University of Chicago, Chicago, IL 60637, U.S.A. e-mail: debacker@math.uchicago.edu

(Received: 30 September 1998; accepted in final form: 15 November 1999)

Abstract. Let *F* be a non-Archimedean local field with ring of integers *R* and prime ideal \wp . Suppose *T* is a $GL_n(F)$ -invariant distribution on $\mathfrak{g} = M_n(F)$, the Lie algebra of $GL_n(F)$. If *T* has support in the set of topologically nilpotent elements, then the restriction of *T* to the set of functions which are compactly supported and invariant under $M_n(\wp)$ may be expressed as a linear combination of nilpotent orbital integrals restricted to the same set of functions.

Mathematics Subject Classifications (2000). Primary 22E50, 22E35; Secondary 20G05.

Key words. distributions, homogeneity, Lie algebra, p-adic group.

1. Introduction

Let *F* be a non-Archimedean local field with ring of integers *R* and prime ideal $\wp = \varpi R$. Suppose that $R/\wp \cong \mathbb{F}_q$, the finite field with *q* elements. Let $M_n(F)$ denote the set of $n \times n$ matrices with entries in *F*. We let *G* be $GL_n(F)$ realized as the set of elements in $M_n(F)$ having nonzero determinant. We denote by g the Lie algebra of *G*, and we will take g to be $M_n(F)$ with the usual bracket operation.

If ω is a compact set in g, then we will denote by $J(\omega)$ the set of *G*-invariant distributions on g with support in the closure of ${}^{G}\omega = \{\operatorname{Ad}(g)X \mid g \in G, X \in \omega\}$. If *T* is a distribution in $J(\omega)$ and \mathcal{L} is a lattice in g, then $j_{\mathcal{L}}T$ will denote the restriction of *T* to $C_{c}(g/\mathcal{L})$, the set of complex-valued, compactly supported, \mathcal{L} -invariant functions on g. It was first conjectured by Howe [5] that

$$\dim j_{\mathcal{L}} J(\omega) < \infty. \tag{1}$$

This was proved in [4] and extended to arbitrary reductive groups defined over F of characteristic zero in [3, Theorem 14.1] (see also [12]).

In [10] Waldspurger proves a more precise version of (1) for many groups with a few restrictions on *F*. Let $\mathfrak{k}_0 = \mathfrak{M}_n(R)$ and let $\mathfrak{b}_0 = \{X \in \mathfrak{k}_0 \mid X_{ij} \in \wp \text{ if } i > j\}$. Finally, let \mathcal{N} denote the set of nilpotent elements in g and let $J(\mathcal{N})$ denote the set of *G*-invariant distributions on g with support in \mathcal{N} . As a consequence of Waldspurger's remarkable work in [10], we have

$$j_{b_0}J(t_0) = j_{b_0}J(\mathcal{N}).$$
 (2)

In this paper, we prove a variation of Equation (2). Namely, if $\mathfrak{t}_m = \varpi^m \cdot \mathfrak{t}_0$ for an integer *m* and $\mathfrak{b}_1 = \{X \in \mathfrak{t}_0 \mid X_{ij} \in \wp \text{ if } i \ge j\}$, then

THEOREM 1. $j_{\mathfrak{f}_1} J(\mathfrak{b}_1) = j_{\mathfrak{f}_1} J(\mathcal{N}).$

Both Equation (2) and Theorem 1, when coupled with work of Murnaghan [8] (see also [2, Theorem 3.3.2] and [1]), verify, for certain irreducible admissible representations of G, a conjecture of Hales, Moy, and Prasad [7] about where the Harish-Chandra–Howe local expansion ought to hold. In fact, in [9] Waldspurger is able to use the results of [10] to establish the Hales–Moy–Prasad conjecture for all integral depth representations of a large class of groups.

2. A Homogeneity Result

We will need some additional notation. Let $P_{\emptyset} \leq G$ denote the standard Borel subgroup, i.e., the set of all invertible upper triangular matrices. Let N_{\emptyset} denote the unipotent radical of P_{\emptyset} and let n_{\emptyset} denote its Lie algebra. Finally, A_{\emptyset} will denote the maximal split torus in G consisting of diagonal matrices. So, $P_{\emptyset} = A_{\emptyset}N_{\emptyset}$.

Suppose $1 \le k < n$. Let P_k be the proper parabolic subgroup of G containing P_{\emptyset} and having a Levi decomposition $M_k N_k$ where $M_k \cong \operatorname{GL}_k(F) \times F^{\times} \times F^{\times} \times \cdots \times F^{\times}$ is embedded in G in the obvious way. Let $\mathfrak{p}_k = \mathfrak{m}_k + \mathfrak{n}_k$ be the corresponding Lie algebras.

Let $K_0 = \mathfrak{f}_0^{\times}$ denote the standard maximal compact open subgroup of G. If $X \in \mathfrak{g}$ and \mathcal{L} is a lattice in \mathfrak{g} , then let $[X + \mathcal{L}]$ denote the characteristic function of the coset $X + \mathcal{L}$. Let $\mathcal{O}(0)$ denote the set of nilpotent orbits in \mathfrak{g} and $|\mathcal{O}(0)|$ its cardinality. Finally, for $g \in G$ and $X \in \mathfrak{g}$, let ${}^g X$ denote $\mathrm{Ad}(g)X$. We begin with a variation of [6, Lemma 2.4].

LEMMA 2. ${}^{G}\mathfrak{b}_{1} \subset \mathfrak{t}_{1} + \mathcal{N}$.

Proof. This follows from the affine Bruhat decomposition of G with respect to the standard Iwahori subgroup. It is also an easy consequence of [2, Lemma 1.6.1] (see also [2, Corollary 4.3.5]) which uses the formalism of Moy and Prasad [7]. \Box

LEMMA 3. dim $(J(\mathfrak{b}_1)|_{C(\mathfrak{f}_0/\mathfrak{f}_1)}) \leq |\mathcal{O}(0)|.$

Proof. Fix $D \in J(\mathfrak{b}_1)$. It follows from Lemma 2 that $D|_{C(\mathfrak{t}_0/\mathfrak{t}_1)}$ is determined by its values on the functions $[n + \mathfrak{t}_1]$ with $n \in \mathcal{N} \cap \mathfrak{t}_0$. Of course, $D([n + \mathfrak{t}_1]) = D([^k n + \mathfrak{t}_1])$ for $n \in \mathcal{N} \cap \mathfrak{t}_0$ and $k \in K_0$. Therefore, the dimension of $J(\mathfrak{b}_1)|_{C(\mathfrak{t}_0/\mathfrak{t}_1)}$ is less than or equal to the number of nilpotent $\operatorname{GL}_n(\mathbb{F}_q)$ -orbits in $\operatorname{M}_n(\mathbb{F}_q)$. But the latter number is $|\mathcal{O}(0)|$.

LEMMA 4. Fix a distribution $D \in J(\mathfrak{b}_1)$, a negative integer j, and $X \in \mathcal{N} \cap (\mathfrak{t}_j \setminus \mathfrak{t}_{j+1})$. If $D|_{C(\mathfrak{t}_{i+1}/\mathfrak{t}_1)} = 0$, then $D([X + \mathfrak{t}_1]) = 0$. Fix j, D, and X as in the statement of Lemma 4. Before we begin the proof of this lemma, we need some additional notation and a simple result.

If $W \in \mathfrak{t}_0$, then \overline{W} denotes the image of W in $M_n(\mathbb{F}_q) = \mathfrak{t}_0/\mathfrak{t}_1$. If $W \in \mathfrak{t}_j$, then we define $\overline{\operatorname{rank}}(W) = \operatorname{rank}_{\mathbb{F}_q}(\overline{\varpi^{-j}W}|_{\mathbb{F}_q^n})$. Let $m = \overline{\operatorname{rank}}(X)$. Note that, by hypothesis, 0 < m < n. An element $Y \in \mathfrak{g}$ will be called *good* if

- (1) $Y \in \mathfrak{k}_i \cap \mathcal{N}, \ \overline{\varpi^{-j} Y} \in \overline{\mathfrak{n}_{\emptyset} \cap \mathfrak{k}_0}, \ \text{and} \ \overline{\mathrm{rank}}(Y) = m,$
- (2) there exists a set $S_Y \subset \{2, 3, \dots, n\}$ with cardinality *m* such that if $k \notin S_Y$, then the *k*th column of $\overline{\varpi^{-j}Y}$ is zero, and
- (3) if $\delta(Y)$ denotes the greatest element of the set S_Y , then there exists $k < \delta(Y)$ such that $Y \in \mathfrak{p}_k + \mathfrak{k}_1$.

LEMMA 5. Suppose that $Y \in \mathfrak{t}_j \cap \mathcal{N}$, $\overline{\varpi^{-j}Y} \in \overline{\mathfrak{u}_{\emptyset} \cap \mathfrak{t}_0}$, and $\overline{\operatorname{rank}}(Y) = m$. Let d be the greatest integer such that the dth row of $\overline{\varpi^{-j}Y}$ is nonzero. If $Y \in \mathfrak{p}_d + \mathfrak{t}_1$, then there exists a $u \in K_0 \cap N_{\emptyset}$ such that "Y is good and $\delta(^u Y) > d$.

Proof. For $\alpha \in R$ and s < t, we will let $e_{st}(\alpha) \in N_{\emptyset} \cap K_0$ denote the matrix

$$(e_{st}(\alpha))_{cd} = \begin{cases} 1 & \text{if } c = d, \\ \alpha & \text{if } c = s \text{ and } d = t, \\ 0 & \text{otherwise.} \end{cases}$$

Note that conjugating a matrix in g by $e_{st}(\alpha)$

- (1) adds α times the *t*th row to the *s*th row, and
- (2) adds $-\alpha$ times the *s*th column to the *t*th column.

Since $\overline{\operatorname{rank}}(Y) = m$, the linear span of the columns of $\overline{\varpi^{-j}Y}$ has dimension m. Therefore, by conjugating Y by elements of the form $e_{st}(\alpha)$ with s < t and $\alpha \in R$, we can obtain an element with the desired properties.

Proof of Lemma 4. We begin with a warning about notation. Since \mathfrak{t}_1 is K_0 -invariant, we have $D([X + \mathfrak{t}_1]) = D([^kX + \mathfrak{t}_1])$ for all $k \in K_0$. Therefore, we will often ignore \mathfrak{t}_1 when conjugating by elements of K_0 and deal only with X.

Since G has an Iwasawa decomposition $(G = P_{\emptyset}K_0)$, we may assume that $X \in \mathfrak{n}_{\emptyset}$. Since $X \in \mathfrak{n}_{\emptyset}$, we may assume that X is good from Lemma 5. Note that in all that follows, we use only the fact that X is good.

The proof is by induction on $m(= \operatorname{rank}(X))$. Here is the plan. We will produce a finite collection of $X_i \in \mathcal{N} \cap \mathfrak{k}_i$ such that

$$D([X + \mathfrak{t}_1]) = \sum_i c_i \cdot D([X_i + \mathfrak{t}_1])$$

for constants $c_i \in \mathbb{Q}$ and either

(1) $\overline{\operatorname{rank}}(X_i) < m$ for all *i* or

(2) X_i is good and $\delta(X_i) > \delta(X)$ for all *i*.

At the end of this proof, it will be clear that if $\delta(X) = n$, then the first outcome must occur. Therefore, repeating the steps below a finite number of times will produce a finite collection of $X_i \in \mathcal{N} \cap \mathfrak{k}_i$ and $c_i \in \mathbb{Q}$ such that

$$D([X + \mathfrak{k}_1]) = \sum_i c_i \cdot D([X_i + \mathfrak{k}_1])$$

and $\overline{\operatorname{rank}}(X_i) < m$ for all *i*. The lemma follows.

Step I. We have that

$$\ker(\overline{\varpi^{-j}X}|_{\mathbb{F}_q^n}) = \{(\xi_1, \xi_2, \dots, \xi_n) \in \mathbb{F}_q^n \mid \xi_\beta = 0 \text{ if } \beta \in S_X\}.$$

Let L be the lift of this kernel in \mathbb{R}^n , that is,

$$L = \{ (\alpha_1, \alpha_2, \ldots, \alpha_n) \in \mathbb{R}^n | \alpha_\beta \in \wp \text{ if } \beta \in S_X \}.$$

Let

$$\mathfrak{C} = \{ Z \in \mathfrak{t}_0 \mid Z \cdot L \subset \varpi \cdot R^n = (\varpi \cdot R)^n \text{ and } Z \cdot R^n \subset L \}.$$

If $c \in \mathfrak{C}$, then

 $\mathfrak{c}_{rs} \in \begin{cases} R & \text{if } r \notin S_X \text{ and } s \in S_X, \text{ and} \\ \wp & \text{otherwise.} \end{cases}$

From [10, Lemme II.4.2] we have the following lemma.

LEMMA 6. Choose $\mathfrak{c} \in \mathfrak{C}$. There exists $Z \in \varpi^{-j} \mathfrak{k}_0$ such that

 ${}^{(1+Z)}X \equiv X + \mathfrak{c} \mod \mathfrak{k}_1.$

Proof (Waldspurger). Fix $c \in \mathfrak{C}$. Let $X' = \overline{\varpi^{-j}X}$ and $c' = \overline{c}$. Let $r_0 = \ker(X')$. Then $c' \cdot r_0 = \{0\}$ and $c' \cdot \mathbb{F}_q^n \subset r_0$. Therefore, there exists a $Z' \in M_n(\mathbb{F}_q)$ such that $c' = Z' \cdot X'$ and im $(Z') = \operatorname{im}(c')$. Choose $Z \in \mathfrak{t}_{-j}$ so that $Z' = \overline{\varpi^j Z}$. The lemma follows.

From this lemma it follows that

 $D([X + \mathfrak{k}_1]) = \operatorname{const} \cdot D([X + \mathfrak{C}]).$

Step II. Let $a \in G$ be the diagonal matrix

$$a_{rs} = \begin{cases} 1 & \text{if } r = s \notin S_X, \\ \varpi^{-1} & \text{if } r = s \in S_X, \text{and} \\ 0 & \text{otherwise.} \end{cases}$$

Then we write ${}^{a}(X + \mathfrak{C})$ as a finite disjoint union $\bigcup_{\alpha} (X' + \alpha + \mathfrak{t}_{1})$, where $X' \in \mathfrak{t}_{i}$ with

$$X'_{cd} = \begin{cases} \varpi X_{cd} & \text{if } c \notin S_X \text{ and } d \in S_X, \\ \varpi^{-1} X_{cd} & \text{if } c \in S_X \text{ and } d \notin S_X, \\ X_{cd} & \text{otherwise,} \end{cases}$$

and $\alpha \in \mathfrak{f}_0$ with $\alpha_{cd} \in \wp$ unless $c \in S_X$ and $d \notin S_X$.

We now have

$$D([X + \mathfrak{t}_1]) = \operatorname{const} \cdot D([X + \mathfrak{C}])$$

= const \cdot \sum_\alpha D([X' + \alpha + \tau_1])

where the sum is over those α as above such that $X' + \alpha \in \mathfrak{t}_1 + \mathcal{N}$ (because the support of *D* is contained in $\mathfrak{t}_1 + \mathcal{N}$). If no such α exist, then $D([X + \mathfrak{t}_1]) = 0$.

Step III. Note that $\operatorname{rank}(X') = \operatorname{rank}(X' + \alpha)$ and $\operatorname{rank}(X') \leq \operatorname{rank}(X) = m$ because $\overline{\varpi^{-j}X'}$ has at most *m* rows with nonzero entries. (If the *i*th row of $\overline{\varpi^{-j}X'}$ has nonzero entries, then $i \in S_X$.) If $\overline{\operatorname{rank}}(X') < m$, then we are done. If $\delta(X) = n$, then $\overline{\operatorname{rank}}(X') < m$ since the bottom row of $\overline{\varpi^{-j}X'}$ has no nonzero entries.

Otherwise, let us assume that $\overline{\operatorname{rank}}(X') = m$. This implies that $\delta(X) < n$. Fix an α as in step (II) for which $X' + \alpha \in \mathcal{N} + \mathfrak{k}_1$. Let $W = X' + \alpha$. Since $\overline{\operatorname{rank}}(X') = m$, the matrix $\overline{\varpi^{-j}W}$ has nonzero entries in the $\delta(X)$ th row. Since X was good, we have $W \in \mathfrak{p}_{\delta(X)} + \mathfrak{k}_1$ and $\overline{\varpi^{-j}W} \in \mathfrak{p}_{(\delta(X)-1)}(\mathbb{F}_q)$. Thus, since $\overline{\varpi^{-j}W}$ is nilpotent, there exists a $g \in M_{(\delta(X)-1)}(R)$ such that the element $\overline{\varpi^{-j}}(\operatorname{Ad}(g)W)$ of $\operatorname{M}_n(\mathbb{F}_q)$ lives in $\overline{\mathfrak{ng}} \cap \mathfrak{k}_0$ and has nonzero entries in its $\delta(X)$ th row. We will write W for gW , and since we are only concerned with W modulo \mathfrak{k}_1 , we will assume that $W \in \mathcal{N}$. We have

- (1) $W \in \mathfrak{k}_j \cap \mathcal{N}, \ \overline{\varpi^{-j}W} \in \overline{\mathfrak{n}_{\emptyset} \cap \mathfrak{k}_0}, \ \text{and} \ \overline{\operatorname{rank}}(W) = m,$
- (2) the $\delta(X)$ th row of $\overline{\varpi^{-j}W}$ is nonzero, and
- (3) $W \in \mathfrak{p}_{\delta(X)} + \mathfrak{k}_1$

From Lemma 5 there exists a $u \in K_0 \cap N_\emptyset$ such that ^{*u*}*W* is good and $\delta(^{u}W) > \delta(X)$.

Proof of Theorem 1. Lemmas 2 and 4 imply that

 $\dim(j_{\mathfrak{f}_1}J(\mathfrak{b}_1)) = \dim(J(\mathfrak{b}_1)|_{C(\mathfrak{f}_0/\mathfrak{f}_1)}).$

Since $j_{\mathfrak{f}_1}J(\mathcal{N}) \subset j_{\mathfrak{f}_1}J(\mathfrak{b}_1)$, the theorem follows from Lemma 3.

cartain arbit

We conclude with a corollary about Shalika germ expansions of certain orbital integrals. Similar results on G are extremely difficult to obtain (see [11]). We adopt the notation of [3, §8].

COROLLARY 7. For all $f \in C_c(g/\mathfrak{t}_1)$ and all regular, semisimple, topologically nilpotent elements H of g we have

$$\phi_f(H) = \sum_{\mathcal{O} \in \mathcal{O}(0)} \mu_{\mathcal{O}}(f) \cdot \Gamma_{\mathcal{O}}(H).$$

Proof. This follows from Theorem 1 and the proof of [3, Lemma 8.2].

L

Acknowledgement

This material first appeared in my dissertation. This paper has benefitted from discussions with Jeff Adler, Fiona Murnaghan, and Paul Sally, Jr. I thank Robert Kottwitz for his interest in my work. He also suggested several improvements to this proof; all of these were incorporated. I thank Jeff Adler, John Boller, and the referee for their comments on earlier versions of this paper.

References

- 1. Adler, J. and DeBacker, S.: Work in progress.
- 2. DeBacker, S.: On supercuspidal characters of GL_{ℓ} , ℓ a prime, PhD thesis, The University of Chicago, 1997.
- 3. Harish-Chandra (notes by DeBacker, S. and Sally, P. J. Jr.): Admissible Invariant Distributions on Reductive p-adic Groups, Univ. Lecture Ser. 16, Amer. Math. Soc., Providence, 1999.
- Howe, R.: The Fourier transform and germs of characters (case of Gl_n over a *p*-adic field), *Math. Ann.* 208 (1974), 305–322.
- Howe, R.: Two conjectures about reductive *p*-adic groups, *Harmonic Analysis on Homo-geneous Spaces*, Proc. Sympos. Pure Math. 26, Amer. Math. Soc., Providence, 1973, pp. 377–380.
- Howe, R.: Some qualitative results on the representation theory of Gl_n over a *p*-adic field, *Pacific J. Math.* 73(2) (1977), 479–538.
- 7. Moy, A. and Prasad, G.: Unrefined minimal *K*-types for *p*-adic groups, *Invent. Math.* **116** (1994), 393–408.
- 8. Murnaghan, F.: Private communication.
- Waldspurger, J.-L.: Homogénéité de certaines distributions sur les groupes p-adiques, Inst. Hautes Études Sci. Publ. Math. 81 (1995), 25–72.
- 10. Waldspurger, J.-L.: Quelques resultats de finitude concernant les distributions invariantes sur les algèbres de Lie *p*-adiques, Preprint.
- Waldspurger, J.-L.: Sur les germes de Shalika pour les groupes linéaires, *Math. Ann.* 284(2) (1989), 199–221.
- 12. Waldspurger, J.-L.: Une formule des trace locale pour les algèbres de Lie p-adiques, J. Reine Angew. Math. 465 (1995), 41–99.

16