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QUASI-STATIC EVOLUTION OF A FORCE-FREE MAGNETIC FIELD
AND CONDITIONS FOR TIE ONSET OF A STELLAR FLARE

J.J. Aly

Service d'Astrophysique - CEN Saclay
['-91191 Gif-sur-Yvette Cedex - France

1 - INTRODUCTION

Magnetic fields in the solar corona are braught into an endless evo-
lution by the never-ceasing motions of the subphotospheric plasma in which the
feet of their lines are anchored. It is generally thought that this evolution
is essentially quasi-static, the field passing through a sequence of force-
free equilibrium states. Sporadically, however, the cquilibrium is broken in a
region of limited extent, and during a relatively short interval of time a
catastrophic highly dynamic evolution takes place, giving rise to such well-
known phenomena as  flares or coronal transients. Understanding the factors
which determine if a magnetohydrostatic coronal equilibrium is maintained or,
on the contrary, destroyed, when boundary conditions change at the photosphe-
ric level, then appears as a central theoretical problem of solar physics. In
this Communication, we report some recent results which shed some new light
onto this old problem.

2 - EVOLUTION OF AN ARCADE FORCE-IFREE FIELD EMBEDDED IN A CONDUCTING PLASMA

Let us consider in the half-space {z > 0}, assumed to contain a per-
fectly conducting plasma, a continuous time-sequence of x-invariant force-free

fields B (y,z) = VA (y,z) % X + BLA[Al(y,z)]§ whose field lines have an arcade
topology. This sequence describes a quasi-static evolution which is driven by
a stationnary velocity field v(y) = v(y); which is imposed on the boundary

{z = 0}, and then the potential A (y,z) is a solution of the initial-boundary
value problem (see Aly, 1987)

- M = d(B'fx/Z) / dA (1)
ds, dx, (A)
X, (&) = B,__(A) ICN(A) T = " P W) = ) (2)
A (y.0) = gly) (3)
dA, 2
_ 2 . b 2 N R !
c.[A] = j{z)O} |va, |? dydz + ¢t o &l ‘ 4z < (4)
topology {Cpl} = topology {Cpo} (arcade) (5)

Equation (1) expresses the force-free character of the field; (2)
relates the shear X (A) of a field line C (A) labelled by a value A of the
potential A, - X (A) is the difference between the x-positions of its left and
right feet, respectively - to the velocity field on {z = 0}, which determines
the function L(A), and to the time t; in this equation, CPL(A) represents the
projection of C (A) onto {x = O}, while 2, (A) stands for the arca between
C_.(A) and the y-axis; (3) is a boundary condition expressing that A (y,o) is

p L . . .
kept unchanged by the x-motions (g is a given function satisfying:
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g(t o) = 0 < gly) €A" = glo); yg'(y) <O for y # 0; and y°g(y) = 0(1)); rela-
tion (4), which constraints the magnetic energy per unit of x-length to be
finite, plays the role of an asympiotic condition for A ; and (5) is a condi-
tion which expresses the frozen-ir. law. Clearly, at the initial time t = O,
the field coincides with the finite energy potential field A, associated with
“.

We have yet been able to reach the following ¢onclusions

i) consider the associated variational problem, which consists to

Look at cach time t for a function A} which makes the energy C [A), as defined

by (4), an absolute minimum over the set of functions ¥ belonging to an appro-

priate functional space and satisfying (3)-(5) in some sense; then this pro-

blem  has always a solution, i.e.: Vt, JATE{ such that C [A[] = inf C {A]. We
AER

shall assume here that A is sufficiently regular to be also a solution of the

original problem. Of course, the field A| 1is, by construction, absolutely
non-linearly stable with respect to all 2D ideal perturbations;

ii) the encrgy C{ = C [A[] increcases steadily from C,[A;] = Cg
infinity; for small (resp. large) values of t, (C{ - CJ) o t? (resp. « log t)
(Figure 1);

up to

i1i) when t - co, A converges asymptotically towards a singular
quasi-potential field Aj, which is completely (resp. partially) open if A' = A"

(resp. A' < A"), where A' is the smallest number such that £(A) = O for
Al <A < A" (see Figure 2a (resp. 2b)).
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(a) (b)
Figure 1 (see text) Figure 2 (see text)

3 - STABILITY OF THE ARCADE CONFIGURATIONS WITH RESPECT TO RECONNECTION

Let us now relax the assumption of perfect conductivity of the plasma
and look for the possibility of new effects happening in a time scale much
shorter than the irrelevant resistive time scale T.-

Shearing of the field creates some amount of "toroidal" magnetic flua
(flux in the x-direction) which thus cannot be destroyed on a time-scale
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T However, it may be possible that a fast reconnection process acting in
an arcade configuration rearranges this flux in a different way by cutting
some of the lines into several pieces, as shown on Figure 3.
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Figure 3: ‘l'ransition by reconnection from an arcade
to a more complex configuration.

£, (A+dA)

ar g

In such a process, the topology of the lines changes, but the distri-
bution of the magnetic fluxes are (quasi-)conserved. This means that if a new

equilibrium field (A , B, ) is obtained by rcconnecting the arcade (A[, B{ ),

then: i) conservation of the poloidal fluxes: Ai(y,o) = gly) and

0 < Ai(y,z) < A™; ii) conservation of the toroidal fluxes:

A p(A) i p(A)
d gz, (i g
X (A) = |-B; i (A)= Z -B i) L (A)= 2 B (i) (A) ds' /|va"|
tx dA i=1 Lx d/\ i=l tx C'(i)(l\) P L
pt

(6)
(the line CPL(A) being broken into p(A) pieces).

Of course, reconnection may occur spontancously at t only if there
does exist among the configurations (A, B ) satisfying the requirements just
stated above, one which has an ecnergy smaller than C[. Thus we arc led to
consider the following new minimization problem at each time t: "Minimize
Cl[A] over the set H' defined as ¥, but without the topological constraint
(5)" (note that we have taken here into account the fact that having
B " =B (I for some i # j, incrcases the energy, and then taken
B Y (A) = B, (A) = [-X (dX /dA)"']J(A) for all i, 1 < i < p(A)). This minimiza-

tion problem has always a solution A;’ (c [a;'] = C;' = inf C_[A]). Then we
}tl

may have to face two possible situations: i) either A[' = A and C[' = C:

reconnection 1is not encrgetically favourable; ii) or A; =z A: and C; < C;:
reconnection is energetically favourable.

Actually, one can show that there is a critical time tc[g,C] such
that the first (resp. the second) possibility arises if 0 <t < t_ (resp.
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£~ U v 2V The reason tor this result way be casily undeestood. Indeed, for

to= 0 A= A = A by awell known property  of potential  fields and the

) .
dingmioer of Zf\\ \3\':‘1‘ H' then has an arvcade topology; this property naturally
Giso holds for small values off U, On the contrary, for large cnouph values ol
T, it Is easy to see by using the asymptotic result of § 2 that the poloidal
cnergy o of A (Figure fa) is decreased i woe reconnect that field by maliingg it

cotential in oa small rectangle as sheen on Figure 4b, while the toroidal encr-
be made to change as little as we want (as lim B O ffor s o).
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APPLICATION TO TWO-IBONS FLAKES

The theoretical analysis reported
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