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ON THE KNESER-HUKUHARA PROPERTY FOR
INTEGRAL EQUATIONS IN LOCALLY CONVEX SPACES

STANISLAW SzUFLA

This paper contains a Hukuhara - type theorem for nonlinear

Volterra integral equations in locally convex spaces.
1. Introduction

Let T = {(t,s): 0 s8 <t s a} and let W be an open subset of
a quasicomplete locally convex topological vector space E . 1In this

paper we consider the integral equation
t

(1) x(t) = q(t) + [ f(t,s,x(8))ds ,
0

where f 1is a bounded continuous function from T x ¥ into E and ¢q
is a continuous function from [0,al into W . We shall give sufficient
conditions for the existence of a continuous solution of (1). These
conditions are formulated in terms of measures of noncompactness (see

[91). 1In particular, they hold in the case when f = f} + fé » where
f., 1is completely continuous and f, satisfies a Kamke condition (see
1 2

[5]). Moreover, we shall show that the set of all continuous solutions

of (1) is a continuum in the corresponding space of continuous functions.

For the case when FE is a Banach space, similar problems were investigat-
ed in several papers (see [10], [§]1, [11], [13]). Our considerations are

based on the Lemma from Section 2 which gives a topological character-

ization of sets of fixed points of a certain class of nonlinear operators,
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namely the so-called Volterra operators introduced in [14]. Section 2
is a complement to the papers [12] and [3] (see also [14]), but our

Lemma does not follow from these papers.
2. The basic lemma

Let X be a bounded convex subset of a normed space and let Y be
a Hausdorff topological vector space. Denote by C = C(X,Y) the space

of continuous functions K + Y with the topology of uniform convergence.

LEMMA. Asswnme that F: C > C 1is a continuous mapping such that
1, the set F(C) is equiuniformly continuous;
2. there exist t,eX and € e ¥ such that

F(:c)(to) =z for all =z e C ;
3. forevery e >0 and z,ye C
a:|K€=y|K€ = F(x)|K€=F(y)|Ke,
where K = {t e K: Ilt-toll < e} ;

4. every sequence (:cn) in C such that lim (x_ -~ F(xn)) =0
n+w
has a limit point.

Then the set Sp = {x € C: x = F(x)} is nonempty and connected

whenever it is ecompact.
Proof. By Lemma 1 of [712] there exists a sequence (Fn) such that
I - Fn is a homeomorphism € » C and 1lim F (x) = F(x) uniformly in
nsw

x € C . From this and condition 4 it is clear that SF # J . Suppose
that SF is compact and not connected. Thus there are nonempty compact

sets S , 5, such that S, =S uS, and S n S, =§0. As C is a
o F o 1

1 o 1
completely regular space, this implies (see [7], Chapter 41, II, Remark 3)
that there exists a continuous function w: C-+[0,1] such that w(x) =0

for xeSo and w(x) =1 for x €S, . Fix uoeSo, uleSJ and a

positive integer n . Put
e (r) = (1 -2)(u ~F(u)) +r(u, - F (u)) (0srsi)

-1 . .
and u . = (I - Fn) (en(z’)) . Since en(r') depends continuously on r
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and I - Fh is a homeomorphism, the mapping r - w(unr) is continuous

on [0,1]1 . Moreover, Uy, = %, and u , =u, , so that w(uno) =0
and w(unl) = 1. From this we deduce that there exists r ¢ [0,11
such that
(2) w(unr ) =1/2 .
n
For convenience put vn = unr . As 1lim e (r) = 0 uniformly in »r ,
n n>o ’
we get
(3 lim (v, - F(v)) = lim (F (v ) - F(v ) +e (r )} =0 .
nroe n>e

Consequently, by condition 4, the sequence (vn) has a limit point v .
In view of (3) it is clear that v € SF , so that w(v) =0 or w(w)=1.

On the other hand, (2) implies that w(v) = 1/2 , which yields a

contradiction.
3. Volterra integral equations in locally convex spaces

Now we return to the equation (1). Let P be a family of continu-
ous seminorms generating the topology of E . For any p € P and for

any bounded subset X of E denote by Bp(X) the infimum of all € > 0

for which there exists a finite subset Z of F such that

XcZ+ Bp(e) s where Bp(s) = {x € E: p(x) < e} . The family

[Bp (x))

peP is called the Hausdorff measure of noncompactness of X

(for properties see [91).

Let us recall that a function h: T x R+ -+ R+ is called a Kamke

function if % satisfies the Caratheodory conditions and, for any

0 <d sa, the function u = 0 is the unique nonnegative continuous
solution of the inequality u(t) < ft h(t,s,u(s))ds on [0,d] .
0
THEOREM 1. Assume that for any p € P there exists a Kamke

function (t,s,u) - hp(t,u) such that hp 18 nondecreasing in u and
(4) (t,l0,¢t X)) s h (t,8_(X)

B, (r 1x X)) o (E58 )
for each t e [0,a] and for each bounded subset X of E .
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Then there exists an interval J = [0,d] such that the set of all
continuous solutions x: J - E of (1), considered as a subset of
C(J,E) , is nonempty, compact and connected.

Proof. As W is open and ¢q is continuous, we can choose a set

B of the form B = {x ¢ E: pi(m) £b, i1=1,...,m} , where Pyseeesbpy

€ P, such that q(t) + Bc W for all t ¢ [0,al.
Let M = sup {pi(f(t,s,x)] st =1,...,m, (t,8) ¢ Ty, x € W} ,
d = min (a,b/M) and J = [0,d] . Put

x for x € B

r{x) = . )
x/Q(x) for =z e E\B,

where ¢ is the Minkowski functional of B , and put
g(t,s,x) = f(t,s,q(s) + r(x - q(s))} for (t,8)eT and x € E .

From the known properties of Minkowski's functional it follows that »r

is a continuous function from £ into B and r(X) C U X
0<rs1
for each subset X of E . Hence

Bp({q(s) +r(x-q(s)) :8ef0,al,zeX}) s Bp(X)

for any p € P and for any bounded subset X of E . This shows that
g is a bounded continuous function from T x E into E and g satis-
fies (4).

We introduce a mapping F defined by

t
F(x)(t) = q(t) + [ g(t,s,x(s))ds for tedJ and ze C,
0

where C = C(J,E) . It can be easily verified that F is a continuous
mapping C + C , the set F(C) is bounded and equicontinuous, and (1)
is equivalent to the equation x = F(zx) . Now we shall show that F

satisfies condition 4. Let LG) be a sequence such that

(5) lim (xn - Pz ))=0.

naw
Put V = {xn: n=1,2,...} and V(t) = {u(t): u ¢ V} . BAs the set F(C)

is equicontinuous, it follows from (5) that V is also equitontinuous.

Therefore for any p € P the function t + v(t) = Bp(V(t)) is
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continwous on J . For a given t € J we divide the interval [0,%]
into n parts 0 = to < t1 < (.. < tn = ¢t in such a way that
Ati = ti -~ ti-l =t/m for T=1,..., n.

Let V. = {uls) : uev, t; 158s ti} . Then

1

F(V)(t) < q(t) + E st, conv g(t,[0,t] x v.) .
=1
Moreover, for any %, 1 <1 < n , there exists 8 € [ti-l’ti] such that
sp(vi) = sup {sp(Ws)) Pty g S8 st} =vls)
(see [1], Theorem 2.2). Hence, by (5), (4) and corresponding properties
of Bp , we obtain

n n
F(V . ,[0, . t.h_(t,8 (V.))
v(t) s sp( (V)(t)) s izlAt,LBp(g(t (0,21 x V,)} < iZJ otk (.8, (V,

n
= 7 ot

L ihp(t’v(si)) .

n t
But if n > ® , then ) At.h (t,v(s.)) ~ [ h _(t,v(s)) ds. Thus
i=1 T p 7 0 P

t
v(t) s | hp(t,v(s))db for t e d .
0

As hp is a Kamke function, this implies that
Bp(V(t)) =0 forall ted.

Since this equality holds for every p € P , it follows that for any
t € J the set V(t) is relatively compact in £ . By Ascoli's theorem
[6 ; Theorem 7.17] from this we deduce that V is relatively compact in

C . Hence the sequence (xn) has a limit point. On the other hand, as
SF = F(SF) » by repeating the above argument we infer that SF is compact.

Applying now the Lemma, we conclude that SF is nonempty and connected.

4, Kneser's theorem for weak solutions of the Cauchy problem

In this section we shall present another application of the Lemma,
lLet E be a (sequentially) weakly complete Banach space, B = {x ¢ E:
lz - xbﬂ s b}, and let f: [0,a] x B+ E be a bounded weakly- weakly

continuous function. Let M = sup{llf(t,x)ll : 0 S t S a, z € B},
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d = min (a,b/M) and J = [0,d]. Denote by Eb the space E provided
with the weak topology.

THEOREM 2. Assume that )
B(f(7 x X)) < h(B(X)) for each subset X of B,

where h 1is a nondecreasing Kamke function and B is the measure of
weak noncompactness (see [2]).

Then the set of all weak solutions of the Cauchy problem
(6) x! = f(t,x) , x(0) = x

defined on J , ig nonempty, compact and connected in C(J,Ew) .

Proof. Pput
x if x € B
r(x) =
z, + blx - xo)/ﬂx - xoll if x e E\B

t
Flx)(t) =z + [ flesr(xts)))ds (ted, zec),
0

where C = C(J,Ew) .

It is known that F is a continuous mapping C -+ C , the set F(C)
is bounded and equiuniformly (strongly) continuous, and the function
x ¢ C is a weak solution of (6) if and only if x = F(x) . Arguing
similarly as in the proof of Theorem 1, we can show that ‘F satisfies

condition 4 and the set SF is nonempty and compact. By the Lemma it
follows from this that SF is connected.

Remark. The assumptions of Theorem 1 or 2 guarantee that the
corresponding operator F satisfies condition 4, but it is an open
question whether it satisfies the stronger condition:

for every net (z,)

lim (x ~ F(x )) =0 ==> (x ) has a limit point.
a a o

Therefore our theorems do not follow from the results of [3] and [712].
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