
17 

Radiation 

The theoretical understanding of the emission of light from atoms is inseparably 
linked with the development of quantum mechanics - the first glimpse of the full 
answer unraveled by P. A.M. Dirac in February 1927. A minimal model for radi­
ation has to consist of at least one atom and the photons. Thus we fix an infinitely 
heavy nucleus at the origin, say, and describe the motion of a single electron by 
the spinless Pauli-Fierz Hamiltonian 

I . 2 
H = 2m (p- eArp(x)) + Vrpcoul(x) + Hf (17.1) 

with VrpcouJ(X) = -e2 J d3xld3xz<p(xJ)<p(xz)(4nlx + XJ- xzl)- 1, the smeared 
Coulomb potential. Besides radiation, (I7.I) describes a multitude of physical pro­
cesses of interest. If the electron is free, i.e. far away from the nucleus, photons 
scatter off the electron (Compton effect). As the electron approaches the nucleus it 
will be scattered under the emission of bremsstrahlung (Rutherford scattering). In 
contrast, in this chapter we are interested in processes where the electron remains 
tightly bound to the nucleus. Of course, these two worlds are not strictly separated. 
The electron might be captured by the nucleus at the expense of radiated energy. 
Conversely, the atom may become ionized by hitting it with sufficiently energetic 
radiation (photoelectric effect). Even in the realm of a bound electron, several 
processes should be distinguished. The most basic one is spontaneous emission, 
through which the atom in an excited state loses energy and ends up in the radi­
ationless ground state. A photon may be scattered by the atom leaving the atom 
behind in either its ground state (elastic Rayleigh scattering) or in an excited state 
(inelastic Rayleigh scattering) which is then followed by spontaneous emission. 
Both processes will be discussed in separate sections. 

Under usual circumstances the wavelength of emitted light is much larger than 
the size of an atom. In this case one can ignore the variation of the vector poten­
tial in (17 .I) and replace Arp (x) by Arp (0), the so-called dipole approximation. In 
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addition we want to restrict the electron Hilbert space to bound states only. Tak­
ing into account the first N of them results in an N -level system coupled to the 
radiation field. We point out that an enormous effort has been invested precisely 
to avoid such a mutilation of the Pauli-Pierz Hamiltonian (17 .I). Still, in the first 
round a simplified version will suffice. 

Radiation as discussed here has no classical counterpart. Of course, as ex­
plained, in the context of the Abraham model a charge loses energy through radia­
tion. Its analog would be an extension of the results given in the previous chapter. 
There one has to give up mph > 0. Then the spectral gap closes and the strict adia­
batic protection is lost. For example, (16.105) would have a dissipative correction 
at the next order associated with a gradual emission of photons. In contrast, for 
the radiation processes studied here the emission of photons occurs on the atomic 
scale. 

17.1 N-level system in the dipole approximation 

The dipole approximation reads 

I 
H = -(p- eArp(0))2 + V(x) + Hf. 

2m 
(17.2) 

If in addition we were to choose V to be harmonic, V (x) = ~mw6x2 , then 
(17.2) is a quadratic Hamiltonian, as can be seen, if on top of the Bose fields 
a(k, A.), a*(k, A.) one introduces the annihilation and creation operators b, b* for 
the particle; compare with section I3.7(i). The analysis of this model can be 
reduced to a Hamiltonian on the one-particle space CC3 EB (L2 (l~3 ) Q9 CC2), where 
CC3 corresponds to the b, b* degrees of freedom. While such an analysis is very 
instructive, we stick here to the more realistic Coulomb-type potential. We rewrite 
(17.2) as 

1 2 e e2 2 
H = 2m p + V (x) + Hf - m p · Arp (0) + 2m Arp (0) , (17.3) 

drop the Arp (0)2 term, and expand in the eigenbasis of 2~7 p 2 + V (x) up to the 
N-th eigenvalue, including multiplicity. This results in 

(17.4) 

Here Hat and Q = (QJ, Q2, Q3) are symmetric N x N matrices. In our repre­
sentation Hat is diagonal with nondegenerate smallest eigenvalue cJ and Q is 
proportional to the dipole moments 

(17.5) 

i, j =I, ... , N, where we used the facts that i[ 2~11 p2 + V(x), x] = ~p and 

https://doi.org/10.1017/9781009402286.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402286.018


17. 1 N -level system in the dipole approximation 249 

( 2~ p2 + V (x)) 1/f J = s J 1/f J counting eigenvalues and eigenfunctions including 
their multiplicity. We also introduced explicitly the dimensionless small coupling 
parameter A. If one follows the conventions of section 13.4, then A= a 312 . 

Note that in the functional integral representation of e-tH~o, HJc of (17.4), the 

effective action is quadratic with the interaction potential 

Wctip(t) = A2 I d3kl~f 2~ e-coltl, (17.6) 

which decays as t-2 for large t. Thus (17.4) is marginally infrared divergent. 
Generically HJc will lose its ground state at strong enough coupling, in contrast 
to the full Pauli-Pierz model, and (17.4) can be trusted only at small coupling. 

An alternative route to the N -level approximation is first to transform to the 

x · ElfJ (0) coupling through the unitary transformation 

(17.7) 

Then 

U*pU=p+eAifJ(O), U*xU=x, 

U*a(k, A)U = a(k, A)+ i(eJc(k) · x)ecp(k)/J2w(k) (17.8) 

and therefore 

u* HU = 2~ p2 + V(x) + (~e2 I d3klqJJ 2)x2 + Hf- ex 0 E<p(O). (17.9) 

As before, we expand in the eigenbasis of 2:11 p2 + V (x) up to the N-th eigenvalue. 
This results in the Hamiltonian 

(17.10) 

with the matrix of dipole moments QiJ = (o/i, xo/j), ElfJ = ElfJ(O), and A= -e. 
Since now the coupling is to ElfJ(O), the effective action (17.6) gains an extra factor 
of w2 and therefore has a decay as t-4 in accordance with the full model. 

For the remainder of the chapter, we take ( 17.1 0) as the starting point. The par­
ticular origin of Hat and Q is of no importance. We only record that they satisfy 

H:r_ =Hat. Q* = Q. Hat has the spectrum CJ(Hat) C JR. It consists of the eigen­
values labeled without multiplicity as El < E2 < · · · < EfV, N ::S N. The corre­
sponding spectral projections are denoted by P1, ... , P iV. Their degeneracies are 

tr[Pj] = m i with m1 = 1 and L_f=l m i = N. In particular one has the spectral 
representation 

N 

Hat= LEJPj. 
}=1 

(17.11) 
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17.2 The weak coupling theory 

We plan to study the emission of light from atoms. The atom is assumed to have 
already been prepared in an excited state and thus the initial state of the coupled 
system is of the form 1/f Q9 Q with the atomic wave function 1/f E rrf. To deter­
mine the radiated field one has to understand the long-time asymptotics of the 
solution e-iHt 1/f Q9 Q of the time-dependent Schrodinger equation. For small cou­
pling, which is well satisfied physically, the dynamics approximately decouples: 
the atom is governed by an autonomous reduced dynamics and the field evolves 
with the decaying atom as a source term. In this section we will first study the 
reduced dynamics of the atom in the weak coupling regime with our results to be 
supported through a nonperturbative resonance theory in section 17 .3. In a follow­
up we discuss the spectral characteristics of the emitted light. 

By definition, the reduced dynamics refers to the reduced state of the atom, 
which allows one to determine atomic observables such as the probability of being 
in the n-th level at time t. Although by assumption the initial state of the atom is 
pure, it will not remain so because of the interaction with the radiation field. Thus 
it will be more natural to work directly in the set of all density matrices. The initial 
state is then of the form p Q9 Po, with p the atomic density matrix, and Po, the 
projection onto Fock vacuum. The time evolution is given through 

(17.12) 

Here LAW = [HA, W] is the Liouvillean as acting on 7] (CN Q9 F), the trace class 
over eN Q9 F. To distinguish typographically, LA is written as a slanted symbol, 
like other operators, sometimes called superoperators, which act either on 7] or on 
B(CN Q9 F), the space of bounded operators on eN Q9 F. Clearly, states evolve 
into states, i.e. if W E ~ is positive and normalized, so is e -iL)J W. Sometimes, it 
is convenient to think of (17.12) as a Schri:idinger evolution in a Hilbert space. This 
can be done by adopting the space Tz(CN Q9 F) of Hilbert-Schmidt operators with 
inner product (AlB)= tr[A* B]. In this space the Liouvillean LA is a self-adjoint 
operator, which explains our sign convention in front of the commutator. A fur­
ther choice comes from regarding B(CN Q9 F) as the space dual to 7] (CN Q9 F) 

through the duality relation W r-+ tr[A W], W E 7] (CN Q9 F), A E B(CN Q9 F). 

Then the dual of LA is -[HA, ·],which generates the Heisenberg evolution of op­
erators. 

The reduced dynamics is defined through 

(17.13) 

where tr.r[·] denotes the partial trace over Fock space. ~A acts on B(CN). It is 
linear, preserves positivity and normalization. In fact, since it originates from a 
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Hamiltonian dynamics, the even stronger property of complete positivity is satis­
fied. In such generality, T~ is intractable. But scales become separated for small 
A into atomic oscillations of the uncoupled dynamics e-iHart and the weak radia­

tive damping of order A 2 ( = a 3 = I I 1373). When viewed on the dissipative scale 
the atomic oscillations are very rapid and effectively time-averaged. For small A 

memory effects are negligible and T~ becomes a dissipative semigroup, which is 
the autonomous dynamics we are looking for. 

To write a formal evolution equation for pA(t) one employs the Nakajima­
Zwanzig projection operator method. We define the Liouvilleans Lat = [Hat, ·] 
as acting on B(CN) = 7i (CN), Lf = [Hf, ·] as acting on 7i (F), and Lint= [Q · 
Erp, ·] as acting on 7i (CN@ F). For an arbitrary density matrix W on eN@ F 
the Nakajima-Zwanzig projection is 

Clearly P2 = P and 

Pe-iL1J p Q9 Po, = pA(t) Q9 Po,. 

Let W(t) = e-iL)J p@ Po,. Then 

d 
i-PW(t) = PLA W(t) = PLAPW(t) + PLA(l- P) W(t), 
dt 

d 
i-(1- P)W(t) = (1- P)LA W(t) = (1- P)LAPW(t) 
dt 

+ (1- P)LA(1- P) W(t). 

Substituting (17.17) back in (17.16) and using PLintP = 0, we obtain 

d A · A - p (t) = -ILatP (t) 
dt 

(17.14) 

(17.15) 

(17.16) 

(17.17) 

-A2 lot dstr.F[LintO- P)e-i(l-P)LA(l-P)(t-s)(I- P)LintPo,]pA(s), 

(17.18) 

which is an exact memory-type equation. 
As argued traditionally, the memory decays rapidly on the time scale of the 

variation of pA(t). For small A one may ignore the interaction and replace LA by 
Lat + Lf in the exponential. In this approximation for small A 

d . 2 
-p(t) = ( -ILat +A Ko)p(t) 
dt 

(17.19) 
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is obtained as reduced dynamics with 

Kop = - fooo dt trF[Linte-i(Lat+Lt)t LintPQ]p. (17.20) 

This argument misses the point that both pJc(t) and the memory kernel have 
oscillatory contributions from e-iHatt. In general, their products cannot be approx­
imated as in ( 17 .19), (17 .20). To subtract the oscillations from the memory kernel 
we rewrite (17.18) as an integral equation, 

pA(t) = e-iLatt p- A2fot dse-iLatU-s) 

X fo 8du trF[LintO- P)e-i(l-P)LA(l-P)(s-u)(1- P)LintPQ]pA(u). 

(17.21) 

After the change of variables v = s - u, one has 

PA (t) = e -iLatt p - A 2 lot du e -iLatCt-u) 

X { fot-u dv eiLatVtrF[LintO- P])e-i(l-P)LA(l-P)v (1- P)LintPQ]} pA(u). 

(17.22) 

Now in the memory kernel the fast oscillations are properly counterbalanced and 
to a good approximation pJc(t) is governed by 

where 

~p(t) = (-iLat + A.2 K)p(t), 
dt 

Kp = - fooo dt eiLatftrF[Linte-i(Lat+Lt)f LintPQ]p. 

We state our result as 

Theorem 17.1 (Weak coupling quantum master equation). Let 

e2 (Q, E<pae-iHtt E<pf3Q)F = haf3(t) = Daf3h(t), 

a, f3 = I, 2, 3. If 

(17.23) 

(17.24) 

(17.25) 

(17.26) 

(17.27) 
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for some 8 > 0, then 

lim sup llnp-e(-iLat+A2K)tPII=O. 
A.---+0 O<::t<::A. -2r 

(17.28) 

r is on the dissipative time scale. Thus in (17.28) a, possibly long, time interval 
on the dissipative time scale is fixed. Over that time span the true reduced dy­
namics is well approximated by a Markovian dynamics consisting of fast atomic 
oscillations, -iLat, and slow dissipation, K. 

The integrability condition (17.27) is seen to hold by transforming back to po­
sition space. Then 

J d3klcpfwe-iwt = J d3klcpfw(cos wt- i sinwt) 

=-a( J d3xd3x'd3ycp(x')lx- x'l-24n~8(1x- yl- t)cp(y) 

+ ial f d3 xd3ycp(x)-1-8(1x - yl - t)cp(y), (17.29) 
4nt 

which decays as fast as t-4 , since cp is localized. 
We still have to carry through properly the time-averaging, accounting for the 

fast oscillations of e -iLatt. We claim that, without further error, K can be replaced 
by its time average 

" 1 ~T . . K~p = lim - dteiLattKe-ILatt, 
T---+oo 2T -T 

(17.30) 

as can be seen from going to the slow time scale and considering the interaction 
representation 

eiA.-2LatTe(-iA.-2 Lat+K)r p = p +for du{eiA.-2 LatUKe-iA.-2 LatU} 

X eiA.-2 LatUe(-iA.-2 Lat+K)u p. (17.31) 

The term inside { } is rapidly oscillating and we are allowed to replace it by Kq. 
Theorem 17.1 remains valid when Kis replaced by Kq. 

In conclusion, we have arrived at the approximate reduced dynamics of the 
atom: 

(17.32) 

To understand the properties of this dynamics, the dissipative generator Kq must 
be worked out more concretely. It is time-averaged with respect to the Liouvil­
lean Lat = [Hat, ·] and thus depends on the spectrum of Lat. which is given by 
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{Ei - s j I i, j = 1, ... , N} = u (Lat). Accordingly we define 

fv 
Q(w) = I: (17.33) 

The degeneracy of Hat enters through the projections Pj whereas the degeneracy 
of the Liouvillean is reflected by the sum in (17.33). For instance, a harmonic os­

cillator has a nondegenerate Hamiltonian but a highly degenerate Liouvillean. The 
strength of the various transitions is determined by the one-sided Fourier transform 
of the field correlation (17.25). We decompose it into real and imaginary parts 

as 

dt e-uvth(t) = -r(w)- i~(w), 100 . 1 

0 2 
(17.34) 

which gives 

~r(w) = e
2 J d3kl~(k)l 2w(k)rr8(w(k) + w), 

2 3 
(17.35) 

~(w) = e
2 PV/d3kl~(k)l 2w(k) 1 , 

3 w(k) + w 
(17.36) 

PV denoting the principal value of the integral. Using this notation, after working 
out the oscillatory integrals in (17.30), one obtains 

3 

Kqp = L L {- i~(w)[Qa(w)Q~(w), p] 

where the w-sum runs over all eigenvalues of the Liouvillean Lat· 
The first term in (17.37) merely adds an extra term of order 'A 2 to the atomic 

Hamiltonian Hat· Thereby the eigenvalues s j are shifted and their degeneracy is 
possibly lifted. The second term represents the radiation damping. It is of Lind­

blad form which ensures that 7t = exp[(-i[Hat. ·] + 'A2 Kq)t] is completely pos­
itive and in particular preserves positivity. For the nonaveraged variant K such a 
property is in general not valid. 

The details ofthe damping mechanism depend on Hat. Q, and h. Since r(w) = 
0 for w ::::_ 0, only transitions to energetically lower levels are possible. Thus gener­
ically we expect that in the long-time limit the atom reaches its ground state, 

lim 7(p = P1 
t-+00 

(17.38) 
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independently of the initial state. Basically, there are two obstructions to (17.38). 
The analog of the classical Wiener condition (5.4) could be violated in the sense 
that l(.si- Ej) = 0 for some Ei < Ej. Even if we assume r(w) > 0 for w < 0, 
Hat and Q could be too commutative. For instance, in the extreme case [Hat, Q] = 

0, the damping vanishes and Kqp = -i~(O)[Q2 , p]. Under the Wiener condition 
a sufficient criterion for (17 .38) to hold is {Hat, Qa, a = I, 2, 3 }' = CCI, i.e. the 
commutant of {Hat, Qa, a = I, 2, 3} (all operators which commute with Hat and 
Q) consists only of multiples of the unit matrix. 

If the spectrum of Hat is nondegenerate, then the set of density matrices com­
muting with Hat is left invariant by "ft. We set "ftp = L~=l Pn(t)Pn, tr[Pn] = 1. 
The probabilities Pn (t) are governed by the Pauli master equation 

d N 
dtPn(t) = L (wmnPm(t)- WnmPn(t)), 

m=l 
(17.39) 

where 

3 

Wmn = L ['(En- Em)tr[Pm QaPn Qa] (17.40) 
a= I 

is the transition rate from level m to level n. Thus the coupling to the radiation field 
induces a Markov jump process on diagonal density matrices with transition rates 
given through Fermi's golden rule. The ground state is an absorbing state of the 
Markov chain. If every other state can be linked to the ground state by a sequence 
of jumps with nonzero rates, then limHoo Pl(t) = 1 and limHoo Pn(t) = 0 for 
n :=:: 2 exponentially fast. 

A much-studied variation is to immerse the atom in a black-body cavity at some 
temperature T. Based on rather general principles of statistical mechanics, Einstein 
came up with a phenomenological description of the atomic transitions in terms 
of his A, B -coefficients. Thereby he completely circumvented the yet nonexistent 
quantum statistical mechanics. Given such historical importance, we violate for a 
moment our principle of "zero temperature only", to provide a more fully fledged 
theory in chapter 18. Since we have already used density matrices, in the defi­
nition of the reduced dynamics we only have to replace Po, by the thermal state 
z-le-Hf/kBT. The physically correct procedure is to first enclose the radiation 
field in the cavity [ -1!, 1!] 3 , i.e. the k-integration is to be replaced by a k-sum over 
the momentum lattice ( (rr j 1!):23)3 , followed by the infinite-volume limit 1! ---+ oo. 
In the weak coupling approximation, as the only difference to the zero-temperature 
case, the time-correlation haf3 (t) for the field is to be computed from the thermal 
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average. Explicitly, with (- )kB T denoting thermal average, 

haf3(t) = e2(eiHft E<pae-iHft E<pf3hBT 

2 2 

= e2 L I d3kcp~eA.a(k) L I d3k'(fi~eA.'f3(k1) 
A.=l A.'=l 

i2 ((e-iw(k)ta(k, A.)- eiw(k)ta*(k, A.))(a(k', A.')- a*(k', A.')))kBT 

= DafJh(t), (17.41) 

h(t) = e: I d3kliPPw(k)(e-iw(k)t 

(17.42) 

The friction coefficient, rkBT, and the level shifts are still defined through (17.34). 
r kB T satisfies the condition of detailed balance as 

(17.43) 

At nonzero temperatures rkBT(w) > 0 for all w, except for accidental zeros, and 
the energy can flow either way between atom and thermal bath. If the atom 
is well coupled to the black -body radiation, in the sense that r kB T ( w) > 0 and 
{Hat, Qa, a = 1, 2, 3}' = C1, then theN -level system relaxes to the thermal state 
z-Ie-Hat!kBT in the long-time limit. This is most easily seen in case all Ej are 

nondegenerate. Then the off-diagonal elements of Tr p decay exponentially while 
the diagonal elements are still governed by the Pauli master equation (17.39), in 
which the transition rates now satisfy 

(17.44) 

as a result of the detailed balance (17.43). Under "good coupling" (17.44) ensures 
that the thermal state is the only invariant state for (17 .39) and therefore 

lim "ftp = z-le-HatfkBT. 
t--+00 

(17.45) 

As will be explained in chapter 18 the relaxation to thermal equilibrium can be 
established also for small, but fixed coupling strength and in fact should hold at 
arbitrary A.. 

We note that in (17 .41) there are two terms inside the big round bracket with the 
first one being temperature independent. This is the Einstein A-coefficient which 
regulates the spontaneous emission of a photon. The second term in (17.41) is 
the B-coefficient of stimulated emission and adsorption of a photon. It dominates 
for '*i - £ J I « kB T. From the point of view of the atom, there is no way to 
distinguish the two emission processes. 
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17.3 Resonances 

The virtue of the weak coupling theory consists in yielding a concise dynami­
cal scenario with level shifts and lifetimes computed in terms of the microscopic 
Hamiltonian. High-precision experiments, e.g. of the Lamb shift in the hydrogen 
atom, show small deviations from the prediction of the theory, which however 
should not be regarded as a failure of the weak coupling theory. Rather, it is a fail­
ure of the Pauli-Pierz model at relativistic energies. Barring such fine details the 
weak coupling theory is the standard tool in atomic physics and there seems to be 
little incentive to go beyond. Still, we have not yet developed a firm link with the 
Hamiltonian. Are there corrections to the predicted exponential decay? Can one, 
at least in principle, obtain systematic corrections of higher order in A? What is 
the long-time limit for small, but fixed A? To answer such questions one has to 
go beyond perturbation theory and simple resummations. At present there is only 
one sufficiently powerful technique available, which is complex dilation. We ex­
plain this method first for the standard example of the Friedrichs-Lee model. The 
extension to the Pauli-Pierz model requires rather complex technical machinery, 
certainly beyond the present scope. We will, however, use complex dilations to 
study the return to equilibrium at nonzero temperatures in chapter 18, which turns 
out to be much simpler since the spectrum is the full real line and is translated 
rather than rotated. 

We imagine a single energy level t: > 0, coupled to the continuum, which is 
labeled by x ::::_ 0, and should be thought of as energy. The Hilbert space of wave 
functions is then C EB L 2 (JR+, dx) and the Hamiltonian reads 

( c 0) ( 0 (cpl) HA. = Ho + AHint = 0 x +A lcp) 0 (17.46) 

in Dirac notation. HA. is known as the Friedrichs-Lee model. For some time we 
choose to denote by HA. the Hamiltonian of (17.46) and will give a warning to the 
reader when we return to the Hamiltonian (17.10). One needs cp E L2 to have HA. 
well defined and (cp, x- 1 cp) < oo for A Hint to be form-bounded with respect to Ho. 
With no loss one can choose cp to be real. For A = 0 the eigenvalue t: is embedded 
in the continuum and we want to understand its fate for small A. 

From scattering theory and the stability of the essential spectrum under rank­
one perturbations it can be seen that the absolutely continuous spectrum of HA. 
is [0, oo) for all A. In addition, there exists a critical Ac such that for I A I < Ac 
there is no further spectrum, whereas for IAI > Ac the eigenvalue c(A) < 0 gets 
expelled from the continuum. We are interested here in small A only, i.e. lA I « Ac, 
but, beyond mere spectral information, we want to know the decay of the survival 
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amplitude 

(17.47) 

of the unperturbed eigenstate 1/fo = @. 
G(t) has the spectral decomposition 

G(t) = J dcvg(cv)e-iwt, (17.48) 

g(cv) :=:: 0 for cv :=:: 0, g(cv) = 0 for cv < 0, and J dcvg(cv) =I. Thus, IG(t)l 2 ~ 
I - t2 for small t and G (t) ---+ 0 as t ---+ oo by the Riemann-Lebesgue lemma. 
On the other hand, G (t) cannot decay exponentially, for this would imply g(cv) 
to be analytic in a strip around the real axis and thus g = 0, by the reasoning of 
Paley and Wiener. Since Hint is a one-dimensional projection, g(cv) is in fact easily 
computed. First, the resolvent is determined as 

~ 1 [ 2 I ]-I G(z) = (1/fo, (z- H;,J- 1/fo) = z- 8- A (cp, --. cp) , 
z-x 

z E CC \ IR+. Then 

Since 

with 

one has 

g(cv) = (2rri)- 1 lim [G(cv + i77)- G(cv- i77)]. 
1)-+0+ 

lim (cp, (cv ± i77- x)- 1cp) = ~(cv) =f il(cv)/2 
1)-+0+ 

I A2r(cv) 

g(cv) = 2rr (cv- 8- A2 ~(cv))2 + (A2r(cv)/2)2 

(17.49) 

(17.50) 

(17.5I) 

(17.53) 

for cv :=:: 0, and g(cv) = 0 for cv < 0. For small A, g(cv) has a huge bump located 
near cv = 8. In the weak coupling theory, one ignores the variation of r and ~ and 
approximates g(cv) for all cv by 

1 A21(8) 
gw(cv) = 2;r (cv- 8- A2~(8))2 + (A21(8)/2)2' 

(17.54) 

which corresponds to the survival amplitude 

Gw(t) = e-(J,2r(£)/2)1tle-i(£+A2L'l(£))t. (17.55) 
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For the true survival amplitude one still obtains the bound 

(17.56) 

uniformly in t, provided cp has some smoothness. The errors in (17.56) come from 
very short times, A 2t « I, and very long ones, A 2t » I. In the intermediate regime 
Gw(t) does very well. 

For models like the Pauli-Pierz model one cannot hope for such explicit 
formulas. Instead, !?r the purpose of computing g(w ), the strategy is to con­
tinue the resolvent G(z) from the upper half of the complex plane across .!Pi.+ into 
the second Riemann sheet. Ideally, one should discover a simple pole, the reso­
nance, located at zr(A) = 8 +A 2 .6.. - iA 2r /2 with r > 0. For small A one expects 
.6.. ~ .6..(8), r ~ r(8), but as A is increased the pole Zr(A) will move further away 
from the real axis. The resonance pole is responsible for the exponential decay as in 
(17.55) with .6..(8), r(8) replaced~ the true .6.., r. The error, as in (17.56), comes 
from the background spectrum of G(z) on the second Riemann sheet, unavoidable 
due to the branch cut at z = 0. 

One would hope that Zr(A) is an intrinsic property of H;,. and not merely of 
the particular matrix element under study. Of course, we can always pick a bad 
coupling function cp such that ( cp, (z - x) -I cp) cannot be analytically continued 
across .!Pi.+ or for a nice coupling cp, we could pick a bad wave function 1/f such that 
(1/f, (z- H;,.)- 11/f) cannot be analytically continued across .!Pi.+· Thus the best we 
can expect is that for a given sufficiently smooth cp the location of the resonance 
pole is independent of the choice of 1/f within a reasonably large set. To accomplish 
the desired analytic continuation we will implement a complex dilation of H;,.. 

For real e a dilation is defined by 

(17.57) 

U(e) is unitary and H;,. transforms under U(e) as 

U(e)H;,.U(e)- 1 = H;..(e) = Ho(e) + AHint(e) 

= ( 8 0 ) + A ( 0 ( CfJii I ) 
0 e-li x ICfJii) 0 ' 

(I7.58) 

where CfJii(x) = e-li/2cp(e-li x). 

We want to extend (17.57), (17.58) to complex e withe inside the strip SfJ = 
{e I lime I < ,8} with some j3 > 0. e-li is clearly analytic. For cp we require that CfJii 

extends as an analytic function to Sr-; such that J0
00 dx I e-li 12cp(e-li x) 12 < oo. Then 

H;,. (8) is an analytic family of operators of type A in the sense of Kato, separately 
fore E SfJ and lA I sufficiently small. Note that H;,.(8)* = H;,.(8*) for real A, since 
cp is real. The point of our construction is that for purely imaginary e, e = it?-, 
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£ 

Figure 17.1: Spectrum of the rotated Hamiltonian HA. (iz?-) for small coupling A. 

0 < 7J < (3, the continuous spectrum of Ho(i7J) rotates clockwise by the angle 7J, 
see figure 17.1. Thereby the previously embedded eigenvalue s becomes isolated 
and we can use ordinary perturbation theory to show that it shifts downwards to 
become the resonance pole Zr(A) on the second Riemann sheet. zr(A) is analytic in 
e as long as it remains isolated. If one sets e = K + i7J, K, 7J E IR, then HA. (K + i7J) 
is unitarily equivalent to HJc (K 1 + i7J ). Therefore Zr(A) is constant along lines of 
fixed i7J and by analyticity independent of e. As the continuous spectrum rotates 
clockwise, the resonance pole is uncovered and stays put. We summarize as 

Theorem 17.2 (Analytic continuation of the resolvent). For A sufficiently small, 

there exists a dense set DC H = CC EB L2(IR+, dx) such that for o/1, o/2 ED the 
resolvent (o/I, (z- HJc)-1o/2) has an analytic continuation from CC+ across IR+ 
into the second Riemann sheet. (o/I, (z- HJc)-1o/2) has a simple pole at Zr(A), 
Imzr(A) < 0, with the property that limJc-+0 Zr(A) = £. Zr(A) does not depend on 

the choice of o/1, o/2-

Proof Let D c H be the set of all vectors such that e ~---+ U (8)1/f is an analytic 
vector-valued function on S13. Dis dense in H. For o/1, o/2 E D we have 

For given e with Ime > 0, we can choose oo sufficiently small such that inside the 
open disc lz - s I ::: oo the location Zr(A) ofthe pole is an analytic curve starting at 
Zr(O) =E. D 

Let us follow the first step of the perturbation expansion. We fix e = i7J, 0 < 

7J < (3. For A = 0, Ho(8) has the eigenvalue s with corresponding projector 
11/fo)(o/ol. The eigenvalue persists for small A and we expand in A. The first-order 
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term vanishes and to second order we have 

Zr(A.) = c + A-2 (1/fo, Hint(e)(c- Ho(e))- 1 Hint(e)o/o) 

= 8 + lim A-2 (1/fo, Hint(E + iry- Ho)- 1 Hinto/o) 
rJ---+0+ 

= 8 + A. 2 ~(c)- iA.2 l(c)/2. 

261 

(17.60) 

No surprise, we recover the result from the weak coupling theory. We will see 
that this is a rather general fact and argue that the master equation (17.32) can be 
understood as arising from the resonances of the Liouvillean to lowest order. If the 
expansion in (17.60) is continued, the next order is A. 4 and the eigenprojection of 
the resonance will be slightly tilted. 

With the Friedrichs-Lee model as a blueprint in hand we plan to implement 
complex dilation for the Pauli-Fierz model in the N -level approximation (17 .10). 
As in the example above the complex dilation acts only on the photon degrees of 
freedom. For an n-photon vector we define 

Uf(e)1/fn(kJ, AJ, ... , kn, An)= e-3ne;21/fn(e-11 kJ, AJ, ... , e-ekn, An) (17.61) 

for e E R In particular 

Uf(e)a*(f)Uf(e)- 1 = a*(fe), fe(k, A.)= e-3e;2 f(e- 11 k, A.). (17.62) 

Then for the field energy 

Uf(e)HfUf(e)- 1 = Hf(e) = e-e Hf 

and for the electric field 

Uf(e)E<pUf(e)- 1 = EIP(e) 

= L J d3ke- 31112(ii(e-l! k)e-ef2 j w(k)/2 
A.=l,2 

(17.63) 

x eA.(k)i(a(k, A.)- a*(k, A.)). (17.64) 

We want to extend (17.63), (17.64) to complex e E s13 . Clearly Hf(e) is analytic in 
e. For the charge distribution we require that Cfe (k) extends as an analytic function 
to S13 and 

J d3k1Cfel 2 (w(k) + w(k)- 1) < oo. (17.65) 

Then EIP(e) is bounded relative to Hf(e) and 

HA.(e) =Hat+ Hf(e) + A.Q · E<p(e) (17.66) 

is an analytic family of operators oftype A separately in e E s/3 and A, with lA. I < 

A.o and A.o sufficiently small. Thus we have established the abstract framework 
needed for complex dilation. 
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Figure 17.2: Spectrum of the rotated Hamiltonian Ho (iz?-) at zero coupling. 

The difficulty already becomes apparent when the case of zero coupling is con­
sidered, i.e. A= 0 (=-e). Hf has a zero eigenvalue and the continuous spectrum 
.!Pi.+ is of infinite multiplicity. If e = ilJ, the continuous spectrum rotates by the an­
gle lJ. Thus for Hat+ Hf(e) we have a spectrum as shown in figure 17.2, where the 
eigenvalues s j, j = 1, ... , N, are at the tip of the continuous spectrum. In contrast 
to the Friedrichs-Lee model, they are not isolated. We can make them become iso­
lated by giving the photons a small mass mph· Then w(k) = (m~h + k2) 112 which 

becomes w11(k) = (e- 211 k2 + m~h) 112 when complex dilated. The eigenvalues are 
now iso~ated provided they do not lie in the set of thresholds { s j + nmph I j = 
1, ... , N, n = 1, 2, ... } . Our previous arguments apply, but the range of allowed 
A is bounded by mph· 

In a beautiful piece of analysis V. Bach, J. Frohlich, and I. M. Sigal succeed in 
controlling the situation depicted in figure 17 .3. They prove that for sufficiently 
small "A and a dense set D of vectors the resolvent (1/f, (z- H;,J- 1cp), 1/f, cp E D, 
can be analytically continued into a domain, schematically drawn in figure 17.3. 
For A = 0 the eigenvalues ares j with multiplicity m j. Except for j = 1, for small 
A they turn into a group of resonances z jm ("A), m = 1, ... , m j, with the property 
that lim;,._.oZjm("A) = Ej. The ground state energy EI is nondegenerate and ZI(A) 
stays on the real axis. ZI ("A) is the ground state energy of the coupled system. The 
z j m ("A) are eigenvalues ofthe complex dilated Hamiltonian H;,. ( 8). The resonances 
are located at the apex of a cone, which is tilted by the angle e and has a square 
root singularity at its tip. 

To ensure that the resonances are strictly below the real axis we use the condi­
tion from second-order perturbation and require that 

(17.67) 
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Figure 17.3: Spectrum of the rotated Hamiltonian HJ.. (i'IJ) at small nonzero cou­
pling. The domain of analyticity is {zllmz > -bo} with small bo > 0 and away 
from the shaded regions. 

263 

as an m j x m j matrix for j = 1, ... , N. The eigenvalues of this matrix are: 
Imz j m (A), m = 1, ... , m j, to order A 2 . To second-order the imaginary part of 
the resonance poles agrees with the decay rates from the quantum master equa­
tion (17.32). Their real part coincides with the eigenvalues of Hat corrected by the 
Hamiltonian part of Kq from (17 .37). To obtain the full generator Kq one has to 
study the resonances of the Liouvillean as will be discussed in chapter 18. 

17.4 Fluorescence 

We have described in considerable detail how the atom decays to its ground 
state, at least for small coupling. So what then are the spectral characteristics 
of the fluorescent light? How does the theory account for the experimental fact 
that the line shapes differ for equally and for unequally spaced unperturbed 
energy levels? We will address such questions only within the weak coupling 
theory. 

The initial state of the atom is chosen to be a pure state 1jf E eN and that of the 
field to be the vacuum. We want to determine e-iH)..t ljf 0 Q for small A and large 
t, order of A - 2. One method is to use second-order perturbation theory for the res­
onance poles of the resolvent, as explained for a particular case in the previous 
section. Another method is to expand the resolvent (rp ® TIJ=l a*(kj , Aj)Q, (z­

H;..)-11/f ® Q) and to resum all nonoverlapping internal photon lines lying in 
between either the external photon legs or the atom legs. The results turn out to 
be identical and have a simple physical interpretation. 
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To state the approximation to e-iH;J 1jf 0 Q, we rewrite the generator of the 
reduced atom dynamics as, compare with (17.37), (17.32), 

Then 

Lop= [Hat, p] + i'A2 Kqp 
3 

=[Hat+ 'A2 Ht:,.- i'A2 Hr, p] + i L L r(w)Qa(w)*pQa(cv) 
a= I WECT (Lar) 

=LooP+ LDJp. (17.68) 

3 3 R 
Ht:,. = L L ~(w)Qa(w)Qa(cv)* = L L ~(8i- 8j)PjQaPiQaPj, 

a= I uJEcr(Lar) a=l i,j=l 

(17.69) 

and 

3 3 R 
Hr = L L r(cv)Qa(cv)Qa(cv)* = L L r(ci- 8j)PjQaPiQaPj, 

a=1 wEcr(Latl a=1 i <}=1 

(17.70) 

where we used the relation r ( cv) = 0 for cv 2::: 0. We introduce the convenient 
shorthand 

(17.71) 

Note that Hct is not symmetric. As a photon is emitted, the energy of the atom 
decreases by at least one level, which is described by the atom lowering part of the 
interaction Hamiltonian, 

N 

Q- · E: = -i L PiQPi 0 ( L J d3kcp(k)rwJ2 · e;Jk)a*(k, 'A)). 
i<}=l A=l,2 

(17.72) 

With this notation the approximate solution is 

R-1 { 
e-iH;_to/ 0 Q ~ e-iHctto/ 0 Q + ~(-i)n Jo<:JJ<C ... <Cfn<Ct dtn ... dt1 

x e-i(Hct+Ht)(t-tn) 'AQ- . E: ... e-i(Hct+Ht)(t2-t1) 

x 'AQ-. E:e-i(Hct+Ht)tJo/ 0 s-2. (17.73) 

The sum is finite, since (Q-)N 1jf = 0. 
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Taking in (17. 73) the trace over the atom results in the reduced state of the 
photon field. Taking the trace over the field yields the reduced state of the atom. 
But this state was already determined in section 17.2. To be consistent with it we 
must have 

(17.74) 

at least for small A, Pv1 the projection onto 1/f. If (17.74) holds, the case of an 
arbitrary initial density matrix follows by linearity. 

To prove (17.74) we insert (17.73) and obtain 

(17.75) 

3 3 

X [ dsn ... ds1 L ... L 
Josq-s ... <esn<Ct a 1.f-J1=1 an.f-in=l 

n 
X n 8 h(s. _ t ·)e-iHct(t-tn) Q- e-iHct(tn-tn-1) Q- Q- e-iHcttl p 

GYj/3j j j an an_ 1··· a1 1/1 

j=l 

X eiHJs1 Q-* ... Q-* eiHJ(sn-Sn-1) Q-*eiHJ(t-sn). 
f31 f3n-1 f3n 

Since [Hat, HL'>.] = 0 =[Hat, Hr], one can use the spectral representation 

N 
e-iHctt = L e-ie.it Pje-iA.2Ht-J-A2 Hrt (17.76) 

j=l 

and insert it for each propagator in (17.75). On the time scale A - 2r, r = 0(1), h(t) 

decays quickly and the factors e-iet are rapidly oscillating. The generic integral in 
(17.75) is ofthe form 

(17.77) 

In the limit A ---+ 0 it converges to 

. ( ') I d h ( ) -i(om -t:n)t r _ . ( ') r ( ) r mini, i t t e 0 0 i-l:j.l:m-l:n- m1n i, i Em- En 0 0 i-Ej.l:m-l:n· 

(17.78) 
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Using (17.78) and (17.76), the small-A limit of the expression in (17.75) is given 
by 

e-iLnot Pv1 + ~ ( -i)n 1 dtn ... dt1 
n=l O:'Ot1 ::: ... :::tn:'Ot 

X e -iLno(t-tn) L e-iLnoUn -tn-1) L e-iLnotl p 
Dl · · · Dl 1/1 

= e-iLnt p1/l (17.79) 

as was to be shown. 
The approximate solution ( 17.73) describes the decay of the atom and the build­

up of photons. Such details are experimentally inaccessible. However, what can 
be easily seen are the spectral characteristics of the fluorescent light, which are 
obtained from (17.73) in the limit t --+ oo (on the time scale A - 2). Then the atom 
is in its ground state and 

(17.80) 

where ¢ is a photon state propagating freely to infinity through e -iHtt. ¢ can be 
read off from (17.73) as 

1/JJ@ rjJ = Pil/f@ Q + ~(-i)n fo:':t!:':···:':tn<OO dtn .. . dtJ Plei(Hct+Ht)fn 

x AQ-. E: ... e-i(Hct+Ht)(t2-tJ)AQ-. E:e-i(Hct+Ht)t11/f@ Q. 

(17.81) 

The projection P1 comes in, since states in (17.73) which are orthogonal to the 
uncoupled ground state 1/JI decay exponentially and only the piece parallel to 1/JI 
persists in the long-time limit. 

To see how (17.80) translates to the spectrum of the emitted light, it might be 
useful to work out two concrete cases. 

(i) Two-level atom. We consider two nondegenerate levels 11), 12) with resonance 
poles Zj = Ej + ~j- iij/2, j = 1, 2, !1 = 0. Initially the atom is in state 12). 
Then the scattering state ¢ of (17.80) has only one photon, ¢ = (0, ¢1, 0, ... ), 
with wave function 

where 

!I2(k, A)= e~(k)(11xl2) · eJc(k)jw(k)/2. (17.83) 
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E 

C3 + ,6.3 I ) --~----~------~-- 3 

E2 + LJ.2 
--+----------+--- 12) 

Figure 17.4: Radiation cascade for a three-level atom. 

267 

The spectral distribution is lo/11 2. Since r2 is small, the variation from !12 can be 
ignored to obtain 

2 "' [ 2 2] -I ~ lo/1 (k, A.) I = C (E2 + 6.2- EI - 6.1 - w) + (r2/2) = I (w, k, A.) 
(17.84) 

with the constant C = I!I2(k, A.)l 2 evaluated at w(k) = E2- EI, C = e21$(E2-
::_J)1 2((E2- EI)/2)1(11xl2) · e;_(k)l 2, which depends on the direction of emission, 
k = k I I k I, and on the polarization. As a function of the frequency w of the emitted 
light, the line shape is Lorentzian of natural width r2 and centered at E2 + 6.2 -
EI - 6.1, differing from the bare line E2 - EI by the shift 6.2- 6.1. 

Ifthe initial state of the atom is ql1) + c212), normalized as lql2 + lc2l 2 = 1, 
then cp = (qQ, c2¢1(k1, AI), 0, ... ). With probability lcii2 no photon is emitted 
and with probability lc21 2 the line shape is that of (17.84 ). 

(ii) Three-level atom. We consider three nondegenerate levels 11), 12), 13) with 
resonance poles z i = E i + 6. i - ir i /2, j = 1, 2, 3, r 1 = 0. The initial state of 
the atom is 13). There is a direct transition 13)---+ 11) as in case (i). In ad­
dition we have the cascade 13)---+ 12)---+ 11). Therefore the scattering state is 
cp = (0, ¢I, ¢2, 0, ... ), see figure 17.4. ¢I is as in (17.82) with label 2 replaced 
by label 3. For the cascade one obtains 
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(/J2(ki, AI, k2, A2) = S{ (13/2 + i(.s3 + ~3- £I - ~~ - w(ki)- w(k2)) r 1 

x(12/2 + i(£2 + ~2- £]-~I- w(k2))ri 

xJ2J12(k2, A2)h3(k1, AJ)} (17.85) 

with S denoting symmetrization. If the variation and the direction dependence 
from !I2, h3 are ignored, the intensity distribution for the two photons in the 
cascade is 

(17.86) 

with the shorthand 83 = £3 + ~3 - .s2- ~2. 82 = .s2 + ~2- £I -~I· If £3 -
.s2 =j:. .s2 - .s I, then in the frequency spectrum one will observe a Lorentzian at 82 
with natural width 12 and a Lorentzian at 03 with natural width 12 + 13. On the 
other hand if £3 - £2 = £2 -£I and, just as an example, also ~2 = ~3, 212 = 13, 
then 

(17.87) 

which corresponds to a single Lorentzian at 82 = 83 of natural width 12 with dou­
ble intensity. The two photons interfere when emitted. Otherwise, the intensity 
would be the sum of a Lorentzian of natural width 12 and one of natural width 
12 + 13 = 312. If £3- .s2 ~ .s2- £I, the exact intensity distribution (17.86) has 
to be analyzed anew. 

17.5 Scattering theory 

From a very general perspective scattering theory is a comparison between an 
interacting dynamics and a simplified "free" dynamics in the limit of long times. 
In our context this means a study of 

(17.88) 

for an arbitrary initial state 1/f E H = c_N 0 :F. We stay within the dipole approx­
imation and consider 

H =Hat+ Hf- eQ · Erp, (17.89) 

Erp = Erp (0). Since the coupling is fixed, we omit the index A and return to e = 

-A, see (17.10). Also, (-, ·) always denotes the scalar product in H. From the 
outset we state 
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Condition 17.3 (Uniqueness and localization of the ground state). H has a 
unique ground state t/fg, Ht/fg = Egt/fg with the property that (t/fg, e8Nto/g) < oo 
for some 8 > 0. H has no other eigenvalues. 

On physical grounds it is easy to conjecture the limit in (17.88). Photons are 
traveling outwards according to a scattering state ¢ and the atom decays to its 
ground state t/fg· Thus for given tfr E eN 0 :F, there exists a¢ E :F such that 

(17.90) 

In rough terms, the state e-iHtt ¢ lives far away from the ground state t/fg· Still, 
the bound photons of t/fg must be properly symmetrized with the freely propagat­
ing photons of e-iHtt ¢. This is achieved by the symmetrization 0s as defined in 
(17.91), (17.92) below. We note that in the previous sections we have discussed 
an initial state of the particular form x 0 Q. The relation (17.90) constitutes a 
vast generalization thereof. Of course, the limit (17.90) can be considered also for 
t ---+ -oo. Combining both limits then yields the S-matrix for Rayleigh scattering 
of photons from an atom. 

To establish the limit (17.90) in this generality is a tough analytical problem, 
since no exceptions are allowed. The limit is supposed to hold for all states tfr E 1-i. 
We will only outline the general framework, in particular the proper definition of 
the wave operators and their intertwining between the free and interacting dynam­
ics. As an easy step a Cook-type argument is established ensuring (17.90) at least 
for a large class of states. One important consequence of the limit (17.90) is the 
relaxation of the atom to its ground state without taking recourse to weak coupling, 
respectively resonance theory. As will be explained, such a relaxation holds also 
for local field observables. 

Let us first have a look at the right-hand side of (17.90). The symmetrization 0s 
can be defined for two arbitrary states in Fock space. We consider the Fock space 

:F = F(~) over the one-particle space ~· Then F(~ EB ~) = F(~) 0 F(~). On the 
one-particle space we define the map 

(17.91) 

The second quantization of this map defines o/1 0 o/2 E F(~) 0 F(~) 1---+ o/1 0s 
o/2 E F(~). More explicitly, one has 

n m n m 

( fl a*(fj )Q) 0s ( fl a*(gi)Q) = fl a*(fj) fl a*(gi )Q. (17.92) 
J=l i=l j=l i=l 
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In our case one factor is the ground state o/g which can be thought of as a spinor­
valued vector in :F. We then define 1 : :F ---+ eN 0 :F through 

(17.93) 

smce o/g is considered as given. If ¢ is an n-photon vector, ¢ = 
(0, ... , r/Jn, 0, ... ), then 

(17.94) 

with S denoting the symmetrizer. 
As can be seen from (17 .91 ), the symmetrization 0s is unbounded. In particular, 

:=:: ~t (~}lr/Jn-JII 2e-Si to llo/gill 2e8i. (17.95) 

Let us define D8 = {¢ lllr/Jn II :=:: c(l - e-812)n}. Then for ¢ E D8, we have 
II 1¢ II < oo, which is the reason for assuming the exponential bound in condi­
tion 17 .3. Without it, we would have to go into details in what sense ¢ is far away 
from the atom. 

Ifthe state¢ shifted to infinity, either by the spatial shift e-iw·Pt or by the time 
shift e-iHtt, then only the coupled ground state remains in focus. To see this on 
a more formal level, we introduce the strictly local Weyl algebra WR consisting 
of operators of the form W(f) = exp[a*(f)- a (f)] with j(x, A.)= 0 for lxl :=:: 

R. The quasi-local Weyl algebra W is the norm closure of UR>OWR. The local 
character is of importance, e.g. g(Hf) with g bounded is obviously a bounded 
operator, but g(Hf) does not lie in W. Let A E B(CN) 0 W. Shifting to infinity 
then 

lim (o/g 0s e-iw·Ptr.p, Ao/g 0s e-iw·Ptr.p) = (o/g, Ao/g)(¢, rp)J:, (17.96) 
lwl---+oo 

lim (o/g 0s e-iHttr.p, Ao/g 0s e-iHttr.p) = (o/g, Ao/g)(¢, ¢)F (17.97) 
It I-+ oo 

for all¢ E Ds. 

To prove (17.96), (17.97), we choose an n-photon state of the form ¢ = 
(0, ... ,¢n,O, ... ) with r/Jn(XJ,AJ, ... ,Xn,An)=STI}=1 fJ(xj,Aj), in other 
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words ¢ = (n!)- 112 TI'J=l a*(Jj)Q. We set hw(Xj, Aj) = fj(Xj- w, Aj) and 

similarly Jjt(kj, Aj) = e-iw(kj)t Jj(kj, Aj). Equations (17.96) and (17.97) go in 
parallel and we consider only the latter. Then, forM E B(CN), W(f) E W, and 
since W(f)a*(h) = a*(h)W(J)- (f, hh W(f), we get 

1 
+- " n' L · Ac{l, ... ,n},A#ffl 

n 

n (- (f, hr)Q)(n a*(hr)l/fg, n a*(fjt)Ml/fg). 
jEA j=l jEAc 

(17.98) 

Since f is local, by the Riemann-Lebesgue lemma, limH 00 (f, ht)fJ = 0. Simi­
larly, for space translations, limlwl---+oo(f, hw)fJ = 0. Therefore each term having 
at least one contraction vanishes in the limit t ---+ oo, respectively I w I ---+ oo. We 
still have to discuss the first summand corresponding to zero contraction which 
written out explicitly is 

(17.99) 

by using (17.94) and setting <Pnt = (e-iHtt¢)n. There are two types of terms in 
the scalar product. If a <Pnt is integrated either against 1/fgj or against (M@ 
W (f) 1/f g) j, then all such terms vanish as t ---+ oo, again by the Riemann-Lebesgue 
lemma. The only terms which survive in the limit are of the form ( 1/f gj, (M @ 
W(f)l/fg)j)(r/Jnt, <Pnt)F = (1/fgj, (M@ W(J)l/fg)j)(r/Jn, r/Jn)F by unitarity. We 
conclude that the limit t ---+ oo in (17.99) equals 

()() 

L(l/fgj, (M@ W(J)l/fg)j)(r/Jn, r/Jn)F = (1/fg, M@ W(J)l/fg)(¢, r/J):F, 
j=O 

(17.100) 

as claimed. To cover the general case one has to take suitable linear combinations 
and uniform limits. 
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With these preparations the limit in (17.90) can be formulated more concisely. 
We define the wave operators Q'f through the strong limit 

Q'f¢ = s _ lim ei(H-Eg)t Je-iHftcp. 
t--+±oo 

(17.101) 

The existence of this limit will be shown for all ¢ E De, by a Cook estimate in 
Proposition 17.6 below. But we first want to explore some consequences of our 
definition. 

In the usual definition of wave operators one projects onto the scattering states 
of the comparison dynamics e-iHft. This is not needed here because for¢= Q, 
the limit in (17.10I) equals 1/fg. The formulation (17.I OI) assumes that H has no 
other bound state. If this had been the case, one would have to allow in ( I7 .I 0 I) 
for several atomic channels, corresponding to the possibility that the atom remains 
in an excited state forever. 

The wave operators Q± are isometries from :F to eN 0 :F, as can be seen from 

(17.102) 

by (17.97) for¢ E De,. By continuity this property extends to all of :F. n± inter­
twines between the free and interacting dynamics as 

(17.I03) 

which is an immediate consequence of the definition: for ¢ E Ds one has 
e-iHftc/J E Ds and 

Q- cp = lim ei(H -Eg)(t+s) j e-iHf(t+s)cp 
S--+00 

= lim ei(H-Eg)tei(H-Eg)s Je-iHfse-iHftcp 
S--+ 00 

(17.104) 

Since Ds is dense in :F, (17.103) holds. As a consequence, Ran Q'f are reducing 
subspaces for H and H - Eo restricted to Ran Q'f is unitarily equivalent to Hf on 

:F. 
As emphasized, the limit in ( I7 .90) should not only hold for some states but for 

all1/f E eN 0 :F. It is useful to have a name for such a property. 

Definition 17.4 n± are called asymptotically complete if 

(17.105) 

If n± are asymptotically complete, then they are unitary and diagonalize H as 

(17.106) 
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In particular, H has the absolutely continuous spectrum [Eg, oo) of infinite multi­
plicity. 

Under asymptotic completeness the long-time dynamics is fully characterized 
through 

Proposition 17.5 (Relaxation to the ground state). Let A be local in the sense 
that A E B(CN) 0 W. Thenforevery 1/f E Ran Q- with 111/fll = 1 we have 

(17.107) 

In particular, if asymptotic completeness holds, then the limit (I 7. I 07) is valid for 
alll/f E c_N 0 :F. 

Proof: Let 1/f = Q-¢ with¢ E D0 . By (17.101) one has 

lim (e-iHt1jf, Ae-iHt1jf) = lim (Je-iHtt¢, AJe-iHtt¢), 
t-+00 t-+00 

(17.108) 

which converges to the limit ( 17.1 07) as is seen by the argument explained in 
(17.98). Any 1/f E Ran Q- can be approximated through states of the form Q-¢ 
with cp E D0 . D 

Proposition 17.6 (Cook estimate). Let the integrability condition (17.27) be sat­
isfied. Then for all¢ E D0 the strong limit 

lim ei(H-Eg)t 1 e -iHtt ¢ = Q-¢ 
t-+00 

(17.109) 

exists. 

Proof: If¢ = Q, the limit exists and is 1/fg. Let then (Q, ¢) = 0 and ¢ E Do n 
D(Hf). Then Je-iHtt¢ E D(H) and we have 

Here 

and we used 

E; = i L J d3kcp(k)jw(k)j2eJc(k)a(k, A) 
Jc=l.2 

a(f)(l/fg 0s ¢) = a(f)l/fg 0s ¢ + 1/fg 0s a(f)¢, 

a*(f)(l/fg 0s ¢) = a*(f)l/fg 0s ¢, 

(17.110) 

(17.111) 

(17.112) 

(17.113) 
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which follow from the definition (17 .92). Thus 

ei(H-Eg)t Je-iHttr.p = J¢ _ e lot ds ei(H-Eg)s Ql/fg 18ls ·E;;;e-iHtsr.p (1 7.114) 

and it is to be shown that t--+ II Ql/fg 18ls ·E;;;e-iHtt¢11 is integrable for a dense 

set of ¢'s. For this purpose we define L'P c L 3_ (IR3 , IR3) to be the linear subspace 
spanned by the set {e-iwt;p-JW/2e;_ It E IR}. We choose ann-photon vector in prod­
uct form,¢ = (0, ... , r/Jn. 0, ... ), r/Jn = S TI}= 1 J; with each factor being a sum 

fj 

l;(k, A)= LCXJ£e-iw(k)tJt<;9(k)jw(k)j2e;_(k) + ljj_(k, A) 
£=1 

with J;j_ orthogonal to L'P. Then 

(17.115) 

IIQl/fg 18ls ·E;;;e-iHtt¢11:::; t I L I d3k<;9(k)Jw(k)j2e;_(k) · l;(k, A)e-ico(k)tl· 
j=l A=l.2 

(17.116) 

Inserting from (17.115) yields a finite sum of terms of the form 

I d3 k liP(k) 12w (k) Q j_ (k )e -iw(k)(t+s) (17.117) 

which are integrable, either by assumption or as a matter of fact for the Pauli-Pierz 
model, cf. the remark below Theorem 17 .1. 

Our argument establishes the limit ( 17.1 09) for a dense set of vectors in the 
n-photon subspace. By linearity and by taking uniform limits, this extends to all of 
D8. D 

For 1/f E Ran s-2± one has all the desired properties, relaxation to the ground 
state as in Proposition 17.5, long-time asymptotics as in (17.90), and spectral mea­
sures which are absolutely continuous except for a possible mass at Eg with weight 
(1/f, 1/fg). Asymptotic completeness, i.e. the property Ran s-2± = rrf Q9 :F, ensures 
that there are no states with unphysical dynamics. 

Notes and references 

Section 17.1 

The dipole approximation in conjunction with the N -level approximation is com­
mon practice in atomic physics, for example Agarwal (1974), Cohen-Tannoudji 
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et al. (1992). The unitary transformation (17.7) is linked with Power and Zienau 
(1959). It is also used by Bloch and Nordsieck (1937). For the special case of 
N = 2 the transition from Fock to non-Fock ground state is studied in consid­
erable detail by Leggett et al. (1987), Spohn (1989), Amann (1991 ), and Weiss 
(1999). The corresponding Hamiltonian, Hsb. is known as the spin-boson model. 
The vector character of the Bose field is ignored and one sets Hat= caz, Q · Acp = 
ax J d3k(i(k)a*(k) + g(k)*a(k)). The t-2-decay of (17.6) is the so-called Ohmic 
case, which is marginal for the transition to non-Fock. For small coupling Hsb has 
a unique ground state in CC2 @ :F, whereas for large coupling Hsb acquires an in­
finite number of bosons, which leads to a two-fold degenerate ground state, both 
lying outside Fock space. Form factors with a decay different from t-2 have been 
also investigated. 

Section 17.2 

Landau (1927) uses density matrices in the description of the reduced state of 
the atom. He arrives at a variant of the master equation (17.32). Its diagonal part 
is often referred to as the Pauli master equation (Pauli 1928). A further influen­
tial work is Bloch (1928). The systematic weak coupling theory goes back to van 
Hove (1955, 1957) and has been further developed in response to the theoreti­
cal challenges in quantum optics. Just to remind the reader: In theoretical models 
of the laser one has to include dissipation for the field modes of the cavity to 
account for lossy reflection at the walls. For photon counting statistics one has 
to devise a simple model of a detector. An interesting exchange is Srinivas and 
Davies (1981) and Mandel (1981). For laser cooling and trapping the spontaneous 
emission and its associated recoil must be described in a concise way (Metcalf and 
van der Straten 1999). Thus the general problem of how to model open quantum 
systems necessarily comes into focus. On the classical level the addition of friction 
forces and possibly of noise serves well. But quantum mechanics poses constraints 
which are still of current research interest. As a short sample out of a large body 
of literature we refer to Lax (1968), Glauber (1969), Kossakowski (1972), Haake 
(1973), Spohn (1980), Carmichael (1999), Weiss (1999), and Breuer and Petruc­
cione (2002). Our presentation here is based on Davies (1974, 1975, 1976a). He 
emphasizes time-averaging which has been overlooked mostly, but is done cor­
rectly in Cohen-Tannoudji et al. (1992) and Breuer and Petrucci one (2002). The 
various generators of the dissipative evolution in the weak coupling limit are com­
pared in Diimcke and Spohn (1979). In the text we discussed only single-time 
statistics. Stationary two-time statistics appear frequently in applications. Multi­
time statistics are studied by Diimcke (1983) within the presented framework. 
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Although even the most simplistic theory yields a shift of the spectral line, such 
predictions were not taken seriously. The rough estimate of Bethe (1947) and the 
more sophisticated computation of Grotch (1981) resulting in a cutoff-independent 
shift could have been done as early as 1930. It is only through the war-related re­
search on radar that experimental techniques became available to measure such 
fine effects. The theory followed soon; see Schweber (1994) for an excellent ac­
count. 

The weak coupling theory is also a useful tool in studying decoherence. In 
essence one starts the dynamics with a coherent superposition of two spatially 
well-separated wave packets. According to the appropriate quantum master equa­
tion such a coherence is destroyed on a time scale which is much, much shorter 
than the friction time scale. Properly speaking the master equation should not be 
used on such short time scales. When decoherence is due to the coupling to the 
quantized rediation field, Diirr and Spohn (2002) provide an analysis based on 
the dipole approximation. A complete discussion, avoiding the dipole approxima­
tion, is given by Breuer and Petrucci one (2001 ), who also list references to earlier 
work. 

The weak coupling theory had a mathematical spin-off, going way beyond the 
specific application at hand. The basic observation is that the dissipative semigroup 
Tt is the classical analog of the transition probability of a classical Markov process, 
the Markov character being embodied in the semigroup property Tr T1 = Tr+s, 
t, s :=:: 0. Tr is positivity and normalization preserving, in the sense that if p is a 
density matrix so is Tr p. As recognized by Lindblad (1976) the stronger notion of 
complete positivity is very natural. It means that if H is extended to H ® en and 
Tt in the trivial way to Tt ® 1, then T, ® 1 is positivity preserving for every n. In 
this framework the possible types of generators are classified by Lindblad (1976). 
He also characterizes dissipation through the decrease of relative entropy (Lind­
blad 1975). Mixing and the long-time limit t --+ oo are studied by Spohn (1976), 
Frigerio (1978), and Frigerio and Verri (1982). The generalization of the notion 
of detailed balance to the quantum context is discussed by Gorini et al. (1984). 
Most recommended introductions are Davies (1976b) and Alicki and Lendi ( 1987). 
Clearly the next level is to inquire about multitime statistics and their build-up 
from the semigroup Tt. This is a fairly straightforward step for classical Markov 
processes through the concept of conditional independence of past and future. No 
such thing seems to exist on the quantum level and the theory of quantum stochas­
tic processes tries to provide a consistent framework, possibly guided by specific 
model systems, that can be analyzed in detail. We refer to Accardi, Frigerio and 
Lewis (1982), Lindblad (1983), Hudson and Parthasarathy (1984 ), Accardi et al. 
(1991 ), and Parthasarathy ( 1992), and the recent monographs by Alicki and Fannes 
(2001) and by Accardi et al. (2001 ). 
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Section 17.3 

Already in his first work on radiation theory Dirac (1927) simplifies the problem 
to a single level coupled to a continuum of modes. A two-level atom coupled to 
the radiation field in the rotating wave approximation also reduces to a Friedrich­
Lee-type Hamiltonian. 

Complex dilations were investigated in connection with the study of Regge 
poles, cf. Reed and Simon (1978) for references. The mathematical framework 
is developed by Aguilar and Combes (1971) and Balslev and Combes (1971 ). A 
beautiful survey is Simon (1978). For an introduction we refer to Cycon et al. 
(1987). Hunziker (1990) focuses on the question of how to translate the results on 
the resolvent back to the real time-domain. Okamoto and Yajima (1985) observe 
that the dilation of the massive photon field can be used to unfold resonances. Res­
onances of the Pauli-Fierz model are studied in Bach, Frohlich and Sigal (1995, 
1998a, 1998b, 1999). They develop a renormalization-type iterative procedure to 
pin down the domain of analyticity of the complex dilated resolvent. This method 
is refined by Bach et al. (2002). An infinitesimal version based on Mourre-type 
estimates and the Feshbach method is Derezinski and Jaksic (2001 ). 

Section 17.4 

Our discussion is based on Davies (1976a). Lo is the Davies generator in the weak 
coupling theory. Line shapes are discussed by Weisskopf and Wigner (1930). Our 
examples for the spectral characteristics of the emitted light are taken from Cohen­
Tannoudji et al. (1992), Chapter IIIC and Exercise 15. 

Section 17.5 

Potential scattering is discussed in Reed and Simon (1979) and N -body scatter­
ing in Cycon et al. (1987). We follow the presentation in Hubner and Spohn 
(1995a). The Cook argument is based on H0egh-Krohn (1970) who also studies 
the asymptotic electromagnetic fields; for a complete discussion see (Frohlich, 
Griesemer and Schlein 2001). In the meantime the mathematical investigation of 
scattering of photons from an atom has flourished. For simplicity often the scalar 
field model of section 19.2 is studied. An important step is Derezinski and Gerard 
(1999) who establish asymptotic completeness in the case of massive photons, 
w (k) = (k2 + m~h) 112, mph > 0, and a strictly confining potential. Earlier work 
restricted to an N -level atom is Gerard (1996) and Skibsted (1998). An extension 
to massless photons under the condition $(0) = 0 is Gerard (2002). For mph > 0 
Frohlich, Griesemer and Schlein (2001, 2002) allow for potentials which are not 
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strictly confining, like the Coulomb potential. Thereby the channel for a freely 
propagating electron is opened up as it occurs in the description of the photoelec­
tric effect (Bach, Klopp and Zenk 2002). Ammari (2000) establishes asymptotic 
completeness for the Nelson model of section 19.2 with ultraviolet cutoff removed. 
In these works asymptotic completeness is defined in such a way that H could 
have other eigenvalues besides its ground state. To exclude them one has to resort 
to Bach, Frohlich and Sigal (1998a) and Frohlich, Griesemer and Schlein (2002). 

A different approach is to take the dipole approximation with harmonic con­
fining potential. Since the Hamiltonian is quadratic, the scattering theory can be 
reduced to one-particle scattering with a finite rank perturbation. Maassen (1984) 
notices that for a weakly anharmonic confining potential the time-dependent 
perturbation series can be controlled uniformly in time. His estimates are improved 
and optimized in Maassen, Guta and Botvich (1999) and Fidaleo and Liverani 
(1999). With this input one can prove asymptotic completeness in the strong sense 
of Definition 17 .4. The perturbing potential must be bounded and so small that the 
confining potential remains convex (Spohn 1997). The harmonic case is investi­
gated by Arai (1983b). 
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