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Abstract

Let G=N � H be a locally compact group which is a semi-direct product of a closed
normal subgroup N and a closed subgroup H. The Bohr compactification Bohr(G) and the
profinite completion Prof(G) of G are, respectively, isomorphic to semi-direct products Q1 �

Bohr(H) and Q2 � Prof(H) for appropriate quotients Q1 of Bohr(N) and Q2 of Prof(N). We
give a precise description of Q1 and Q2 in terms of the action of H on appropriate subsets
of the dual space of N. In the case where N is abelian, we have Bohr(G)∼= A � Bohr(H) and
Prof(G)∼= B � Prof(H), where A (respectively B) is the dual group of the group of unitary
characters of N with finite H-orbits (respectively with finite image). Necessary and sufficient
conditions are deduced for G to be maximally almost periodic or residually finite. We apply
the results to the case where G=� �H is a wreath product of discrete groups; we show
in particular that, in case H is infinite, Bohr(� �H) is isomorphic to Bohr(�Ab �H) and
Prof(� �H) is isomorphic to Prof(�Ab �H), where �Ab =�/[�,�] is the abelianisation of
�. As examples, we compute Bohr(G) and Prof(G) when G is a lamplighter group and when
G is the Heisenberg group over a unital commutative ring.

2020 Mathematics Subject Classification: 22D10 (Primary); 22D25, 22E50,
20G05 (Secondary)

1. Introduction

There are two distinguished compact groups associated to a general topological group
G. A Bohr compactification (respectively, a profinite completion) of G is a pair con-
sisting of a compact (respectively, profinite) group K and a continuous homomorphism
β : G→K with dense image satisfying the following universal property: for every com-
pact group (respectively, profinite group) L and every continuous homomorphism α : G→ L,
there exists a continuous homomorphism α′ : K→ L such that the diagram

K

α

αG L

β

commutes. Bohr compactifications and profinite completions (K, β) of G are unique in the
following sense: if (K′, β ′) is a pair consisting of a compact (respectively, profinite) group
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K’ and a continuous homomorphism β ′ : G→K′ with dense image satisfying the same uni-
versal property, then there exists an isomorphism f : K→K′ of topological groups such
that β ′ = f ◦ β. Concerning existence, we give below (Proposition 4) models of Bohr com-
pactifications and profinite completions. For more on Bohr compactifications, see [Dix77,
section 16], [BdlH, 4·C] or [Wei40, chapter VII]; for more details on profinite completions,
see [RZ00].

We will often denote by (Bohr(G), βG) and (Prof(G), αG) a Bohr compactification and a
profinite completion of G. In the sequel, for two topological groups H and L, we write H ∼= L
if H and L are topologically isomorphic.

The universal property of Bohr(G) gives rise to a continuous surjective homomorphism
α : Bohr(G)→ Prof(G) such that αG = α ◦ βG. It is easy to see (see [Bek23, proposition 7])
that the kernel of α is Bohr(G)0, the connected component of Bohr(G), and so

Prof(G)∼=Bohr(G)/Bohr(G)0.

Every continuous homomorphism G1
f−→G2 of topological groups induces continuous

homomorphisms

Bohr(G1)
Bohr( f )−−−−→Bohr(G2) and Prof(G1)

Prof( f )−−−−→ Prof(G2)

such that βG2 ◦ f =Bohr( f ) ◦ βG1 and αG2 ◦ f = Prof( f ) ◦ αG1 .
Consider the category TGrp of topological groups, with objects the topological groups

and morphisms the continuous homomorphisms between topological groups. The Bohr
compactification and the profinite completion are covariant functors

Bohr : TGrp→CGrp and Prof : TGrp→ PGrp

from TGrp to the subcategory CGrp of compact groups and the subcategory PGrp of
profinite groups.

Assume that we are given an extension

1−→N
i−→G

p−→G/N −→ 1 ( ∗ )

of topological groups. The functors Bohr and Prof are right exact and so the diagrams

Bohr(N)
Bohr(i)−−−−→Bohr(G)

Bohr(p)−−−−→Bohr(G/N)−→ 1

and

Prof(N)
Prof(i)−−−→ Prof(G)

Prof(p)−−−−→ Prof(G/N)−→ 1

are exact; this means that

Bohr(p) and Prof(p) are surjective and

Ker(Bohr(p))= βG(N) and Ker(Prof(p))= αG(N),

where A denotes the closure of a subset A; these facts are well known and easy to prove
(see, e.g., [HK01, lemma 2·2] and [RZ00, proposition 3·2·5]; see also Proposition 7 below).
However, the functors Bohr and Prof are not left exact, that is, Bohr(i) : Bohr(N)→Bohr(G)
and Prof(i) : Prof(N)→ Prof(G) are in general not injective (see e.g. the examples given by
Corollaries F and G below).
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For now on, we will deal only with locally compact groups. and with split extensions.
So, we will consider locally compact groups G=N � H which are a semi-direct product
of a normal closed subgroup N and a closed subgroup H. It is easy to see that Bohr(G),
respectively Prof(G), is a semi-direct product of βG(N) with βG(H), respectively of αG(N)
with αG(H) (see [Jun78, GZ11]). Our results give a precise description of the structure of
these semi-direct products.

Denote by N̂fd the set of equivalence classes (modulo unitary equivalence) of irreducible
finite dimensional unitary representations of N. Every such representation σ : N→U(n)
gives rise to the unitary representation Bohr(σ ) : Bohr(N)→U(n) of Bohr(N); here (and
elsewhere) we identify Bohr(U(n)) with U(n).

Observe that H acts on N̂fd: for σ ∈ N̂fd and h ∈H, the conjugate representation σ h ∈ N̂fd

is defined by σ h(n)= σ (h−1nh) for all n ∈N.
Define N̂H−per

fd as the set of σ ∈ N̂fd with finite H-orbit.
Observe that, due to the universal property of Bohr(N), the group H acts by automor-

phisms on Bohr(N). However, this action does not extend in general to an action of Bohr(H)
on Bohr(N).

Our first result shows that Bohr(G) is a split extension of Bohr(H) by an appropriate
quotient of Bohr(N).

THEOREM A. Let G=N � H be a semi-direct product of locally compact groups. Let
ϕN : Bohr(N)→ βG(N) and ϕH : Bohr(H)→ βG(H) be the maps such that ϕN ◦ βN = βG|N
and ϕH ◦ βH = βG|H Set

C :=
⋂

σ∈N̂H−per
fd

Ker(Bohr(σ )).

(i) We have KerϕN =C and so ϕN induces a topological isomorphism
ϕN : Bohr(N)/C→ βG(N).

(ii) ϕH : Bohr(H)→ βG(H) is a topological isomorphism.

(iii) The action of H by automorphisms on Bohr(N) induces an action of Bohr(H) by
automorphisms on Bohr(N)/C and the maps ϕN and ϕH give rise to an isomorphism

Bohr(G)∼= (Bohr(N)/C) � Bohr(H).

We turn to the description of Prof(G). Let N̂finite be the set of equivalence classes of
irreducible unitary representations σ of N with finite image σ (N). Observe that the action of
H on N̂fd preserves N̂finite. Let N̂H−per

finite be the subset of N̂finite of representations with finite
H-orbit. Every σ ∈ N̂finite gives rise to the unitary representation Prof(σ ) of Prof(N).

A result completely similar to Theorem A holds for Prof(G).

THEOREM B. Let G=N � H be a semi-direct product of locally compact groups. Let
ψN : Prof(N)→ αG(N) and ψH : Prof(H)→ αG(H) be the maps such that ψN ◦ αN = αG|N
and ψH ◦ αH = αG|H Set

D :=
⋂

σ∈N̂H−per
finite

Ker(Prof(σ )).
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(i) We have KerψN =D and so ψN induces a topological isomorphism
ψN : Prof(N)/D→ αG(N).

(ii) ψH : Prof(H)→ αG(H) is a topological isomorphism.

(iii) The action of H by automorphisms on Prof(N) induces an action of Prof(H) by
automorphisms on Prof(N)/D and the mapsψN andψH give rise to an isomorphism

Prof(G)∼= (Prof(N)/D) � Prof(H).

When N is a finitely generated (discrete) group, we obtain the following well known result
(see [GZ11, proposition 2·6]).

COROLLARY C. Assume that N is finitely generated. Then Prof(G)∼= Prof(N) � Prof(H).

In the case where N is abelian, we can give a more explicit description of the quotients
Bohr(N)/C and Prof(N)/D appearing in Theorems A and B. Recall that, in this case, the
dual group N̂ is the group of continuous homomorphisms from N to the circle group S1. We
will also consider the subgroup N̂fin of χ ∈ N̂ with finite image χ(N), that is, with values in
the subgroup of m-th roots of unity in C for some integer m≥ 1. Observe also that N̂H−per

and N̂H−per
finite are subgroups of N̂.

COROLLARY D. Assume that N is an abelian locally compact group. Let N̂H−per and
N̂H−per

finite be equipped with the discrete topology. Let A and B be their respective dual groups.
Then

Bohr(G)∼= A � Bohr(H) and Prof(G)∼= B � Prof(H).

Recall that G is maximally almost periodic, or MAP, if Ĝfd separates its points (equiv-
alently, if βG : G→Bohr(G) is injective); recall also that G is residually finite, or RF, if
Ĝfinite separates its points (equivalently, if αG : G→ Prof(G) is injective).

COROLLARY E. Let G=N � H be a semi-direct product of locally compact groups.

(i) G is MAP if and only if H is MAP and N̂H−per
fd separates the points of N.

(ii) G is RF if and only if H is RF and N̂H−per
finite separates the points of N.

We give an application of our results to wreath products. Let H,� be groups, X a non
empty set, and H � X an action of H on X. Then H acts on the direct sum ⊕x∈X�, by shift-
ing the indices. The (permutational) wreath product, denoted � �X H, is the semidirect
product

� �X H := (⊕x∈X �) � H.

When the action of H on X is simply transitive, we obtain the standard wreath prod-
uct denoted � �H. Observe that �Ab �X H is a quotient of � �X H, where �Ab is the
abelianization �/[�,�] of �.

Initially, we formulated the next two corollaries only for standard wreath products; the
extension of these results to more general wreath products was suggested to us by the referee.
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COROLLARY F. Let H,� be groups, and let H � X be a transitive action of H on a set X.
Let � �X H be equipped with the discrete topology.

(i) When X is finite, we have

Bohr(� �X H)∼= (⊕x∈XBohr(�))� Bohr(H) and

Prof(� �X H)∼= (⊕x∈XProf(�))� Prof(H).

(ii) When X is infinite, the quotient map � �X H→�Ab �X H induces isomorphisms

Bohr(� �X H)∼=Bohr(�Ab �X H) and Prof(� �X H)∼= Prof(�Ab �X H)

In particular, if � is perfect (that is, �= [�,�]), the quotient map � �X H→H
induces isomorphisms

Bohr(� �X H)∼=Bohr(H) and Prof(� �X H)∼= Prof(H).

The following definition was suggested to us by the referee.

Definition 1. An action H � X of a group H on a set X is residually finite or RF, if, for
any pair x1, x2 of distinct elements of X, there exists a finite index subgroup L of H such that
Lx1 �= Lx2.

Observe that H � X is RF if and only if H � Y is RF for every H-orbit Y ⊂ X. Observe
also that, when H � X is simply transitive, the action H � X is RF if and only if the group
H is RF.

Item (ii) of the following result was proved, with different methods, in [Gru57, theorem
3·2] for standard wreath products and in [Cor14, proposition 1·7] for permutational wreath
products.

COROLLARY G. Let�, H be groups, and let H � X be an action of H on a set X. Let� �X H
be equipped with the discrete topology.

Assume that � has at least two elements.

(i) The group � �X H is MAP if and only if � and H are MAP, and either

– � is abelian and H � X is RF, or
– X is finite.

(ii) ([Gru57], [Cor14]) The group� �X H is RF if and only if� and H are RF, and either

– � is abelian and H � X is RF, or
– X is finite.

Remark 2.

(i) The Bohr compactification of an abelian locally compact group A is easy to describe:
Bohr(A) can be identified with 	̂, where 	 = Â is viewed as discrete group; in case A
is finitely generated, a more precise description of Bohr(A) is available (see [Bek23,
proposition 11]).
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(ii) Provided Bohr(H) and Prof(H) are known, Corollary F together with Corollary D
give, in view of (i), a complete description of the Bohr compactification and the
profinite completion of any wreath product � �X H in case X is infinite.

(iii) Bohr compactifications of group and semigroup extensions have been studied by sev-
eral authors, in a more abstract and less explicit setting ([DL83, JL81, Jun78, JM02,
Lan72, Mil83]); profinite completions of group extensions appear at numerous places
in the literature ([GZ11, RZ00]).

This paper is organised as follows. Section 2 contains some general facts about Bohr
compactifications and profinite completions as well as some reminders on projective rep-
resentations. In Section 3, we give the proof of Theorems A and B. Section 4 contains the
proof of the corollaries. Section 5 is devoted to the explicit computation of the Bohr com-
pactification and profinite completions for two groups: the lamplighter group (Z/nZ) �Z and
the Heisenberg group H(R) over an arbitrary commutative ring R.

2. Preliminaries
2·1. Models for Bohr compactifications and profinite completions

Let G be a topological group. We give well known models for Bohr(G) and Prof(G). For
this, we use finite dimensional unitary representations of G, that is, continuous homomor-
phisms π : G→U(n) for some integer n≥ 1. We denote by Ĝfd the set of equivalence classes
of irreducible finite dimensional unitary representations of G. Let Ĝfinite be the subset of Ĝfd

consisting of representations π with finite image π(G).
For a compact (respectively, profinite) group K, the set K̂fd (respectively, K̂finite) coincides

with the dual space K̂, that is, the set of equivalence classes of unitary representations of K.
A useful tool for the identification of Bohr(G) or Prof(G) is given by the following

proposition; for the easy proof, see [Bek23, propositions 5 and 6].

PROPOSITION 3

(i) Let K be a compact group and β : G→K a continuous homomorphism with dense
image; then (K, β) is a Bohr compactification of G if and only if the map β̂ : K̂→ Ĝfd,
given by β̂(π)= π ◦ β, is surjective.

(ii) Let L a be profinite group and α : G→ L a continuous homomorphism with dense
image; then (L, α) is a profinite completion of G if and only if the map β̂ : L̂→ Ĝfinite,
given by β̂(π)= π ◦ β, is surjective.

The following proposition is an immediate consequence of Proposition 3.

PROPOSITION 4. Choose families

(πi : G→U(ni))i∈I and (σj : G→U(nj))j∈J

of representatives for the sets Ĝfd and Ĝfinite, respectively.

(i) Let β : G→∏
i∈I U(ni) be given by β(g)=⊕i∈I πi(g) and let K be the closure of

β(G). Then (K, β) is a Bohr compactification of G.

(ii) Let α : G→∏
j∈J U(nj) be given by α(g)=⊕j∈J σj(g) and let L be the closure of

α(G). Then (L, α) is a profinite completion of G.
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We observe that a more common model for the profinite completion of G is the projective
limit lim←−G/H, where H runs over the family of the normal subgroups of finite index of G,
together with the natural homomorphism G→ lim←−G/H (see e.g. [RZ00, 2·1·6])

2·2. Extension of representations

We will also use the notion of a projective representation. Let G be a locally compact
group. A map π : G→U(n) is a projective representation of G if the following holds:

π(e)= I,
for all g1, g2 ∈G, there exists c(g1, g2) ∈ S1 such that

π(g1g2)= c(g1, g2)π(g1)π(g2),

π is Borel measurable.

The map c : G×G→ S1 is a 2-cocycle with values in the unit circle S1. The conjugate
representation π : G→U(n) is another projective representation defined by π(g)= Jπ(g)J,
where J : Cn→Cn is the anti-linear map given by conjugation of the coordinates,

The proof of the following lemma is straightforward.

LEMMA 5. Let π : G→U(n) be a projective representation of G, with associated cocy-
cle c : G×G→ S1. Let π ′ : G→U(m) be another projective representation of G with
associated cocycle 2-cocycle c′ : G×G→ S1.

(i) π : G→U(n) is a projective representation of G with c as associated cocycle.

(ii) The tensor product

π ⊗ π ′ : G→U(nm), g �→ π(g)⊗ π ′(g)

is a projective representation of G with cc’ as associated cocycle.

Let N be a closed normal subgroup of G. Recall that the stabiliser Gπ in G of an irre-
ducible unitary representation π of N is the set of g ∈G such that πg is equivalent to π .
Observe that Gπ contains N.

The following proposition is a well known fact from the Clifford–Mackey theory
of unitary representations of group extensions (see [CR62, chapter 1, section 11] and
[Mac58]).

PROPOSITION 6. Let G=N � H be the semi-direct product of the locally compact groups H
and N. Let π : N→U(m) be an irreducible unitary representation of N and assume that G=
Gπ . There exists a projective representation π̃ : G→U(m) with the following properties:

(i) π̃ extends π , that is, π̃(n)= π(n) for every n ∈N;

(ii) the 2-cocycle c̃ : G×G→ S1 associated to π̃ has the form c̃= c ◦ (p× p), for a map
c : H ×H→ S1, where p : G→H is the canonical homomorphism.

Proof. Let S⊂U(m) be a Borel transversal for the quotient space PU(m)=U(m)/S1 with
Im ∈ S. Let h ∈H. Since G=Gπ and since π is irreducible, there exists a unique matrix
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π̃(h) ∈ S such that

π(hnh−1)= π̃ (h)π(n)π̃ (h)−1 for all n ∈N.

Define π̃ : G→U(n) by

π̃(nh)= π(n)π̃ (h) for all n ∈N, h ∈H.

It is clear that π̃ |N = π and that

π(gng−1)= π̃ (g)π(n)π̃ (g)−1 for all g ∈G, n ∈N.

It can be shown (see [Mac58, proof of theorem 8·2]) that π̃ is a measurable map.

Let g1, g2 ∈G. For every n ∈N, we have, on the one hand,

π(g1g2ng−1
2 g1)= π̃ (g1g2)π(n)π̃ (g1g2)−1

and on the other hand

π(g1g2ng−1
2 g1)= π̃ (g1)π(g2ng−1

2 )π̃ (g1)−1

= π̃ (g1)π̃ (g2)π(n)π̃ (g1)−1π̃ (g2)−1.

Since π is irreducible, it follows that

π̃(g1g2)= c̃(g1, g2)π̃ (g1)π̃ (g2)

for some scalar c̃(g1, g2) ∈ S1.
Moreover, for g1 = n1h1, g2 = n2h2, we have, on the one hand,

π̃(g1g2)= c̃(g1, g2)π̃ (g1)π̃ (g2)

= c̃(n1h1, n2h2)π(n1)π̃ (h1)π(n2)π̃ (h2)

and, on the other hand,

π̃(g1g2)= π̃ (n1(h1n2h−1
1 )h1h2)

= π(n1(h1n2h−1
1 ))π̃ (h1h2)

= π(n1)π(h1n2h−1
1 )π̃(h1h2)

= π(n1)π̃ (h1)π(n2)π̃ (h1)−1π̃ (h1h2)

= c̃(h1, h2)π(n1)π̃ (h1)π(n2)π̃ (h1)−1π̃ (h1)π̃ (h2)

= c̃(h1, h2)π(n1)π̃ (h1)π(n2)π̃ (h2);

this shows that c̃(n1h1, n2h2)= c̃(h1, h2).

2·3. Bohr compactification and profinite completion of quotients

Let G be a topological group and N a closed normal subgroup of G. Let (Bohr(G), βG)
and (Prof(G), αG) be a Bohr compactification and a profinite completion of G. Let
Bohr(p) : Bohr(G)→Bohr(G/N) and Prof(p) : Bohr(G)→Bohr(G/N) be the morphisms
induced by the canonical epimorphism p : G→G/N. The following proposition is well
known (see [HK01, lemma 2·2] or [Bek23, proposition 10] for (i) and [RZ00, proposition
3·2·5] for (ii)). For the convenience of the reader, we give for (ii) a proof which is different
from the one in [RZ00]
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PROPOSITION 7

(i) Bohr(p) is surjective and its kernel is βG(N).

(ii) Prof(p) is surjective and its kernel is αG(N).

Proof. To show (ii), set K := αG(N). Let (Prof(G/N), α) be a profinite completion of
G/N. We have a commutative diagram

Prof(G)
Prof(p)

GG N
p

Gα α

Prof(G  N).

It follows that αG(N) and hence K is contained in Ker(Prof(p)). So, we have induced
homomorphisms β : G/N→ Prof(G)/K and β ′ : Prof(G)/K→ Prof(G/N), giving rise to a
commutative diagram

Prof(G) K Prof(G  N).
β

β α

G N

It follows that (Prof(G)/K, β) has the same universal property for G/N as (Prof(G/N), α); it
is therefore a profinite completion of G/N.

3. Proof of Theorems A and B
3·1. Proof of Theorem A

Set K := βG(N), where βG is the canonical map from the locally compact group G=
N � H to Bohr(G).

(i) First step. We claim that {
σ̂ ◦ (βG|N) : σ̂ ∈ K̂

}⊂ N̂H−per
fd .

Indeed, let σ̂ ∈ K̂. Then σ := σ̂ ◦ (βG|N) ∈ N̂fd. Let ρ̂ ∈ B̂ohr(G) be an irreducible subrep-
resentation of the induced representation IndBohr(G)

K σ̂ . Then, by Frobenius reciprocity, σ̂
is equivalent to a subrepresentation of ρ̂|K . Hence, σ is equivalent to a subrepresentation
of (ρ̂ ◦ βG)|N. The decomposition of the finite dimensional representation (ρ̂ ◦ βG)|N into
isotypical components shows that σ has a finite H-orbit (see [Bek23, proposition 12]).

(ii) Second step. We claim that

N̂H−per
fd ⊂ {σ̂ ◦ (βG|N) : σ̂ ∈ K̂

}
.

Indeed, let σ : N→U(m) be a representation of N with finite H-orbit. By Proposition 6,
there exists a projective representation σ̃ of Gσ =NHσ which extends σ and the associated
cocycle c : Gσ ×Gσ → S1, factorises through Hσ ×Hσ .

Define a projective representation τ : Gσ →U(m) of Gσ by

τ (nh)= σ̃ (h) for all nh ∈NHσ .
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Observe that τ is trivial on N and that its associated cocycle is c. Consider the tensor product
representation σ̃ ⊗ τ of Gσ . Lemma 5 shows that σ̃ ⊗ τ is a projective representation for the
cocyle cc= 1. So, σ̃ ⊗ τ is a measurable homomorphism from Gσ to U(m). This implies that
σ̃ ⊗ τ is continuous (see [BHV08, lemma A·6·2]) and so σ̃ ⊗ τ is an ordinary representation
of Gσ .

It is clear that σ̃ ⊗ τ is finite dimensional. Observe that the restriction (̃σ ⊗ τ )|N of σ̃ ⊗ τ
to N is a multiple of σ . Let

ρ := IndG
Gσ (̃σ ⊗ τ ).

Then ρ is finite dimensional, since σ̃ ⊗ τ is finite dimensional and Gσ has finite index in G.
As Gσ is open in G, σ̃ ⊗ τ is equivalent to a subrepresentation of the restriction ρ|Gσ of ρ to
Gσ (see e.g. [BdlH, 1·F]); consequently, σ is equivalent to a subrepresentation of ρ|N . Since
ρ is a finite dimensional unitary representation of G, there exists a unitary representation ρ̂ of
Bohr(G) such that ρ̂ ◦ βG = ρ. So, σ is equivalent to a subrepresentation of (ρ̂ ◦ βG)|N , that
is, there exists a subspace V of the space of ρ̂ which is invariant under βG(N) and defining
a representation of N which is equivalent to σ . Then V is invariant under K = βG(N) and
defines therefore an irreducible representation σ̂ of K for which σ̂ ◦ (βG|N)= σ holds.

Let ϕN : Bohr(N)→K = βG(N) be the homomorphism such that ϕN ◦ βN = βG|N .

(iii) Third step. We claim that

KerϕN =
⋂

σ∈N̂H−per
fd

Ker(Bohr(σ )),

where Bohr(σ ) is the representation of Bohr(N) such that Bohr(σ ) ◦ βN = σ .

Indeed, by the first and second steps, we have

N̂H−per
fd = {σ̂ ◦ (βG|N) : σ̂ ∈ K̂

}= {(̂σ ◦ ϕN) ◦ βN : σ̂ ∈ K̂
}

;

since obviously σ̂ ◦ ϕN =Bohr(σ ) for σ = (̂σ ◦ ϕN) ◦ βN , it follows that⋂
σ∈N̂H−per

fd

Ker(Bohr(σ ))=
⋂
σ̂∈K̂

Ker(̂σ ◦ ϕN).

As ϕN(Bohr(N))=K and K̂ separates the points of K, we have
⋂
σ̂∈K̂ Ker(̂σ ◦ ϕN)=KerϕN

and the claim is proved.
Set L := βG(H).

(iv) Fourth step. We claim that the map ϕH : Bohr(H)→ L, defined by the relation
ϕH ◦ βH = βG|H , is an isomorphism. Indeed, the canonical isomorphism H→G/N
induces an isomorphism Bohr(H)→Bohr(G/N). Using Proposition 7 (i), we obtain
a continuous epimorphism

f : L→Bohr(H)

such that f (βG(h))= βH(h) for all h ∈H. Then ϕH ◦ f is the identity on βG(H) and
hence on L, by density. This implies that ϕH is an isomorphism.
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Observe that, by the universal property of Bohr(N), every element h ∈H defines a
continuous automorphism θb(h) of Bohr(N) such that

θb(h)(n)= βN(hnh−1) for all n ∈N.

The corresponding homomorphism θb : H→Aut(Bohr(N)) defines an action of H on the
compact group Bohr(N). By duality, we have an action, still denoted by θb, of H on B̂ohr(N)
and we have

Bohr(σ h)= θb(h)(Bohr(σ )) for all σ ∈ N̂fd, h ∈H.

This implies that the normal subgroup

KerϕN =
⋂

σ∈N̂H−per
fd

Ker(Bohr(σ ))

of Bohr(N) is H-invariant. We have therefore an induced action θb of H on Bohr(N)/KerϕN .
Observe that the isomorphism

Bohr(N)/KerϕN→K

induced by ϕN is H-equivariant for θb and the action of H on K given by conjugation with
βG(h) for h ∈H.

(v) Fifth step. We claim that the action θb induces an action of Bohr(H) by automorphisms
on Bohr(N)/KerϕN and that the map

(Bohr(N)/KerϕN) � Bohr(H)→Bohr(G), (xKerϕN , y) �→ ϕN(x)ϕH(y)

is an isomorphism.

Indeed, βG(N) is a normal subgroup of Bohr(G) and so βG(H) acts by conjugation on K.
By the third and the fourth step, the maps

ϕN : Bohr(N)/KerϕN→K, xKerϕN �→ ϕN(x)

and

ϕH:Bohr(H)→ L

are isomorphisms. We define an action

θ̂ : Bohr(H)→Aut(Bohr(N)/KerϕN)

by

θ̂ (y)(xKerϕN)= (ϕN)−1
(
ϕH(y)ϕN(x)ϕH(y)−1

)
for x ∈Bohr(N) and y ∈Bohr(H). The claim follows.

3·2. Proof of Theorem B

The proof is similar to the proof of Theorem A. The role of N̂fd is now played by the space
N̂finite of finite dimensional irreducible representations of N with finite image. We will go
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quickly through the steps of the proof of Theorem A; at some places (especially the second
step) there will be a few crucial changes and new arguments which we will emphasise.

Set L := αG(N), where αG : G→ Prof(G) is the canonical map. Observe that L is profinite.

(i) First step. We claim that
{
σ̂ ◦ (αG|N) : σ̂ ∈ L̂

}⊂ N̂H−per
finite . Indeed, let σ̂ ∈ L̂. Then σ :=

σ̂ ◦ (αG|N) ∈ N̂finite, since L is profinite. Let ρ̂ be an irreducible subrepresentation of
IndProf(G)

L σ̂ . Since Prof(G) is compact, ρ̂ is finite dimensional. Since σ is equivalent
to a subrepresentation of ρ̂ ◦ (αG)|N), it has therefore a finite H-orbit.

(ii) Second step. We claim that N̂H−per
finite ⊂

{
σ̂ ◦ (αG|N) : σ̂ ∈ L̂

}
. Indeed, let σ : N→U(m)

be an irreducible representation with finite image. By Proposition 6, there exists a
projective representation σ̃ of Gσ =NHσ which extends σ and the associated cocycle
c : Gσ ×Gσ → S1, factorises through Hσ ×Hσ . We need to show that we can choose
σ̃ so that σ̃ (Gσ ) is finite.

Choose a projective representation σ̃ : Gσ →U(m) as above and modify σ̃ as follows:
define

σ̃1(nh)= 1

( det σ̃ (h))1/m
σ̃ (h)σ (n) for all n ∈N, h ∈Hσ .

Then σ̃1 is again a projective representation of Gσ =NHσ which extends σ and the asso-
ciated cocycle c : Gσ ×Gσ → S1 factorises through Hσ ×Hσ ; moreover, σ̃1(h) ∈ SU(m) for
every h ∈Hσ .

Every h ∈Hσ induces a bijection ϕh of σ (N) given by

ϕh : σ (n) �→ σ̃1(h)σ (n)̃σ1(h)−1 = σ (hnh−1) for all n ∈N.

So, we have a map

ϕ :̃σ1(Hσ )→ Sym(σ (N)), σ̃1(h) �→ ϕh,

where Sym(σ (N)) is the set of bijections of σ (N). For h1, h2 ∈Hσ , we have ϕh1 = ϕh2 if and
only if σ̃1(h2)= λσ̃1(h1) for some scalar λ ∈ S1, by irreducibility of σ . Since det (̃σ1(h1))= 1
and det (̃σ1(h2))= 1, it follows that λ is a mth root of unity. This shows that the fibers of the
map ϕ are finite. Since σ (N) is finite, Sym(σ (N)) and hence σ̃1(Hσ ) is finite. It follows that
σ̃1(Gσ )= σ̃1(Hσ )σ (N) is finite.

Let τ : Gσ →U(m) be the projective representation of Gσ given by

τ (nh)= σ̃1(h) for all nh ∈NHσ .

Then σ̃1 ⊗ τ is a ordinary representation of Gσ and has finite image. The induced repre-
sentation ρ := IndG

Gσ
(̃σ1 ⊗ τ ) has finite image, since Gσ has finite index in G. As σ̃1 ⊗ τ is

equivalent to a subrepresentation of the restriction ρ|Gσ of ρ to Gσ , the representation σ is
equivalent to a subrepresentation of ρ|N . Since ρ(G) has finite image, there exists a unitary
representation ρ̂ of Prof(G) such that ρ̂ ◦ αG = ρ. So, there exists a subspace V of the space
of ρ̂ which is invariant under αG(N) and defining a representation of N which is equivalent
to σ . Then V defines an irreducible representation σ̂ of L for which σ̂ ◦ (αG|N)= σ holds.

Let ψN : Prof(N)→ L be the homomorphism such that ψN ◦ αN = αG|N .
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(iii) Third step. We claim that

KerψN =
⋂

σ∈N̂H−per
finite

Ker(Prof(σ )).

Indeed, the proof is similar to the proof of the third step of Theorem A

(iv) Fourth step. We claim that the map ψH : Prof(H)→ αG(H), defined by the relation
ϕH ◦ αH = αG|H , is an isomorphism. Indeed, the proof is similar to the proof of the
fourth step of Theorem A.

Every element h ∈H defines a continuous automorphism θp(h) of Prof(N). Let

θp : H→Aut(Prof(N))

be the corresponding homomorphism; as in Theorem A, we have an induced action θp of H
on Prof(N)/KerψN .

• Fifth step. We claim that the action θp of H induces an action of Prof(H) by
automorphisms on Prof(N)/KerψN and that the map

(Prof(N)/KerψN)� Prof(H)→ Prof(G), (xKerψN , y) �→ψN(x)ψH(y)

is an isomorphism.

Indeed, the proof is similar to the proof of the fifth step of Theorem A.

4. Proof of the Corollaries
4·1. Proof of Corollary C

Assume that N is finitely generated. In view of Theorem B, we have to show that N̂H−per
finite =

N̂finite.
It is well known that, for every integer n≥ 1, there are only finitely many subgroups of

index n in N. Indeed, since N is finitely generated, there are only finitely many actions of
N on the set {1, . . . , n}. Every subgroup M of index n defines an action of N on N/M and
hence on {1, . . . , n} for which the stabiliser of, say, 1 is M. So, there are only finitely many
such subgroups M.

Let σ ∈ N̂finite and set n := |σ (N)|. Consider Nσ =∩MM, where M runs over the sub-
groups of N of index n. Then Nσ is a normal subgroup of N of finite index and, for every
h ∈H, the representation σ h factorises to a representation of N/Nσ . Since N/Nσ is a finite
group, it has only finitely many non equivalent irreducible representations and the claim is
proved.

4·2. Proof of Corollary D

We assume that N is abelian. The dual group of Bohr(N) is N̂ and the dual of Prof(N) is
N̂finite, viewed as discrete groups. With the notation as in Theorems A and B, the subgroups
C and D are respectively the annihilators in Bohr(N) and in Prof(N) of the closed subgroups
N̂H−per and N̂H−per

finite . Hence, Bohr(N)/C and Prof(N)/D are the dual groups of N̂H−per and

N̂H−per
finite , viewed as discrete groups. So, the claim follows from Theorems A and B.
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4·3 Proof of Corollary E

In view of Theorems A and B, G is MAP, respectively RF, if and only if

Ker(ϕN ◦ βN)= {e} and Ker(ϕH ◦ βH)= {e},
respectively

Ker(ψN ◦ αN)= {e} and Ker(ψH ◦ αH)= {e}.
So, G is MAP, respectively RF, if and only if

β−1
N (C)= {e} and Ker(βH)= {e},

respectively

α−1
N (D)= {e} and Ker(αH)= {e}.

This exactly means that G is MAP, respectively RF, if and only if N̂H−per
fd separates the points

of N and H is MAP, respectively N̂H−per
finite separates the points of N and H is RF.

4·4. Proof of Corollary F

We assume that G=� �X H is the wreath product of the groups � and H given by a
transitive action H � X; set N := ⊕x∈X�.

(a) Assume that X is finite. Then, of course, N̂H−per
fd = N̂fd and N̂H−per

finite = N̂finite; so,
the subgroups C and D from Theorems A and B are trivial. Since Bohr(N)=
⊕x∈XBohr(�) and Prof(N)=⊕x∈XProf(�), we have

Bohr(� �X H)∼= (⊕x∈XBohr(�))� Bohr(H) and

Prof(� �X H)∼= (⊕x∈XProf(�))� Prof(H).

(b) Assume that X is infinite.

(i) First step. We claim that, for every σ ∈ N̂H−per
fd , we have dim σ = 1, that is, σ (N)⊂

U(1)= S1.

Indeed, assume by contradiction that dim σ > 1. Let F be the family of finite subsets of
X. For every F ∈F , let N(F) be the normal subgroup of N given by

N(F) := ⊕x∈F�

The restriction σ |N(F) of σ to N(F) has a decomposition into isotypical components:

σ |N(F) =⊕π∈�F nππ ,

where�F is a (finite) subset of N̂(F)fd and the nπ ’s some positive integers. As is well known
(see, e.g., [Wei40, section 17]), every representation in N̂(F)fd is a tensor product ⊗h∈Fρh

of irreducible representations ρh of�; so, we can view�F as subset of
∏

x∈F �̂fd. If F⊂ F′,
then the obvious map

∏
x∈F′ �̂fd→∏

x∈F �̂fd restricts to a surjective map �F′ →�F.
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Since dim σ is finite, it follows that there exists F0 ∈F such that

dim π = 1 for all π ∈�F, F ∈F with F ∩ F0 =∅
and

dim π0 > 1 for some π0 ∈�F0 .

For h ∈H and F ∈F , observe that for the decomposition of σ h|N(h−1F) into isotypical
components, we have

σ h|N(h−1F) =⊕π∈�F nππ .

So, σ h and σ are not equivalent if h−1F0 ∩ F0 =∅.
Since X is infinite, we can choose inductively a sequence (hn)n≥0 of elements in H by

h0 = e and

h−1
n+1F0 ∩

⋃
0≤m≤n

h−1
m F0 =∅ for all n≥ 0.

The σ hn’s are then pairwise not equivalent. This is a contradiction, since σ ∈ N̂H−per
fd .

Let p:� �X H→�Ab �X H be the quotient map, which is given by

p((λx)x∈X , h)= ((λx[�,�])x∈X , h).

(ii) Second step. We claim that the induced maps

Bohr(p) : Bohr(� �X H)→Bohr(�Ab �X H)

and

Prof(p) : Prof(� �X H)→ Prof(�Ab �X H)

are isomorphisms.

Indeed, by the first step, every σ ∈ N̂H−per
fd factorises through NAb. Hence, by Theorems A

and B, [N, N] is contained in C= ker ϕN and [N, N] is contained in D= kerψN . This means
that βG( ker p)= {e} and αG( ker p)= {e}. The claim follows then from Proposition 7.

4·5. Proof of Corollary G

We assume that G=� �X H is the wreath product of the groups � and H given by an
action H � X. We assume that � has at least two elements and, as before, we set N =
⊕x∈X�.

(a) Assume that X is finite. Then G is MAP (respectively RF) if and only if � and H are
MAP (respectively RF).

Indeed, N̂H−per
fd = N̂fd separates the points of N if and only if � is MAP and N̂H−per

finite =
N̂finite separates the points of N if and only if � is RF. The claim follows then from
Corollary E.

(b) Assume that X is infinite.
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Assume that G is MAP. Then, for every H-orbit Y in X, the wreath product� �Y H, which
embeds as subgroup of G, is MAP. Since some Y is infinite, Corollary F implies that � is
abelian. So, we may and will from now assume that � (and hence N) is abelian.

(i) First step. We claim that, if N̂H−per separates the points of N, then H � X is RF.

Indeed, recall that the dual group �̂ of �, equipped with the topology of pointwise
convergence, is a compact group. The dual group N̂ of N can be identified, as topological
group, with the product group

∏
x∈X �̂, endowed with the product topology, by means of

the duality 〈∏
x∈X

χx,⊕x∈Xλx

〉
=
∏
x∈X

χx(λx) for all
∏
x∈X

χx ∈ N̂,⊕x∈Xλx ∈N.

(Observe that the product on the right hand side is well-defined since λx = e for all but
finitely many x ∈ X.) The dual action of H on N̂ is given by(∏

x∈X

χx

)h

=
∏
x∈X

χh−1x for all h ∈H.

For � := ∏
x∈X χx ∈ N̂, we have that � ∈ N̂H−per if and only if there exists a finite index

subgroup H� of H such that

χhx = χx for all h ∈H�, x ∈ X.

Let x0, x1 be two distinct points from X. By assumption, N̂H−per separates the points of N;
equivalently, N̂H−per is dense in N̂. Since � has at least two elements, we can find χ0 ∈ �̂
and λ0 ∈�with χ0(λ0) �= 1. Define�0 =∏x∈X χx ∈ N̂ by χx0 = χ0 and χx = 1� for x �= x0.
Set

ε := 1

2

∣∣∣χ0(λ0)− 1
∣∣∣> 0.

Since N̂H−per is dense in N̂, we can find �′ =∏x∈X χ
′
x ∈ N̂H−per such that

|χ ′x0
(λ0)− χx0 (λ0)| ≤ ε/2 and |χ ′x1

(λ0)− χx1 (λ0)| ≤ ε/2.

We claim that H�′x0 �=H�′x1, where H�′ is the stabiliser of �′. Indeed, assume by
contradiction that x0 ∈H�′x1. Then χ ′x0

= χ ′x1
and hence

2ε= |χ0(λ0)− 1|
≤ |χ0(λ0)− χ ′x0

(λ0)| + |χ ′x0
(λ0)− 1|

= |χx0 (λ0)− χ ′x0
(λ0)| + |χ ′x1

(λ0)− χx1 (λ0)|
≤ ε

and this is a contradiction. Since H�′ has finite index, we have proved that H � X is RF.

(ii) Second step. We claim that, if H � X is RF, then N̂H−per separates the points of N.

Indeed, let ⊕x∈Xλx ∈N \ {e}. Then F= {x ∈ X : λx �= e} is a finite and non-empty subset
of X. Let (χ0

x )x∈F be a sequence in �̂ such that
∏

x∈F χ
0
x (λx) �= 1 (this is possible, since
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abelian groups are MAP). Since H � X is RF, we can find a subgroup of finite index L of H
so that Lx �= Lx′ for all x, x′ ∈ F with x �= x′. Define �=∏x′∈X χx′ ∈ N̂ by

χx′ =
{
χ0

x if x′ ∈ Lx for some x ∈ F,

1� if x′ /∈∪x∈FLh.

It is clear that L⊂H� and hence that � ∈ N̂H−per; moreover,

� (⊕x∈Xλx)=
∏
x∈F

χ0
x (λx) �= 1.

So, N̂H−per separates the points of N.

(iii) Third step. We claim that, if H � X is RF and � is RF, then N̂H−per
finite separates the

points of N.

The proof is the same as the proof of the second step, with only one difference: one has
to choose a sequence (χ0

x )x∈F in �̂finite such that
∏

x∈F χ
0
x (λx) �= 1; this is possible, since we

are assuming that � is RF.

(iv) Fourth step. We claim that G is MAP if and only if H is RF and H � X is RF. Indeed,
this follows from Corollary E, combined with the first and second steps.

(v) Fifth step. We claim that G is RF if and only if�, H are RF and H � X is RF. Indeed,
this follows from Corollary E, combined with the first and third steps.

5. Examples
5·1. Lamplighter group

For m≥ 1, denote by Cm the finite cyclic group Z/mZ. Recall that

Bohr(Z)∼=Bohr(Z)0 ⊕ Prof(Z).

and that

Prof(Z)= lim←−
m

Cm and Bohr(Z)0 ∼=
∏
ω∈c

A/Q,

where A/Q is the ring of adeles of Q and c= 2ℵ0 (see [Bek23, proposition 11]).
For an integer n0 ≥ 2, let G=Cn0 �Z be the lamplighter group. We claim that

Bohr(G)∼=Bohr(Z)0 × Prof(G)

and

Prof(G)= lim←−
m

Cn0 �Cm.

Indeed, let N := ⊕k∈ZCn0 . It will be convenient to describe N as the set of maps f : Z→Cn0

such that supp( f ) := {k ∈Z : f (k) �= 0} is at most finite. The action of m ∈Z on f ∈N is given
by translation: f m(k)= f (k+m) for all k ∈Z.

We identify Ĉn0 with the group μn0 of n0-th roots of unity in C by means of the duality

〈z, kZ〉 = zk for all z ∈μn0 , k ∈Z.
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Then N̂ can be identified with the set of maps � : Z→μn0 , with duality given by

〈�, f 〉 =
∏
k∈Z

〈�(k), f (k)〉 for all � ∈ N̂, f ∈N.

Observe that �(N)⊂μn0 and so N̂ = N̂finite.
We have N̂H−per =⋃m≥1 N̂(m), where N̂(m) is the subgroup

N̂(m)= {� : Z→μn0 :�(k+m)=�(k) for all k ∈Z
}

.

Observe that we have natural injections im1
m2 : N̂(m2)→ N̂(m1) if m1 is a multiple of m2. The

dual group A(m) of N̂(m) can be identified with the set of maps f : Cm→Cn0 by means of
the duality

〈f ,�〉 =
∏

k+mZ∈Cm

�(k)f (k+mZ) for all � ∈ N̂(m), f ∈ A(m).

If m1 is a multiple of m2, we have a projection pm2
m1 : A(m1)→ A(m2) given by

〈pm2
m1

(f ),�〉 = 〈f ,� ◦ im1
m2
〉.

The dual group A of N̂H−per =⋃m≥1 N̂(m) can then be identified with the projective limit
lim←−m

A(m).

The action of Z by automorphisms of A is given, for r ∈Z and f = (f m)m≥1 ∈ A by (f )r =
(gm)m≥1, where

gm(k+mZ)= f m(k+ r+mZ) for all k ∈Z.

This action extends to an action of Proj(Z)= lim←−m
Cm by automorphisms on A in an obvious

way. By Corollary D, the group Prof(G) is isomorphic to the corresponding semi-direct
product A � Prof(Z) and hence

Prof(G)∼= lim←−
m

Cn0 �Cm.

By Corollary D again, the action of Z on A extends to an action by automorphisms of
Bohr(Z). Since Bohr(Z)0 is connected and A is totally disconnected, Bohr(Z)0 acts as the
identity on A. Since Bohr(Z)∼=Bohr(Z)0 × Prof(Z), it follows that

Bohr(G)∼= (A � Proj(Z))×Bohr(Z)0 ∼= Prof(G)×Bohr(Z)0.

For another description of Prof(G), see [GK14, lemma 3·24].

5·2. Heisenberg group

Let R be a commutative unital ring. The Heisenberg group is the group

H(R) :=
⎧⎨⎩
⎛⎝1 a c

0 1 b
0 0 1

⎞⎠ : a, b, c ∈ R

⎫⎬⎭ .

We can and will identify H(R) with R3, equipped with the group law

(a, b, c)(a′, b′, c′) = (a+ a′, b+ b′, c+ c′ + ab′).
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We will equip R with the discrete topology; in the sequel, Bohr(R), Prof(R), and R̂ will
be the Bohr compactification, the profinite completion, and the dual group of (R,+), the
additive group of R.

Let Ifinite be the family of ideals of the ring R with finite index (as subgroups of (R,+)).
Every ideal I from Ifinite defines two compact groups H(Bohr(R), I) and H(Prof(R), I) of
Heisenberg type as follows:

H(Bohr(R), I) := Bohr(R)×Bohr(R)× (R/I)

is equipped with the group law

(x, y, z)(x′, y′, z′) = (x+ x′, y+ y′, z+ z′ + pI(x)pI(y′),

where pI : Bohr(R)→ R/I is the group homomorphism induced by the canonical map R→
R/I; the group H(Prof(R), I) is defined in a similar way.

Observe that, for two ideals I and J in Ifinite with J ⊂ I, we have natural epimorphisms

H(Bohr(R), J)→H(Bohr(R), I) and H(Prof(R), J)→H(Prof(R), I).

We claim that the canonical maps H(R)→H(Bohr(R), I) and H(R)→H(Prof(R), I)
induce isomorphisms

Bohr(H(R))∼= lim←−
I

H(Bohr(R), I)

and

Prof(H(R))∼= lim←−
I

H(Prof(R), I),

where I runs over Ifinite.
Indeed, H(R) is a semi-direct product N � H for

N = {(0, b, c) : b, c ∈ R} ∼= R2

and

H = {(a, 0, 0) : a ∈ R} ∼= R.

Let χ ∈ N̂. Then χ = χβ,ψ for a unique pair (β,ψ) ∈ (̂R)2, where χβ,ψ is defined by

χβ,ψ (0, b, c) = β(b)ψ(c) for b, c ∈ R.

For h= (a, 0, 0) ∈H, we have

χh
β,ψ (0, b, c) = β(b)ψ(a−1b)ψ(c) = χβψa,ψ (0, b, c) for b, c ∈ R,

where ψa ∈ R̂ is defined by ψa(b)=ψ(a−1b) for b ∈ R. It follows that the H-orbit of χβ,ψ

is

{χβψa,ψ : a ∈ R},
and that the stabiliser of χβ,ψ , which only depends on ψ , is

Hψ = {(a, 0, 0) | a ∈ Iψ },
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where Iψ is the ideal of R defined by

Iψ = {a ∈ R | aR⊂ kerψ}.
Let R̂per be the subgroup of all ψ ∈ R̂ which factorises through a quotient R/I for an ideal
I ∈ Ifinite. It follows that

N̂H−per = {χβ,ψ : β ∈ R̂,ψ ∈ R̂per} ∼= R̂× R̂per.

The dual group of R̂per can be identified with lim←−I
R/I, where I runs over Ifinite. So, the dual

group A of N̂H−per can be identified with lim←−I
Bohr(R)× (R/I).

The action of Bohr(H)∼=Bohr(R) on every Bohr(R)× (R/I) is given by

x · (y, z)= (y, z+ pI(x)pI(y′)) for all x, y ∈Bohr(R), z ∈ R/I,

for the natural map pI : Bohr(R)→ R/I. This shows that

Bohr(H(R))∼= lim←−
I

H(Bohr(R), I).

Similarly, the dual group B of N̂H−per
finite can be identified with lim←−I

Prof(R)× (R/I) and we
have

Prof(H(R))∼= lim←−
I

H(Prof(R), I).

Acknowledgments. It is a pleasure to thank P. de la Harpe for helpful comments. Thanks
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