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Zinc-blende (ZB) CdTe has drawn great attention as optoelectronic and solar energy conversion 

materials since it has a near optimum band gap of 1.6 eV and a absorption coefficient greater than 

5x10
5
/cm. CdTe can be either ZB or wurtzite (WZ) structures, resulting in different electronic 

properties. It has been reported that the twin superlattice with numerous twin boundaries in III-V and 

II-VI semiconductor nanowires along <111> growth orientation of ZB structures considerably enhance 

band gap engineering and mechanical behavior in quasi-one-dimensional materials [1]. This opens new 

possibilities for properties and functionalities at the atomic and quantum scales by controlling the twin 

boundary and modulating twin densities. Therefore, it is an in-demand and challenging feat to “create” a 

single twin boundary in a nanowire or bulk material in order to understand the electronic and 

mechanical characteristics of the III-V and II-VI quantum well or barrier. Wafer bonding, which enables 

the direct integration of two or more single crystal wafers with controlled surfaces and orientation, is a 

key technique in creating a single boundary [2]. In this study, we show the creation of a single boundary 

between two identical CdTe single crystals. 

 

Single-side polished 5 × 5 mm
2
 p-type CdTe (111) wafers with a thickness of 500 μm were used for the 

bonding experiments. Out of plane (2θ/ω scan) and in-plane (φ scan) XRD were used to determine the 

crystal orientations of the planes and flats. Surface roughness (RMS) was measured by AFM in tapping 

mode. For the cleaning process, samples were rinsed in de-ionized water for 5 s, dipped in HCl (15%) 

for 30 s, and then rinsed in de-ionized water for 5 s. The wafer pair was loaded into a vacuum bonder 

immediately after drying under a flow of nitrogen gas to prevent oxidation of the CdTe surface. Bonding 

was performed at 400 °C for 20 hrs under a pressure of 1 MPa. Interface morphology and atomic 

arrangement were analyzed using HRTEM and HAADF-STEM. Electrical characteristics across the 

twin boundary were compared against those of single crystal CdTe. 

 

Three types of boundaries were created without an amorphous layer at the interface by controlling the 

relative rotation angle of the two bonded parts. Figure 1(a) shows the HRTEM of the bonded pair with a 

relative rotation angle of 180°. The bonded interface is a twin boundary along the <0 1 1> zone axis. The 

diffraction pattern from the interface, as shown in Figure 1(b), has confirmed that the bonded boundary 

is a (111) [ 0 1 1 ]  twin boundary [3]. A small misorientation angle from the perfect 180° rotation angle 

may exist due to a slight misalignment of the bonded pair; the measured rotation angle was 177.6°. 

Figure 2 presents the HAADF-STEM images of the two bonded portions, and shows that the twin 

boundary was one unit layer of WZ structure between ZB matrices. The Cd-Te dumbbell structure was 

observed along <011>, which could be used to identify atom species at the termination of the atomic 

planes. The intensity profiles from HAADF images demonstrated that the arrangement of Cd-Te 

dumbbell were Cd- and Te- terminated on the left and right portions, respectively, as shown in Figure 

2(c) and (d). Our preliminary I-V measurement shows a potential barrier at the bonded interface, 

indicating that the one unit layer of WZ structure between ZB matrices may act as a quantum barrier [3]. 
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Two other types of bonded boundaries were created with a designed relative rotation angle of 90° and 

0°, as shown in Figures 3 and 4, respectively. The crystallographic orientations of the two bonded pairs 

were confirmed to be( 1 1 1 )//(111) [0 1 1]//[ 1 1 2] and (111)//( 1 1 1 ) [0 1 1]//[01 1 ], respectively. 
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Figure 1. TEM image (a) of the bonded pair 

shows the twin boundary with a coherent twin 

interface. The interface is indicated by the two 

white arrows. Diffraction patterns for the 

interface (b) of the bonded pair indicated that 

the crystallographic orientation relationship of 

the bonded pair was (111)//(111) and [0 1 1] 

//[01 1 ]. 

 

Figure 2. The <011> cross-sectional 

HAADF-STEM images, (a) and (b) reveals 

the twin boundary at the bonded interface. 

HAADF intensity profiles (c) and (d) along 

the left and right parts reveal the atomic 

arrangement of the bonded interface. Blue dot 

depicts Cd. Red dot depicts Te. 
 

Figure 3. TEM image (a) and diffraction 

patterns for the left (b), and right (c) 

portions of the bonded pair with a relative 
rotation angle of 90°. 

Figure 4. TEM image (a) and diffraction 

patterns for the left (b), right (c) portions of 

the bonded pair with a relative rotation angle 

of 0°. 
 

517Microsc. Microanal. 20 (Suppl 3), 2014

https://doi.org/10.1017/S1431927614004309 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927614004309

