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NORMAL APPROXIMATION FOR RANDOM SUMS
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Abstract

In this paper, we adapt the very effective Berry–Esseen theorems of Chen and Shao
(2004), which apply to sums of locally dependent random variables, for use with randomly
indexed sums. Our particular interest is in random variables resulting from integrating
a random field with respect to a point process. We illustrate the use of our theorems
in three examples: in a rather general model of the insurance collective; in problems in
geometrical probability involving stabilizing functionals; and in counting the maximal
points in a two-dimensional region.
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1. Introduction

Of the techniques available for establishing the accuracy of approximation in the central
limit theorem for sums of dependent random variables, Stein’s (1972) method has become
one of the most popular. It readily delivers error bounds which are often of or close to the
correct asymptotic order, when the distance between distributions is measured with respect
to the (bounded) Wasserstein distance; see, for example, Erickson (1974) and Barbour et
al. (1989). If a bound for the error in Kolmogorov distance, dK, is preferred (where, for
two probability measures P and Q on R, dK(P, Q) := supx |P(−∞, x] − Q(−∞, x]|), the
arguments needed are more involved, but there have nonetheless been notable successes, such
as Bolthausen’s (1984) Berry–Esseen bound for the combinatorial central limit theorem. More
recently, Baldi and Rinott (1989) used a theorem of Stein (1986, p. 35) to establish rates of
convergence for sums of dependent random variables in terms of properties of an associated
dependency graph. Even though the rates obtained were not optimal, even for bounded
summands, their theorem has proved extremely useful. This approach has been substantially
refined, for example in Dembo and Rinott (1996) and, for multivariate random variables, Rinott
and Rotar (1996); however, except for bounded summands, the correct rate of convergence
could not usually be attained.

In a recent paper, Chen and Shao (2004) have used the concentration inequality approach to
Stein’s method to establish accurate Berry–Esseen bounds for sums, W = ∑n

i=1 Xi , of centred
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random variables, under a variety of local dependence assumptions. In particular, in their
Theorem 2.4, the error bound is expressed very simply in Lyapounov form, being of order

O

(
κp−1

n∑
i=1

E |Xi |p(var W)−p/2
)

for 2 < p ≤ 3. Here, κ := maxi card(N(Ci)) for an index set, N(Ci), corresponding to an
extended dependence neighbourhood of Xi ; see condition (LD4) below. Their bound promises
to find wide application.

In this paper, we are concerned with modifying the theory of Chen and Shao (2004) in order
to apply it to randomly indexed sums. The topic of randomly stopped (partial sum) processes
can be traced back to Anscombe (1952) and Rényi (1960), and there is now a substantial theory
(see, for example, Gnedenko and Korolev (1996), Silvestrov (2004), and Kläver and Schmitz
(2006)). Our interest is rather in having as random index set the points of a point process,
which may also (locally) influence the values of the summands. (In the literature, the term
‘point field’ is also occasionally used instead of point process; see Stoyan and Stoyan (1994).)
More precisely, we wish to re-express the theorems of Chen and Shao (2004) in such a way
that they can be directly applied to random variables of the form W = ∫

�
FαH(dα), where H

is a point process on a locally compact, second-countable Hausdorff topological space � with
locally finite mean measure, Fα is a random field, and the signed measure with density FαH(dα)

satisfies some local dependence hypotheses. (A measure is locally finite if it has finite measure
on every relatively compact set.) For example, H might be a Poisson process and we might
have Fα = 1{H(B(α,ρ)\{α})=0} for some ρ > 0, where B(α, ρ) denotes the closed ball around α

with radius ρ; in this case, W counts the ρ-isolated points of H (cf. the Matérn hard core
process (Matérn (1986, p. 37))). Now, for such a W , dependence neighbourhoods of Xα are
often more naturally expressed geometrically, as subsets of � (in the example above, we would
take N(Cα) = B(α, 10ρ)), and the number, H(N(Cα)), of random variables Fγ with indices
in N(Cα) is random and, in principle, unbounded, implying that κ = ∞. Furthermore, to
match the setting of Chen and Shao (2004), the random variables Fα would need to be centred.
However, it is often more natural to take arbitrary Fα and to centre W by its expectation,∫
�

E{FαH(dα)}, thus fully incorporating into W the randomness arising as a result of the
random number of summands. Although these differences can in principle be circumvented by
special arguments in particular applications – such as, for example, by discretization and the
introduction of a dependency graph, as in Penrose and Yukich (2005) – it is tedious to have to
do so and the essential argument becomes obscured. In contrast, our Corollary 2.2 furnishes
an analogue of Theorem 2.4 of Chen and Shao (2004) which is easy to apply and gives good
results.

Our setting is described and the main theorems stated in Section 2. As far as possible, to
facilitate comparison, we follow the presentation of Chen and Shao (2004). In Section 3, we
give three applications, one from insurance mathematics and two from geometrical probability,
exhibiting some improvement over previously known results. The proofs of the main theorems
are given in Section 4.

2. Main theorems

Let � be a locally compact, second-countable Hausdorff topological space with separable and
complete metric d (Kallenberg (1983, p. 11)) and Borel σ -field B(�), and let H denote the space
of all finite, nonnegative, integer-valued measures on � with σ -field B(H) generated by the
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weak topology. (ξn ∈ H tends to ξ in the weak topology onH if and only if
∫
�

f dξn → ∫
�

f dξ

for all bounded, continuous functions f on � (Kallenberg (1983, p. 169)).) Throughout the
section, we assume that X = {Xα, α ∈ �} is a random field on � and that H is a point process
on � with locally finite mean measure µ; that is,

X : (� × �, B(�) × F ) → (R, B(R)) and H : (�, F ) → (H , B(H))

are measurable mappings from an underlying probability space (�, F , P). We also define X
to be the space of all signed measures ν such that ν+ and ν− are finite measures on �, and use
B(X) to stand for the σ -field generated by the weak topology. For each set B ∈ B(�), we use
ξ |B to stand for the signed measure of ξ restricted to B; that is,

ξ |B(C) = ξ(B ∩ C) for all C ∈ B(�).

We say that {Dα, α ∈ �} is a measurable system of neighbourhoods if, for each α ∈ �,
Dα ∈ B(�) is a closed set containing α and the mapping (α, ξ, x) �→ (α, ξ |Dα , x) is a
measurable mapping from (� × X × R, B(�) × B(X) × B(R)) into itself. A sufficient
condition for the measurability condition to hold is that D = {(α, β) : β ∈ Dα, α ∈ �} is a
measurable subset of the product space �2 := � × � (Chen and Xia (2004)).

Let {Nα, α ∈ �} be a measurable system of neighbourhoods and f a measurable function
on � × X × R such that {Fα := f (α, H1|Nα , Xα), α ∈ �} is a random field satisfying

E

[∫
�

|f (α, H1|Nα , Xα)|H(dα)

]2

< ∞, (2.1)

where H1(dβ) := XβH(dβ). Our main object of interest is the random variable

W :=
∫

�

FαH(dα),

the measurability of which can be proved by first considering Fα which are indicator functions
of rectangular sets in B(�) × F and then extending to general random fields using the usual
measure-theoretic techniques.

We now write H2(dβ) := FβH(dβ), so that W can be expressed as H2(�), and define the
mean (signed) measure of H2 by µ2(A) = E

∫
A

FαH(dα), for a generic set A. It is a standard
exercise to show that µ2 is absolutely continuous with respect to µ; hence, we can define

F̄α = dµ2

dµ
(α), µ-almost surely

(Kallenberg (1983, pp. 83–84)). When H is a simple point process (Kallenberg (1983, p. 5)),
F̄α can be intuitively interpreted as the conditional expectation of Fα given that there is a point
of H at α. It then follows from the definition of F̄ that µ2(dβ) = F̄βµ(dβ). Now, for later
use, define

ϑ2 := var W, G(dα) := |Fα|H(dα) + |F̄α|µ(dα),

H̃2(dα) := ϑ−1[FαH(dα) − F̄αµ(dα)].
Thus, the standardized version W̃ := ϑ−1(W −E W) can be expressed as H̃2(�). Finally, note
that if we take � = {1, 2, . . . , n}, H(dα) = δα , and Fα = Xα − E Xα , then we recover the
setting of Chen and Shao (2004).
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Our interest is in studying normal approximation to the distribution L(W) of W under
various assumptions of local dependence, parallel to those in Chen and Shao (2004). With
B(α, r) = {y : d(y, α) ≤ r}, these can be expressed as follows.

(LD1) There exist a sequence, rn ↓ 0, and a measurable system of neighbourhoods, {Aα,n,

α ∈ �}, such that

(a) Aα,n ↓ Aα and H2|B(α,rn) is independent of H2|Ac
α,n

;

(b) if B(α, rn) ⊂ B(β, rm) then Aα,n ⊂ Aβ,m.

(LD2) Condition (LD1) holds and

(c) there exists a measurable system of neighbourhoods, {Bα, α ∈ �}, such that, for
each α ∈ �, Bα ⊃ Aα and H2|Aα is independent of H2|Bc

α
.

(LD3) Condition (LD2) holds and

(d) there exists a measurable system of neighbourhoods, {Cα, α ∈ �}, such that, for
each α ∈ �, Cα ⊃ Bα and H2|Bα is independent of H2|Cc

α
.

Remark 2.1. Local dependence can also be defined in terms of Palm distributions, as in Chen
and Xia (2004), resulting in the same condition as (LD1).

To state the theorems, we also define the following notation:

Yα :=
∫

Aα

H̃2(dβ) = H̃2(Aα), Zα := H̃2(Bα), Uα := H̃2(Cα).

We write |H̃2|(A) = ∫
A

|H̃2(dα)| for a generic set A, and set

K̂(t, dα) = {1{−Yα≤t<0} − 1{0≤t≤−Yα}}H̃2(dα), K̂(t) =
∫

�

K̂(t, dα), K(t) = E K̂(t),

where 1{·} is the indicator function. We then define the set

B∗ := {(α, β) : Aα ∩ Bβ �= ∅ and Bα ∩ Aβ �= ∅};

thus, Yα and Yβ are independent if (α, β) /∈ B∗. Finally, for any B ⊂ � we define

N(B) := {β ∈ � : Bβ ∩ B �= ∅}.

Throughout the paper, we use H̃ ∗
2 to stand for an independent copy of H̃2, and Y ∗

α , Z∗
α , and G∗

are defined in terms of H̃ ∗
2 in the same way that Yα , Zα , and G are defined in terms of H̃2.

Our first theorem is then a rather direct counterpart to Theorem 2.1 of Chen and
Shao (2004).

Theorem 2.1. Under condition (LD1), we have

dK(L(ϑ−1(W − E W)), N (0, 1)) ≤ r1 + 4r2 + 8r3 + r4 + 4.5r5 + 1.5r6,
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where

r1 = E

∣∣∣∣
∫

�

YαH̃2(dα) − E
∫

�

YαH̃2(dα)

∣∣∣∣, r2 = E
∫

�

|Yα| 1{|Yα |≥1} |H̃2(dα)|,

r3 = E
∫

�

{Y 2
α ∧ 1}|H̃2(dα)|, r4 = E

{
|H̃2(�)|

∫
�

{Y 2
α ∧ 1}|H̃2(dα)|

}
,

r5 =
∫

|t |≤1
var(K̂(t)) dt

= E

{∫∫
�2

H̃2(dα)H̃2(dβ) 1{YαYβ>0}(|Yα| ∧ |Yβ | ∧ 1)

−
∫∫

�2
H̃2(dα)H̃ ∗

2 (dβ) 1{YαY ∗
β >0}(|Yα| ∧ |Y ∗

β | ∧ 1)

}
,

r2
6 =

∫
|t |≤1

|t | var(K̂(t)) dt

= 1

2
E

{∫∫
�2

H̃2(dα)H̃2(dβ) 1{YαYβ>0}(Y 2
α ∧ Y 2

β ∧ 1)

−
∫∫

�2
H̃2(dα)H̃ ∗

2 (dβ) 1{YαY ∗
β >0}(Y 2

α ∧ Y ∗
β

2 ∧ 1)

}
.

Our second theorem differs from its counterpart in Chen and Shao (2004), because the sums∑n
i=1 |Yi |q , for q = p and q = p3 := min{p, 3}, appearing there do not seem natural in our

context. Instead, we prove the following variant.

Theorem 2.2. If condition (LD2) holds and 2 < p ≤ 4, then

dK(L(ϑ−1(W − E W)), N (0, 1)) ≤ 15r̃1(p3) + 11

2
r̃2(p3) +

(
1 + 3

√
2

4

)√
r̃2(p),

where p3 := min{p, 3} and

r̃1(q) := E
∫

�

|Yα|q−1|H̃2(dα)| ≤ 1

ϑq
E

∫
�

G(Aα)q−1G(dα),

r̃2(q) := E
∫∫

B∗
|Yα|q−2|H̃2(dα)|{|H̃2(dβ)| + |H̃ ∗

2 (dβ)|}

≤ 1

ϑq
E

∫
�

G(Aα)q−2[G(N(Aα)) + G∗(N(Aα))]G(dα).

The next theorem also differs a little from its counterpart, Theorem 2.3, in Chen and
Shao (2004). Their error terms r7 and r11 have disappeared from the upper bound at the
cost of some minor modification of r8 and r9. The term r ′

8 is needed because our setting is
more general than theirs. The other extra terms appear because our concentration inequality in
Proposition 4.1 is slightly different; we were unable to reproduce their proof in full detail.

Theorem 2.3. Suppose that condition (LD3) is satisfied. Then

dK(L(ϑ−1(W − E W)), N (0, 1))

≤ 4r2 + (3 + r13)r3 + (2.1 + 1
2 r13)r8 + (1.1 + 1

2 r13)r
′
8 + r9 + 2r10 + r12 + r14 (2.2)
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and

dK(L(ϑ−1(W − E W)), N (0, 1)) ≤ 4r2 + 4r3 + 3r8 + 2r ′
8 + r9 + 2r10 + r12 + r13, (2.3)

where

r8 = E
∫

�

(|Yα| ∧ 1)|Zα| |H̃2(dα)|, r ′
8 = E

∫
�

|Zα|(|Y ∗
α | ∧ 1)|H̃ ∗

2 (dα)|,

r9 = E
∫

�

|H̃2(�)|(|Zα| ∧ 1)(|Yα| ∧ 1)|H̃2(dα)|,

r10 = E
∫∫

B∗
{(|Yβ1 | ∧ |Yβ2 | ∧ 1)|H̃2(dβ1)| |H̃2(dβ2)|
+ (|Yβ1 | ∧ |Y ∗

β2
| ∧ 1)|H̃2(dβ1)| |H̃ ∗

2 (dβ2)|},
r12 = E

∫
�

(|H̃2(�)| + 1)(|Zα| ∧ 1)(|Y ∗
α | ∧ 1)|H̃ ∗

2 (dα)|,

r13 = sup
α∈�

E
∫

N(Cα)

|H̃2(dβ)|,

r14 = sup
α∈�

E
∫

N(Cα)

(|Yβ | ∧ 1)|H̃2(dβ)|.

The statement of the next theorem is agreeably compact.

Theorem 2.4. Suppose that condition (LD3) is satisfied and that 2 < p ≤ 3. Then

dK(L(ϑ−1(W − E W)), N (0, 1)) ≤ 16η1 + 8η2 + ϑ−1 sup
α

E G(N(Cα)),

where

η1 := ϑ−p E
∫

�

G(N(Cα))p−1G(dα),

η2 := ϑ−p E
∫

�

G(N(Cα))p−2G∗(N(Cα))G(dα).

Now let R(dα) := |Fα|H(dα), whence G(dα) ≤ R(dα)+E R(dα); in practice R is usually
the easiest quantity to work with. Define the following measures of smallness:

ε1(q) := ϑ−q E
∫

α∈�

R(N(Aα))q−1R(dα),

ε2(q) := ϑ−q

∫
α∈�

E R(N(Aα))q−1 E R(dα),

ε3 := ϑ−p E
∫

α∈�

R(N(Cα))p−1R(dα),

ε4 := ϑ−p

∫
α∈�

E R(N(Cα))p−1 E R(dα),

ε5 := ϑ−1 sup
α∈�

E R(N(Cα)).

We can then bound the errors in Theorems 2.2 and 2.4 in terms of these quantities. It follows,
after some calculation, that, for q ≥ 2,

r̃1(q) ≤ 2q−2{ε1(q) + 3ε2(q)}, r̃2(q) ≤ 6 × 2(q−3)+{ε1(q) + 3ε2(q)},
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and that, for 2 ≤ p ≤ 3,

η1 ≤ 2(ε3 + 3ε4), η2 ≤ 2(ε3 + 4ε4).

This leads to the following corollaries.

Corollary 2.1. Under the conditions of Theorem 2.2, for 2 < p ≤ 4 and with p3 := min{p, 3}
we have

dK(L(ϑ−1(W − E W)), N (0, 1)) ≤ 63{ε1(p3) + 3ε2(p3)} + 8
√

ε1(p) + 3ε2(p).

Corollary 2.2. Under the conditions of Theorem 2.4, for 2 < p ≤ 3 we have

dK(L(ϑ−1(W − E W)), N (0, 1)) ≤ 48ε3 + 160ε4 + 2ε5.

3. Applications

3.1. An insurance model

A simple model in insurance assumes that each of a large number of insured risks has a small
probability of resulting in a claim, independently of the others, and that the claim amounts
are independent and identically distributed random variables which are also independent of
the number of claims. Hence, the total number of claims approximately follows a Poisson
distribution, leading to a compound Poisson model for the total amount of the claims. Goovaerts
and Dhaene (1996) showed that a compound Poisson distribution is still a valid approximation
for the total claim amount, even if the occurrences of the claims are weakly dependent, as long
as the claim amounts are still independent and identically distributed random variables which
are also independent of the number of claims.

When the time scale is taken into consideration, the total sum of the claims on an insurance
portfolio is classically modelled as

S(t) ≡ SN(t) =
{

0, N(t) = 0,

ξ1 + · · · + ξN(t), N(t) ≥ 1,
t ≥ 0,

where {ξi, i ≥ 1} are independent and identically distributed random variables representing
the amounts of the claims and the claim number process {N(t), t ≥ 0}, which records the
numbers and times of the insurance claims, is a counting process independent of {ξi, i ≥ 1}
(Embrechts et al. (1997, pp. 96–111)). When {N(t), t ≥ 0} is a renewal process, the process
{S(t), t ≥ 0} is the well-known Cramér–Lundberg model (Embrechts et al. (1997, p. 22)).
While this model has been extensively studied and used, it may seem unnatural to assume that
the claim sizes are independent and identically distributed, or that the claims occur in a renewal
process; natural disasters, for instance, could induce local temporal dependence in both the
sizes and the numbers of claims. There have been numerous attempts to address the issue as
regards the claim number process, by assuming it variously to be a stationary point process, a
process with independent increments, a mixed Poisson process, a negative binomial process,
or a pure-birth Markov process (see Rolski et al. (1999) or Embrechts et al. (1997) for details),
but relatively little work addresses the interdependence of claim sizes.

In what follows, we let {Yt , t ≥ 0} be a strictly stationary process representing a random
process describing the claim environment over time, and let H be a simple point process on
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� := [0, T ] × N recording the times and sizes of clusters of claims. We do not necessarily
require that

H(ds, N) :=
∑
n≥1

H(ds, n)

should be absolutely continuous with respect to Lebesgue measure, as this facilitates application
to daily aggregated data. If H {α} = 1 for α = (t, n) then the total claim amount Xα is assumed,
conditionally on the value, y, of Yt , to be a sum of n independent, identically distributed random
variables Z

(t)
i with distribution Q(y), depending only on y, having mean m1(y), variance v(y),

and finite third absolute moment m3
3(y). We also write

m̄3
3(y) := E{|Z(0)

1 − E m1(Y0)|3 | Y0 = y},

and write X̃α for the precentred claim amount Xα − n E m1(Y0).
In order to have only local dependence, we assume that {Yt , t ≥ 0} is independent of H and

that there exists an h0 > 0 such that, for all a and b, 0 < a < b < ∞, Y |[a,b] is independent of
Y |R\(a−h0,b+h0) and H |[a,b]×N is independent of H |(R\(a−h0,b+h0))×N. Then, in order to obtain
explicit bounds, we assume that there exist a positive constant β, probabilities {pj , j ≥ 1},
and a measure, µ∗, on (0, T ] such that, for αi = (ti , ni), 1 ≤ i ≤ 3,

E H(dα1) ≤ pn1µ
∗(dt1), (3.1)

E{H(dα1)H(dα2)} ≤ βpn1pn2µ
∗(dt1)µ

∗(dt2) if t1 and t2 are distinct, (3.2)

E{H(dα1)H(dα2)H(dα3)} ≤ β2pn1pn2pn3µ
∗(dt1)µ

∗(dt2)µ
∗(dt3)

if t1, t2, and t3 are distinct. (3.3)

Thus, µ∗(ds) ≥ E H(ds, N) can be thought of as determining a typical maximal rate of
occurrence of clusters of claims, the pj as controlling the sizes of the clusters, and β as a factor
reflecting the extra intensity of clusters of claims at time t , if it is known that a cluster has already
occurred within the interval [t − h0, t + h0]. We shall further assume that µ∗(s, s + h] ≤ µ+h

for some µ+ < ∞, whenever h ≥ h0. We also define

m3
3 := E m3

3(Y0), m̄3
3 := E m̄3

3(Y0), n3+ :=
∑
n≥1

n3pn,

µ̄ := T −1
∫ T

0
E H(dt, N), n̄3 := T −1

∫ T

0

∑
n≥1

n3 E H(dt, n).

Here m3 and m̄3 are respectively generous measures of the typical individual claim size and its
deviation from its mean, and µ̄ and n̄ are respectively measures of the typical rate of occurrence
and size of a cluster of claims. To make our estimates of approximation error useful, we assume
that all of these quantities are finite.

We investigate normal approximations to two versions of the total claim amount in the
interval [0, T ] considered previously in the literature: the natural version, W := ∫

�
XαH(dα),

and the precentred version W0 := ∫
�

X̃αH(dα). For each of these, an assumption is needed
to ensure that its variance is genuinely of asymptotic order T as T increases. If, for each
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s ∈ [0, T ], the inequality∫ (s+h0)∧T

(s−h0)+
1{t �=s}

∑
n,r≥1

nr{E{m1(Yt )m1(Ys)} E{H(ds, n)H(dt, r)}

− (E m1(Y0))
2 E H(ds, n) E H(dt, r)}

+
∑
n≥1

{n2 E m1(Y0)
2 + n E v(Y0)} E H(ds, n)

− (E m1(Y0))
2
{∑

n≥1

n E H(ds, n)

}2

≥ m2
3n̄

2δ1 E H(ds, N), (3.4)

where
∫ b

a
is to be interpreted as

∫
(a,b], holds for some δ1 > 0, then

ϑ2 := var W ≥ T µ̄m2
3n̄

2δ1;
see (3.8), below. Similarly, if∫ (s+h0)∧T

(s−h0)+
1{t �=s}

∑
n≥1

∑
r≥1

nr[E{m1(Yt )m1(Ys)} − (E m1(Y0))
2] E{H(ds, n)H(dt, r)}

+
∑
n≥1

{n2 var m1(Y0) + n E v(Y0)} E H(ds, n)

≥ m̄2
3n̄

2δ2 E H(ds, N) (3.5)

holds for some δ2 > 0, then

ϑ2
0 := var W0 ≥ T µ̄m̄2

3n̄
2δ2.

The quantities δ1 and δ2 are a rough measure of the factor by which the variance is altered in
the two cases as a result of the presence of local dependence. If there were no local dependence
in either the Y or the H process, and if E H(ds, n) = p̄nµ̄ ds, in which case H would be a
Poisson cluster process, then the left-hand side of (3.4) would reduce to

(E N2 E m1(Y0)
2 + E N E v(Y0))µ̄ ds, (3.6)

where N is a random variable with the cluster size distribution {p̄j , j ≥ 1}. The factor m2
3n̄

2

on the right-hand side of (3.4) is chosen to mirror the corresponding contribution to (3.6), albeit
in a somewhat simplified way. Now δ1 can be seen as a modification arising because of the
dependence structure. The occurrence of dependent claims would in practice be expected to
increase the variance, meaning that we would expect to have δ1 > 1, so the assumption that
δ1 > 0 in (3.4) is reasonable. A similar interpretation can be made for δ2, appearing in (3.5).
There, if all the claim size distributions were identical, meaning that the Y process played no
part, then the left-hand size of (3.5) would actually simplify further to v E Nµ̄ ds, where v is
the variance of the individual claim amounts.

Theorem 3.1. Under the assumptions in the preceding paragraphs, if (3.4) holds then

dK(L(ϑ−1(W − E W)), N (0, 1)) = O({µ̄T }−1/2),
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and if (3.5) holds then

dK(L(ϑ−1
0 (W0 − E W0)), N (0, 1)) = O({µ̄T }−1/2).

Explicit bounds for the order terms are given in (3.9), below.

Proof. We use Corollary 2.2 with p = 3 to prove the claims, noting that, for α = (t, n),
we can take Aα = U(t, 1), Bα = U(t, 2), Cα = U(t, 3), and N(Cα) = U(t, 5), where
U(t, r) := ((t − rh0, t + rh0) ∩ [0, T ]) × N.

First of all, for W , we have R(dα) = XαH(dα), meaning that, for α = (t, n),

E R(dα) = n E m1(Y0) E H(dt, n) (3.7)

and, hence, from (3.1), that

E R(N(Cα)) =
∫

(t−5h0,t+5h0)∩[0,T ]

∑
n≥1

n E m1(Y0) E H(ds, n)

≤ 10n+m3µ+h0,

giving
ε5 ≤ 10µ+h0n+m3ϑ

−1.

To find ε3, we use (3.1)–(3.3) to give, for α = (t, n),

E
∫∫

β,γ∈N(Cα)

R(dβ)R(dγ )R(dα)

≤
∫∫

u,v∈U(t,5)

∑
r,s≥1

r3 + s3 + n3

3
m3

3prpspnβ
2µ∗(du)µ∗(dv)µ∗(dt)

+ 2
∫

u∈U(t,5)

∑
r≥1

r3 + 2n3

3
m3

3prpnβµ∗(du)µ∗(dt)

+
∫

u∈U(t,5)

∑
r≥1

2r3 + n3

3
m3

3prpnβµ∗(du)µ∗(dt) + n3m3
3pnβµ∗(dt)

≤ m3
3pnµ

∗(dt)

{
100(βµ+h0)

2 2n3+ + n3

3
+ 20βµ+h0

n3+ + 2n3

3

+ 10βµ+h0
2n3+ + n3

3
+ n3

}
.

It follows that
ε3 ≤ ϑ−3n3+m3

3µ+T {1 + 30βµ+h0 + 100(βµ+h0)
2}.

Likewise, it follows from (3.7), (3.1), and (3.2) that, for α = (t, n),

E R(dα) ≤ nm3pnµ
∗(dt)

and
E R(N(Cα))2 ≤ n2+m2

3µ+h0{10 + 100βµ+h0},
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giving
ε4 ≤ 10ϑ−3n3+m3

3µ
2+h0T {1 + 10βµ+h0}.

Finally, by (3.4),

ϑ2 =
∫ T

0

∫ T

0
1{t �=s}

∑
n,r≥1

nr{E{m1(Yt )m1(Ys)} E{H(ds, n)H(dt, r)}

− (E m1(Y0))
2 E H(ds, n) E H(dt, r)}

+
∫ T

0

∑
n≥1

{n2 E m1(Y0)
2 + n E v(Y0)} E H(ds, n)

− (E m1(Y0))
2
∫ T

0

{∑
n≥1

n E H(ds, n)

}2

=
∫ T

0

∫ (s+h0)∧T

(s−h0)+
1{t �=s}

∑
n,r≥1

nr{E{m1(Yt )m1(Ys)} E{H(ds, n)H(dt, r)}

− (E m1(Y0))
2 E H(ds, n) E H(dt, r)}

+
∫ T

0

∑
n≥1

{n2 E m1(Y0)
2 + n E v(Y0)} E H(ds, n)

− (E m1(Y0))
2
∫ T

0

{∑
n≥1

n E H(ds, n)

}2

≥ T µ̄m2
3n̄

2δ1. (3.8)

By applying Corollary 2.2, we thus obtain the bound

dK(L(ϑ−1(W − E W)), N (0, 1))

≤ 1√
µ̄δ1T

{
δ−1

1

n3+µ+
n̄3µ̄

(48{1 + 30βµ+h0 + 100(βµ+h0)
2}

+ 1600µ+h0{1 + 10βµ+h0}) + 20
n+
n̄

µ+h0

}
. (3.9)

The proof of the second approximation follows along exactly the same lines; the bound is
as in (3.9), but with δ1 replaced by δ2.

The error bound contains factors, n+/n̄ and µ+/µ̄, which reflect the variability permitted
in the specification of the system. The other element of particular interest is the product µ+h0,
which indicates the result of the dependence over time; it measures the maximal expected
number of clusters of claims arising during an interval of length h0. The bounds are strongly
influenced by its value, which should ideally be as small as possible. This makes it sensible in
practice to formulate the claims process in such a way that this is so. One way of doing this
would be to add further structure to the process, indexing claims not only according to time of
occurrence, but also by location and type of claim; it may be plausible to suppose that claims
arising at a certain geographical distance from one another are independent, or that claims
relating to different kinds of risk arise independently of one another. In such a scenario, the
analogue of µ+h0 is a corresponding measure of the expected number of clusters of claims in
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a region of dependence, but, because of the extra stratification according to the source of the
claim, this can be expected to be much smaller.

3.2. Local dependence in geometric probability

Avram and Bertsimas (1993) showed that many statistics arising in geometric probability are
closely equivalent to sums of random variables whose dependence structure, when expressed
in terms of a dependency graph, exhibits neighbourhoods of rather small cardinality. This
enables central limit theorems formulated for just these situations, such as that of Baldi and
Rinott (1989), to be applied. Penrose and Yukich (2005) combined their ideas with the general
notion of a stabilizing functional and with the theorems of Chen and Shao (2004), obtaining very
good rates of convergence for the central limit theorem in a wide range of problems of this kind.
Their examples include the total edge length of the k-nearest-neighbour graph, the number of
edges in the sphere-of-influence graph, and the independence number of the r-threshold graph,
all based on the points of an underlying realization of a Poisson process in a bounded region
of Rd . Here, we show that our modification of Chen and Shao’s theory, as it was designed to,
allows us to bypass the construction of a dependency graph, resulting in an argument which
flows more naturally. As a by-product, the rates of convergence that we obtain are slightly
better than those of Penrose and Yukich.

We begin by describing the setting of Penrose andYukich (2005). We take H to be a marked
Poisson process on � = �1 × �2, where �1 is a compact subset of Rd and �2 is a mark space,
assumed to be locally compact, second-countable, and Hausdorff. The mean measure of H

takes the form λν, where ν is a probability measure on � and λ, the average number of points
of H , is assumed to be large. The marginal, ν1, of ν on �1 has a probability density bounded
by κ < ∞. For each α = (α1, α2) ∈ �, we denote the conditional distribution of ν on the mark
space �2 by ν2(· | α1).

The random variable of interest is expressed as W := ∫
�

Fα H(dα), where Fα := fα(H) and
the functions fα : X → R are stabilizing in the following sense. Defining the neighbourhoods

D(α1, ρ) := {(β1, β2) ∈ � : |β1 − α1| ≤ ρ}
for any ρ ≥ 0, we suppose that for each α there is a function rα : X → R+ with the property
that, for each ρ ∈ R+ and χ ∈ X,

1[0,ρ](rα(χ)) = r̃α(ρ, χ |D(α1,ρ))

for some measurable function r̃α , and

Q(ρ) := sup
α∈�

P(rα(H) > λ−1/dρ) → 0 as ρ → ∞. (3.10)

Then the function fα is assumed to be such that

fα(χ) = fα(χ |D(α1,ρ)) for all ρ ≥ rα(χ).

Combining this with (3.10), the loose interpretation is that the value of fα is determined only
by the configuration of the relatively few points closest to α.

Setting Fα(ρ) := Fα 1{rα(H)≤λ−1/dρ}, it thus follows that

W(ρ) :=
∫

�

Fα(ρ) H(dα)
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satisfies
P(W �= W(ρ)) ≤ λQ(ρ)

and that W(ρ) fulfils the local dependence condition (LD3) with

Aα := D(α1, 2λ−1/dρ), Bα := D(α1, 4λ−1/dρ),

Cα := D(α1, 6λ−1/dρ), N(Cα) := D(α1, 10λ−1/dρ).

In order to apply our theorems, all that is now needed is a moment condition: we suppose that,
for some p > 2 and wp < ∞,

sup
α1∈�1

∫
�2

E(α1,α2) |F(α1,α2)|pν2(dα2 | α1) ≤ w
p
p, (3.11)

where Eα denotes expectation with respect to the Palm distribution, Pα , of H at α (Kallen-
berg (1983, p. 83 and p. 101, Exercise 11.1)).

Theorem 3.2. Under the above conditions, there exists a constant C ≡ C(d) such that, for
any q ≤ 3 and ρ > 0 satisfying

q < p

{
1 − 1

eV (d)(10ρ)dκ

}
, (3.12)

we have

dK(L(ϑ−1(W − E W)), N (0, 1))

≤ λQ(ρ) + Cλ{(κρd)q−1(wp/ϑ)q + [λQ(ρ)](p−2)/2pwp/ϑ},
where ϑ2 denotes var W and V (d) denotes the volume of the unit ball in d dimensions.

The bound in Theorem 3.2 is explicit, but rather unwieldy. The following two corollaries
indicate what can be derived from it, by appropriate choice of ρ. They give slight improvements
in the exponents on Penrose and Yukich (2005, Theorems 2.3 and 2.5).

Corollary 3.1. Suppose that Q(ρ) ≤ Ke−δρ for some K, δ > 0. Then, under the conditions
of Theorem 3.2, if λ → ∞ with all else fixed,

dK(L(ϑ−1(W − E W)), N (0, 1)) = O((log λ)d(p3−1)λϑ−p3/2),

where p3 := min{p, 3}.
Corollary 3.2. Suppose that Q(ρ) ≤ Kρ−� for some K > 0, with

� >
2d(p3 − 1)(2p − 1)

(p − 2)(p3 − 2)
.

Then, under the conditions of Theorem 3.2, if λ → ∞ with all else fixed and if ϑ � λ1/2, it
follows that

dK(L(ϑ−1(W − E W)), N (0, 1)) = O(λ−β),

where

β = p3

2
− 1 − d(p3 − 1)(pp3 − 1)

2dp(p3 − 1) + �(p − 2)
> 0.
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Proof of Theorem 3.2. Fix any q < p such that q ≤ 3. We aim to apply Corollary 2.2 to
W(ρ). A number of the arguments that we use are based on those of Penrose andYukich (2005).

We begin by bounding ε4, observing first that

R(N(Cα))q−1 =
{∫

N(Cα)

|Fγ (ρ)|H(dγ )

}q−1

≤ H(N(Cα))q−2
∫

N(Cα)

|Fγ (ρ)|q−1 H(dγ ).

It follows that

E R(N(Cα))q−1 ≤
∫

N1(Cα)

λν1(dγ1)

∫
�2

E(γ1,γ2){|F(γ1,γ2)(ρ)|q−1H(N(Cα))q−2} ν2(dγ2 | γ1),

(3.13)
where N(Cα) = N1(Cα) × �2. Now, for any γ1 ∈ �1, s, t < p, and B ⊂ �, we have∫

�2

E(γ1,γ2){|Fγ (ρ)|sH(B)t }ν2(dγ2 | γ1)

≤
(∫

�2

E(γ1,γ2) |Fγ (ρ)|pν2(dγ2 | γ1)

)s/p

×
(∫

�2

E(γ1,γ2) H(B)pt/(p−s)ν2(dγ2 | γ1)

)(p−s)/p

,

by Hölder’s inequality. Then, however, H(B) ∼ 1B(γ ) + Po(λν(B)) under Pγ , implying that,
from (3.11) and Lemma 4.3,∫

�2

E(γ1,γ2){|Fγ (ρ)|sH(B)t }ν2(dγ2 | γ1) ≤ ws
pnt {1 + (1.1)(p−s)/p} ≤ 2.1ws

pnt , (3.14)

for all n ∈ N such that n ≥ max{pt/(p − s), 2eλν(B)}. By applying this inequality to (3.13)
with s = q − 1 and t = q − 2 and recalling that N(Cα) = D(α1, 10λ−1/dρ), we find that

E R(N(Cα))q−1 ≤ 2.1λν(N(Cα))w
q−1
p nq−2

ρ ≤ (2.1/2e)wq−1
p nq−1

ρ ,

for
nρ := 2eV (d)(10ρ)dκ,

if we restrict to values of q ≤ 3 also satisfying (3.12), since, with the above choices of s and t

and for such q,
pt

p − s
<

p(q − 1)

p − q
≤ nρ

and λν(N(Cα)) ≤ nρ/2e. It then follows immediately that

ε4 = ϑ(ρ)−q

∫
�

E R(N(Cα))q−1 E R(dα)

≤ ϑ(ρ)−q

∫
�

{2.1/2e}wq−1
p nq−1

ρ wpλν(dα)

≤ 1
2λϑ(ρ)−qw

q
pnq−1

ρ , (3.15)
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where ϑ(ρ) is the standard deviation of W(ρ). For ε3, we observe that

E
∫

�

R(N(Cα))q−1R(dα)

≤ E

{∫
α∈�

|Fα(ρ)|H(N(Cα))q−2
∫

γ∈N(Cα)

|Fγ (ρ)|q−1 H(dγ )H(dα)

}

≤ E
∫

�

|Fα(ρ)|qH(N(Cα))q−2H(dα)

+ E
∫

α∈�

∫
γ∈N(Cα)

γ �=α

(|Fα(ρ)|q + |Fγ (ρ)|q)H(N(Cα))q−2 H(dγ )H(dα). (3.16)

The first expectation in (3.16) is bounded by taking s = q and t = q−2 in (3.14), giving at most
2.1λw

q
pn

q−2
ρ ; the first half of the second expectation follows by taking s = q and t = q − 1

in (3.14), giving at most 2.1λw
q
pn

q−1
ρ ; and the remaining term is at most

E
∫

�

|Fγ (ρ)|qH(D(γ1, 20λ−1/dρ))q−1H(dγ ),

bounded in the same way by 2.1λw
q
p(2dnρ)q−1. It follows that

ε3 ≤ 2.1λϑ(ρ)−qw
q
pnq−1

ρ (2d(q−1) + 2). (3.17)

For the remaining element, ε5, of the error in Corollary 2.2, we note that, for any α ∈ �,

E R(N(Cα)) ≤ wpλν(N(Cα)) ≤ wpnρ/2e,

giving
ε5 ≤ ϑ(ρ)−1e−1wpnρ. (3.18)

In order to show that this is comparable with the errors ε3 and ε4, we now need to bound ϑ(ρ).
To do so, observe that

ϑ(ρ)2 = E
∫

α∈�

∫
γ∈Aα

(Fα(ρ)H(dα) − F̄α(ρ)µ(dα))(Fγ (ρ)H(dγ ) − F̄γ (ρ)µ(dγ ))

≤ E
∫

α∈�

∫
γ∈Aα

(R(dα) + E R(dα))(R(dγ ) + E R(dγ ))

≤ E
∫

α∈�

∫
γ∈Aα

R(Aα)R(dα) + 3
∫

�

E R(Aα) E R(dα).

The second of these quantities is immediately bounded by

3λ

∫
�

wpν(dα)
wpnρ

5d × 2e
≤ λnρw2

p

9
.

For the first, arguing as in (3.16), but with q replaced by 2 and with Aα in place of N(Cα), we
obtain the bound

λw2
p + 2.1λw2

pnρ{( 1
5 )d + ( 2

5 )d}.
By adding the two quantities, and recalling that nρ ≥ 1, we find that

ϑ(ρ)2 ≤ 2.5λw2
pnρ. (3.19)
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Thus, it follows from (3.18) that

ε5 ≤ ϑ(ρ)−qe−1wpnρ{2.5λw2
pnρ}(q−1)/2

≤ ϑ(ρ)−qw
q
pλnq−1

ρ {nρ/λ}(3−q)/2

≤ λϑ(ρ)−qw
q
pnq−1

ρ , (3.20)

provided thatnρ ≤ λ; if this is not the case, then it already follows from (3.19) thatλϑ(ρ)−qn
q−1
ρ

is large, implying that the bound is in any case meaningless. Hence, ε5 is indeed bounded
in (3.20) by a quantity of the same order as those in (3.15) and (3.17).

However, the argument is not yet finished, since applying Corollary 2.2 to W(ρ) leaves
ϑ(ρ) rather than ϑ in the denominator, and the difference is a major contributor to the error
bound. Writing E∗ for the event {W �= W(ρ)}, of probability at most λQ(ρ), we use Hölder’s
inequality to show that

E(W − W(ρ))2 = E{(W − W(ρ))2 1E∗}
≤ (E |W − W(ρ)|p)2/p(P(E∗))(p−2)/p (3.21)

≤ 2{(E |W |p)2/p + (E |W(ρ)|p)2/p}(P(E∗))(p−2)/p.

Now, both E |W |p and E |W(ρ)|p are bounded by

E

(∫
�

|Fα| H(dα)

)p

≤ E

{
H(�)p−1

∫
�

|Fα|pH(dα)

}
≤ 2.1w

p
p(2eλ)p−1λ

≤ 8.4e2(λwp)p,

as can be seen by applying (3.14) with s = p, t = p − 1, and B = �. Thus,

E(W − W(ρ))2 ≤ 4(8.4e2)2/p(λwp)2[λQ(ρ)](p−2)/p.

This in turn implies that

ϑ−2|ϑ2 − ϑ(ρ)2| ≤ ϑ−2{2|cov(W − W(ρ), W)| + var(W − W(ρ))}
≤ 2xλ,ρ(1 + xλ,ρ), (3.22)

where xλ,ρ := 2(8.4e2)1/pλwp[λQ(ρ)](p−2)/2p. Recall that dK(N (0, 1), N (0, 1 + ε)) ≤
ε/(2

√
2π). It follows that, in changing the denominator from var W(ρ) to var W , a further

error of at most (1/
√

2π)xλ,ρ(1 + xλ,ρ) ≤ xλ,ρ is incurred (again since the bound is trivial if
xλ,ρ ≥ 1). This completes the proof of the theorem.

The corollaries are proved by substituting appropriate values for ρ into the explicit bound
given by the theorem. For Corollary 3.1, take ρ = kδ−1 log λ for k > 7 and take q to be the
largest value consistent with (3.12). Then note that if p ≤ 3, this value, q ≡ q(λ), approaches
p fast enough as λ → ∞ for (var W)q to be asymptotically equivalent to (var W)p. For
Corollary 3.2, take ρ = λβ ′

, where

β ′ := pq − 1

2dp(q − 1) + �(p − 2)

and q is again the largest value consistent with (3.12).
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3.3. Maximal points

Let W be the number of maximal points of a Poisson process H of rate λ in a region

D := {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ f (x)},
where f is absolutely continuous, decreasing, and such that f (0) = 1, f (1) = 0, and

m1 := ess inf
0≤x≤1

|f ′(x)| > 0, m2 := ess sup
0≤x≤1

|f ′(x)| < ∞.

A point α = (x, y) of H is maximal if H(Dα) = 0, where

Dα := {(u, v) : x ≤ u ≤ f −1(y), y ≤ v ≤ f (u)} \ {α}.
Hence,

W =
∫

D

H(dα) 1{H(Dα)=0} =:
∫

D

�(dα)

is a random variable of the form considered in this paper, with Fα = 1{H(Dα)=0} ≥ 0 and,
hence, R = �. However, the asymptotic structure is rather different from that in the previous
section, necessitating separate arguments.

There have been a number of papers contributing to the central limit theorem for W , under
a variety of conditions on the function f . With µ2 the mean measure of �,

µ2(dα) := E{H(dα) 1{H(Dα)=0}} = λe−λ|Dα | dα,

the asymptotics of the first and second moments, as λ → ∞, are given by (Devroye (1993),
Bai et al. (1998))

µ2(D) = E �(D) ∼ λ1/2
√

π

2

∫ 1

0
|f ′(x)|1/2 dx, (3.23)

var �(D) ∼ (2 log 2 − 1)µ2(D). (3.24)

Central limit theorems are given in Bai et al. (2001) and in Barbour and Xia (2001); in
the latter paper, Stein’s method is used to give a rate of convergence with respect to the
bounded Wasserstein distance. Here, we prove error bounds with respect to the Kolmogorov
distance, using some of the same ideas, but now applying Corollary 2.2 to provide the bound
in the stronger metric. The case in which D is the unit square, which does not fit our
assumptions, has quite different, logarithmic asymptotics for the moments, and is actually
a classical record value problem. The unit cube in higher dimensions has been considered
separately in Baryshnikov (2000) and in Bai et al. (2005); the latter paper again uses Stein’s
method.

Theorem 3.3 gives a rate of convergence under the above conditions on f . In Theorem 3.4,
we relax the conditions on f to allow for natural regions, such as the quarter circle, whose
boundaries may be flat or vertical at 0 or 1.

Theorem 3.3. Under the above conditions on f ,

dK

(
L

(
W − E W√

var W

)
, N (0, 1)

)
= O(λ−1/4 log λ).
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Proof. In order to find neighbourhoods of local dependence, we begin by truncating the
set D (see Barbour and Xia (2001, Lemma 3.1) and Bai et al. (2005)), replacing W by W̃ :=∫
D∗

λ
�(dα), where

D∗
λ = {(x, y) : 0 ≤ x ≤ 1, fλ(x) ≤ y ≤ f (x)} ⊂ D

and
fλ(x) := inf{y ≥ 0 : |D(x,y)| ≤ 4λ−1 log λ}.

Since µ2(dα) ≤ λ−3 dα if α ∈ D\D∗
λ, it follows that P(W �= W̃ ) ≤ λ−3 and that, as for (3.21),

E(W − W̃ )2 ≤ E{H 2(D \ D∗
λ) 1{W �=W̃ }}

≤ {2.1(2eλ)6}1/3(λ−3)2/3

= O(1),

from Lemma 4.3; hence, as in (3.22),

ϑ−2|var W − var W̃ | ≤ 2x(1 + x)

with x = ϑ−1
√

E{(W − W̃ )2} = O(λ−1/4), enabling W to be replaced by W̃ to the accuracy
that we require.

We then write
g(x) := fλ

−1(f (x)), h(y) := fλ(f
−1(y)),

where fλ
−1(y) := 0 if y > fλ(0), and take

Aα := {(u, v) : u ≤ f −1(y), v ≤ f (x)} ∩ D∗
λ,

Bα := {(u, v) : u ≤ f −1(h(y)), v ≤ f (g(x))} ∩ D∗
λ,

Cα := {(u, v) : u ≤ f −1(h(2)(y)), v ≤ f (g(2)(x))} ∩ D∗
λ,

N(Cα) := {(u, v) : u ≤ f −1(h(4)(y)), v ≤ f (g(4)(x))} ∩ D∗
λ,

where ϕ(j) denotes the j th iterate of the function ϕ. These neighbourhoods meet the require-
ments of condition (LD3) because of the independence properties of the Poisson process H .
Applying Corollary 2.2, since ϑ2 = var W � λ1/2, from (3.24), we see that the error in the
normal approximation to W̃ is of order O(ε′

3 + ε′
4 + ε′

5), where

ε′
3 := λ−3/4

∫
D∗

λ

µ2(dα) Eα �2(N(Cα)),

ε′
4 := λ−3/4

∫
D∗

λ

µ2(dα) E �2(N(Cα)), (3.25)

ε′
5 := λ−1/4 sup

α∈D∗
λ

µ2(N(Cα)).

Consider ε′
4. We note that

N(Cα) ⊂ D(g(5)(x),h(5)(y)) (3.26)
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and that D(u,v), suitably scaled, is a region of the same form as the original region D. Indeed,
the number of maximal points in D(u,v) has the same distribution as the number of maximal
points in the region

D′ := {(r, s) : 0 ≤ r ≤ 1, 0 ≤ s ≤ ϕu,v(r)},
where

ϕu,v(r) := f (rf −1(v) + (1 − r)u) − v

f (u) − v
,

for an underlying Poisson process with intensity

λ′ := λ(f −1(v) − u)(f (u) − v).

Thus, (3.23) and (3.24) give the asymptotic formulae

E �(D(u,v)) ∼ √
λ′

√
π

2

∫ 1

0
|ϕ′

u,v(r)|1/2 dr, (3.27)

E �2(D(u,v)) ∼ (E �(D(u,v)))
2 + (2 log 2 − 1) E �(D(u,v)), (3.28)

and, so, we need only consider the asymptotics of (3.27).
To do so, note that

∫ 1

0
|ϕ′

u,v(r)|1/2 dr =
∫ f −1(v)

u
|f ′(w)|1/2 dw√

(f −1(v) − u)(f (u) − v)
,

so that

E �(D(u,v)) ∼
√

πλ

2

∫ f −1(v)

u

|f ′(w)|1/2 dw =: m(u, v), (3.29)

say. In order to estimate m(u, v) with (u, v) = (g(5)(x), h(5)(y)), we now observe, from the
definition of fλ, that 1

2m1(x − g(x))2 ≤ 4λ−1 log λ for any x, implying that

0 ≤ x − g(x) ≤ 2

√
2 log λ

λm1

and, hence, by iteration, that

0 ≤ x − g(5)(x) ≤ 10

√
2 log λ

λm1
. (3.30)

It similarly follows that

f −1(h(5)(y)) − f −1(y) ≤ 10

√
2 log λ

λm1
, 0 ≤ y − h(5)(y) ≤ 10

√
2m2 log λ

λ
, (3.31)

and that, for (x, y) ∈ D∗
λ,

f −1(y) − x ≤ 2

√
2 log λ

λm1
, 0 ≤ f (x) − y ≤ 2

√
2m2 log λ

λ
. (3.32)
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Hence, for (x, y) ∈ D∗
λ,√

2

π
m(g(5)(x), h(5)(y)) ≤ √

λm2(f
−1(h(5)(y)) − g(5)(x))

≤ 22
√

2 log λ
√

m2/m1. (3.33)

It thus follows easily from (3.23), (3.27), (3.28), (3.29), and (3.33) that

λ3/4ε′
4 =

∫
D∗

λ

µ2(dα) E �2(N(Cα)) = O(λ1/2 log λ). (3.34)

To calculate ε′
3, we need to bound Eα �2(N(Cα)). We begin by observing that, under the

measure Pα ,
�(Dα) = �([0, x] × [0, y] \ {α}) = 0 almost surely

when α = (x, y). Hence,

�(N(Cα)) ≤ �(NU(Cα)) + �(NL(Cα)),

a sum of two independent components, where

NU(Cα) := D(g(5)(x),y) ∩ {[0, x) × (y, 1]},
NL(Cα) := D(x,h(5)(y)) ∩ {(x, 1] × [0, y)}.

However, we cannot immediately deduce the asymptotics of the moments of �(NU(Cα)) and
�(NL(Cα)) by scaling using (3.23) and (3.24), because the former region has a vertical section
in its upper-right boundary and the latter a horizontal section.

To circumvent this problem, we split each region into two pieces. For NU(Cα), we define

D2U := NU(Cα) ∩ {(u, v) : 2m2u + v ≥ 2m2x + y} ∩ {(u, v) : m2u + v ≤ m2x + f (x)},
and set D1U := NU(Cα) \ D2U . Then D1U is also a scaled version of a region of the same
form as D, but now with boundary function ϕ having m1 ≤ |ϕ′| ≤ 2m2, and

�(NU(Cα)) ≤ �U(D1U) + H(D2U),

where �U is the process of points maximal in D1U :

�U(dβ) = H(dβ) 1{H(Dβ\D2U )=0} .

Note that �U(D1U) and H(D2U) are independent. Arguing analogously for �(NL(Cα)), we
obtain

Eα �2(N(Cα)) ≤ E(�U(D1U) + H(D2U) + �L(D1L) + H(D2L))2

≤ [E(�U(D1U) + H(D2U) + �L(D1L) + H(D2L))]2

+ var �U(D1U) + var H(D2U) + var �L(D1L) + var H(D2L).

We now observe that

|D2U | ≤ 1

2m2
(f (x) − y)2, |D2L| ≤ m1

2
(f −1(y) − x)2 ≤ 1

2m1
(f (x) − y)2.
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Hence, we have

E H(D2U) = var H(D2U) ≤ λ

2m2
(f (x) − y)2, (3.35)

E H(D2L) = var H(D2L) ≤ λ

2m1
(f (x) − y)2, (3.36)

whereas, as for (3.33) above,

E �U(D1U) + var �U(D1U) + E �L(D1L) + var �L(D1L) = O(
√

(m2/m1) log λ). (3.37)

Now, however,

µ2(dα) ≤ λ exp

{
− λ

2m2
(f (x) − y)2

}
dα, (3.38)

and, hence, by integration,

λ3/4ε′
3 =

∫
D∗

λ

µ2(dα) Eα �2(N(Cα))

= O(λ1/2(m2/m1){log λ + (m2/m1)
√

m2 })
= O(λ1/2 log λ). (3.39)

Finally, it follows from (3.26), (3.29), and (3.33) that

λ1/4ε′
5 = sup

α∈D∗
λ

µ2(N(Cα)) = O(
√

log λ),

and this, combined with (3.34), (3.39), and (3.25), proves the theorem.

If m1 = 0 or m2 = ∞, then the argument needs modification. However, the changes needed
may frequently not be too elaborate, since the contribution to the integrals in (3.25) from any
region D∗

λ ∩ {[a, b] × [0, 1]}, where

0 < ess inf
a≤x≤b

|f ′(x)| ≤ ess sup
a≤x≤b

|f ′(x)| < ∞, (3.40)

is already of order O(λ−1/4 log λ), by the previous argument. To illustrate the alterations
needed, we now suppose that (3.40) is true for some a and b, 0 < a < b < 1, and that

0 < τ1 := ess inf
0<x≤(2a∧1)

x−β |f ′(x)| ≤ ess sup
0<x≤(2a∧1)

x−β |f ′(x)| =: τ2 < ∞, (3.41)

0 < τ̃1 := ess inf
0<y≤f (b/2)

y−γ |(f −1)′(y)| ≤ ess sup
0<y≤f (b/2)

y−γ |(f −1)′(y)| =: τ̃2 < ∞, (3.42)

for some β, γ > −1.

Theorem 3.4. If f is decreasing, with f (0) = 1 and f (1) = 0, if (3.40) is true for some a and
b, 0 < a < b < 1, and if (3.41) and (3.42) also hold, then

dK

(
L

(
W − E W√

var W

)
, N (0, 1)

)
= O(λ−1/4 log λ).
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Proof. The estimates (3.30)–(3.32) and (3.35)–(3.38) are essentially local in character. For
any fixed C0 > 1, they hold for any (x, y) ∈ D∗

λ, with m1 replaced by (1/C0)|f ′(x)| and m2
replaced by C0|f ′(x)|; thus, (3.33) and (3.37) also hold, with m2/m1 replaced by C2

0 , provided
that

1

C0
|f ′(x)| ≤ |f ′(z)| ≤ C0|f ′(x)| for all g(5)(x) ≤ z ≤ f −1(h(5)(y)).

In turn, this holds provided that

1

C0
|f ′(x)| ≤ |f ′(z)| ≤ C0|f ′(x)| for all |z − x| ≤ 12

√
2C0 log λ

λ|f ′(x)| . (3.43)

We concentrate now on pairs α = (x, y) ∈ D∗
λ in which x is small, since the argument for

values of x near 1 is entirely symmetrical. First, for 0 ≤ x, z ≤ (1 ∧ 3a/2), from (3.41) we
have

τ1

τ2

(
1 − |z − x|

x

)β

≤ |f ′(z)|
|f ′(x)| ≤ τ1

τ2

(
1 + |z − x|

x

)β

,

meaning that, with C0 = 2βτ2/τ1, (3.43) can only be violated for x such that

12

x

√
2C0 log λ

λ|f ′(x)| >
1

2
.

However, this requires that

x2|f ′(x)| < 1152C0λ
−1 log λ,

and, from (3.41) and for λ large enough, this can only be the case if

x < xλ := k{λ−1 log λ}1/(2+β),

for an appropriately chosen k. This, together with the corresponding argument for values of x

near 1, shows both that the contributions to ε′
3 and ε′

4 from

Jλ := D∗
λ ∩ {[xλ, 1 − x′

λ] × [0, 1]}
are still of order O(λ1/4 log λ), where 1 − x′

λ = f −1(k′(λ−1 log λ)1/(2+γ )) for some suitably
chosen k′, and that, with reference to ε′

5,

sup
α∈Jλ

µ2(N(Cα)) = O(
√

log λ).

It remains to consider pairs α = (x, y) ∈ D∗
λ such that x ≤ xλ or x ≥ 1−x′

λ; again, we only
give the argument for small x. For α = (x, y) ∈ D∗

λ such that x ≤ xλ, it is necessarily the case
that y ≥ yλ := fλ(xλ) and, hence, that h(5)(y) ≥ h(5)(yλ) and f −1(h(5)(y)) ≤ f −1(h(5)(yλ)).
By applying (3.31) and (3.32) at (xλ, yλ) with m1 replaced by (1/C0)|f ′(xλ)| and m2 replaced
by C0|f ′(xλ)|, we thus obtain

f (xλ) − yλ ≤ 2

√
2C0 log λ

λ
|f ′(xλ)|, yλ − h(5)(yλ) ≤ 10

√
2C0 log λ

λ
|f ′(xλ)|,

f −1(yλ) − xλ ≤ 2

√
2C0 log λ

λ|f ′(xλ)| , f −1(h(5)(yλ)) − f −1(yλ) ≤ 10

√
2C0 log λ

λ|f ′(xλ)| .
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Thus,

1 − h(5)(yλ) ≤ 1 − f (xλ) + 12

√
2C0 log λ

λ
|f ′(xλ)|,

f −1(h(5)(yλ)) ≤ xλ + 12

√
2C0 log λ

λ|f ′(xλ)| ,

and also, from (3.41),

1 − f (xλ) ≤ τ2x
β+1
λ , τ1x

β
λ ≤ |f ′(xλ)| ≤ τ2x

β
λ .

Collecting these facts, it follows that

|D(0,h(5)(yλ))| ≤ {1 − h(5)(yλ)}f −1(h(5)(yλ)) = O(λ−1 log λ).

However, N(Cα) ⊂ D(0,h(5)(yλ)) for all α ∈ Kλ := D∗
λ ∩ {[0, xλ] × [0, 1]}, implying that

�(N(Cα)) ≤ H(D(0,h(5)(yλ))).

It thus follows easily that∫
Kλ

µ2(dα) E �2(N(Cα)) and
∫

Kλ

µ2(dα) Eα �2(N(Cα))

are both of order

O(λ|D(0,h(5)(yλ))| log2 λ) = O(log3 λ) = O(λ1/2 log λ),

and that
sup

α∈Kλ

µ2(N(Cα)) = O(log λ).

Thus, ε′
3, ε′

4, and ε′
5 are still of order O(λ−1/4 log λ) under these less restrictive conditions on f .

Note that the same approach could have been used to treat more complicated functions of
the process of maximal points; for instance the sum,

∫
D

Dα�(dα), of the areas in D which are
above and to the right of maximal points.

4. The proofs

We use Theorem 2.1 of Chen and Shao (2004), a discrete version of our Theorem 2.1, to
prove Theorem 2.1, by means of a direct dissection argument.

For each n, recalling condition (LD1), the family of open sets {B◦(α, rn), α ∈ �}, where
B◦(α, r) = {y : d(y, α) < r}, is a covering of�, so it contains a finite subcovering, {B◦(αni, rn),

i = 1, 2, . . . , k′
n}, of �. Let B ′

n1 = B◦(αn1, rn) and B ′
ni = B◦(αni, rn) \ (

⋃i−1
j=1 B ′

nj ) for
2 ≤ i ≤ k′

n. Now, for each n ≥ 1, list all the sets

{ n⋂
i=1

B ′
iji

, (j1, . . . , jn) ∈
n×

l=1

{1, 2, . . . , k′
l}

}

as {Bn1, . . . , Bnkn}; then {{Bn1, . . . , Bnkn}, n ≥ 1} forms a dissecting system of � (Daley and
Vere-Jones (1988, p. 608)).
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Since rn ↓ 0 as n → ∞, we can define a nondecreasing sequence of integers g(n) such that
rg(n) ≥ 2rn and limn→∞ g(n) = ∞. Define Jni := {j : Bnj ∩ (

⋃
α∈Bni

Aα,g(n)) �= ∅}; then set

Mni =
⋃

j∈Jni

Bnj ,

noting that
Mni ⊃ Aα,g(n) for all α ∈ Bni. (4.1)

Lemma 4.1. For each α ∈ � and n ≥ 1, let jn(α) be the value of j such that α ∈ Bnj .
Then α ∈ Aα ⊂ Mnjn(α) and Mnjn(α) ↓ Aα as n → ∞. Furthermore, defining J ∗

ni :=
{j : Bnj ∩ Mni �= ∅} and Nni := ⋃

j∈J ∗
ni

Bnj , it also follows that Nnjn(α) → Aα as n → ∞.

Proof. The first part is clear from the definition of Mni and because Aα ⊂ Aα,n, so it suffices
to prove the last two claims. Note also, from the properties of dissecting systems, that for each
α the sets Mnjn(α) are decreasing in n.

For each m ≥ 1, let n0(m) be such that 2rn + rg(n) < rm for all n ≥ n0(m). Then, for
such n, it follows that {y : d(y, Bnjn(α)) ≤ rg(n)} ⊂ B(α, rm), whence Aβ,g(n) ⊂ Aα,m for all
β ∈ Bnjn(α), by condition (LD1)(b). This implies that⋃

β∈Bnjn(α)

Aβ,g(n) ⊂ Aα,m, n ≥ n0(m),

and, so, using (4.1), that

Aα ⊂ Aα,g(n) ⊂ Mnjn(α) ⊂ A(1)
α,m,n := {y : d(y, Aα,m) < 2rn}, n ≥ n0(m).

Hence,
Aα ⊂

⋂
n≥n0(m)

Mnjn(α) ⊂ Aα,m.

Since, in addition, Aα,m ↓ Aα as m → ∞, by condition (LD1)(a), it follows that Mnjn(α) ↓ Aα .
To prove the last part, arguing much as above we have

Aα ⊂ Nnjn(α) ⊂ A(2)
α,m,n := {y : d(y, Aα,m) < 4rn}, n ≥ n0(m),

and from this the convergence of Nnjn(α) to Aα follows.

Now, for 1 ≤ i ≤ kn, set Xni := H̃2(Bni). Note that, for each i and for any βni ∈ Bni , we
have

Bni ⊂ B(βni, 2rn) ⊂ B(βni, rg(n)), A′
ni :=

⋃
j /∈J ∗

ni

Bnj ⊂ Mc
ni, Mni ⊃ Aβni ,g(n),

this last by (4.1). Hence, Xni is a function of H |B(βni ,rg(n)), whereas Xnj , j /∈ J ∗
ni , are functions

of H |A′
ni

and, thus, of H |Ac
βni ,g(n)

. From condition (LD1)(a), it now follows that Xni is

independent of {Xnj , j �∈ J ∗
ni}. We have thus, for each n, constructed a discrete collection

of random variables, {Xni, 1 ≤ i ≤ kn}, satisfying condition (LD1) of Chen and Shao (2004),
in such a way that

∑kn

i=1 Xni = H̃2(�) for all n. Hence, in order to prove our Theorem 2.1, we
merely need to show that the bound given in Theorem 2.1 of Chen and Shao (2004), with Xni

as above and with Yni = ∑
j∈J ∗

ni
Xnj , is itself bounded in the limit as n → ∞ by the one that

we give. This follows from the next lemma.
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Lemma 4.2. Let f1 and f2 be two nonnegative, continuous functions defined on R2 such that
f1(x, y) ≤ |x| + |y| and f2 is bounded. Under condition (2.1), as n → ∞ we have

E

∣∣∣∣
kn∑

i=1

YniXni −
∫

�

YαH̃2(dα)

∣∣∣∣ → 0, (4.2)

lim sup
n→∞

E
kn∑

i=1

f1(H̃2(�), Yni) 1{|Yni |>c} |Xni |

≤ E
∫

�

f1(H̃2(�), Yα) 1{|Yα |≥c} |H̃2(dα)|, c ∈ R, (4.3)

E
kn∑

i,j=1

f2(Yni, Ynj )XniXnj → E
∫∫

�2
f2(Yα, Yβ)H̃2(dα)H̃2(dβ), (4.4)

E
kn∑

i,j=1

f2(Yni, Y
∗
nj )XniX

∗
nj → E

∫∫
�2

f2(Yα, Yβ)H̃2(dα)H̃ ∗
2 (dβ), (4.5)

where {X∗
nj , Y

∗
nj , 1 ≤ j ≤ kn} is an independent copy of {Xnj , Ynj , 1 ≤ j ≤ kn}.

Proof. We prove (4.3) and (4.4); the proof of the other two claims can be accomplished in
the same way as the proof of (4.4). To prove (4.3), note that

E
kn∑

i=1

f1(H̃2(�), Yni) 1{|Yni |>c} |Xni | − E
∫

�

f1(H̃2(�), Yα) 1{|Yα |≥c} |H̃2(dα)|

= E
kn∑

i=1

f1(H̃2(�), Yni) 1{|Yni |>c}
{
|Xni | −

∫
Bni

|H̃2(dα)|
}

(4.6)

+ E
kn∑

i=1

∫
Bni

[f1(H̃2(�), Yni) 1{|Yni |>c} −f1(H̃2(�), Yα) 1{|Yα |≥c}]|H̃2(dα)|. (4.7)

The quantity (4.6) is clearly nonpositive. In (4.7), the first element is bounded above by

E
∫

�

sup
m≥n

{f1(H̃2(�), Ymjm(α)) 1{|Ymjm(α)|>c}}|H̃2(dα)|,

which, as n → ∞, converges to

E
∫

�

lim sup
n→∞

{f1(H̃2(�), Ynjn(α)) 1{|Ynjn(α)|>c}}|H̃2(dα)|, (4.8)

by monotone convergence. Now, by Lemma 4.1 we have Nnjn(α) → Aα and, hence, Ynjn(α) →
Yα; thus, the integrand in (4.8) is just

f1(H̃2(�), Yα) lim sup
n→∞

{1{|Ynjn(α)|>c}} ≤ f1(H̃2(�), Yα) 1{|Yα |≥c},

implying that the limit supremum of (4.7) is also nonpositive.
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To prove (4.4), note that

∣∣∣∣E
kn∑

i,j=1

f2(Yni, Ynj )XniXnj − E
∫∫

�2
f2(Yα, Yβ)H̃2(dα)H̃2(dβ)

∣∣∣∣
≤ E

kn∑
i,j=1

∫
Bni

∫
Bnj

|f2(Yni, Ynj ) − f2(Yα, Yβ)| |H̃2(dα)H̃2(dβ)|.

In view of (2.1), dominated convergence completes the proof.

Proof of Theorem 2.1. Using Theorem 2.1 of Chen and Shao (2004), we have

dK(L(ϑ−1(W − E W)), N (0, 1)) ≤ rn
1 + 4rn

2 + 8rn
3 + rn

4 + 4.5rn
5 + 1.5rn

6 ,

for all n, where

rn
1 = E

∣∣∣∣
kn∑

i=1

(XniYni − E XniYni)

∣∣∣∣,
rn

2 =
kn∑

i=1

E |XniYni | 1{|Yni |>1},

rn
3 =

kn∑
i=1

E |Xni |(Y 2
ni ∧ 1),

rn
4 =

kn∑
i=1

E{|H̃2(�)Xni |(Y 2
ni ∧ 1)},

rn
5 =

kn∑
i,j=1

E{XniXnj 1{YniYnj ≥0}(|Yni | ∧ |Ynj | ∧ 1)

− XniX
∗
nj 1{YniY

∗
nj ≥0}(|Yni | ∧ |Y ∗

nj | ∧ 1)},

(rn
6 )2 = 1

2

kn∑
i,j=1

E{XniXnj 1{YniYnj ≥0}(|Yni |2 ∧ |Ynj |2 ∧ 1)

− XniX
∗
nj 1{YniY

∗
nj ≥0}(|Yni |2 ∧ |Y ∗

nj |2 ∧ 1)}.

Using Lemma 4.2, we have rn
1 → r1 by (4.2); lim supn→∞ rn

l ≤ rl, l = 2, 3, 4, by (4.3) with
c = 1, −1, −1, respectively; and rn

5 → r5 and rn
6 → r6 by (4.4) and (4.5), respectively. Finally,

direct calculation yields

r5 =
∫

|t |≤1
var K̂(t) dt, (r6)

2 =
∫

|t |≤1
|t | var K̂(t) dt.

Proof of Theorem 2.2. Recalling that p3 = p ∧ 3, for p ≥ 2 we immediately have

r2 ≤ E
∫

�

|Yα|p3−1|H̃2(dα)| = r̃1(p3)
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and

r3 = E
∫

�

{Y 2
α ∧ 1}|H̃2(dα)| ≤ E

∫
�

|Yα|p3−1|H̃2(dα)| = r̃1(p3).

For r5, using the independence of Yα and Yβ when (α, β) /∈ B∗, we obtain

r5 ≤ E
∫∫

B∗
|Yα|p3−2|H̃2(dα)| |H̃2(dβ)| + E

∫∫
B∗

|Yα|p3−2|H̃2(dα)| |H̃ ∗
2 (dβ)|

= r̃2(p3),

and, similarly, using the same argument but with p3 replaced by p, we have

r2
6 ≤ 1

2
E

∫∫
B∗

|Yα|p−2[|H̃2(dα)| |H̃2(dβ)| + |H̃2(dα)| |H̃ ∗
2 (dβ)|] = 1

2
r̃2(p).

To find r4, recalling the notation W̃ = H̃2(�) of Section 2, we note that

E |W̃ − Zα| ≤ E |W̃ | + E |Zα| ≤
√

var(W̃ ) + E |Zα| ≤ 1 + E
∫

β∈Bα

|H̃2(dβ)|

and that W̃ − Zα is independent of H̃2|Aα ; hence, it follows that

r4 = E

{
|W̃ |

∫
�

{Y 2
α ∧ 1}|H̃2(dα)|

}

≤ E
∫

�

{|W̃ − Zα| + |Zα|}{Y 2
α ∧ 1}|H̃2(dα)|

≤ E
∫

�

[
1 + E

∫
Bα

|H̃2(dβ)|
]
{Y 2

α ∧ 1}|H̃2(dα)|

+ E
∫

�

{Y 2
α ∧ 1}

[∫
Bα

|H̃2(dβ)|
]
|H̃2(dα)|

≤ E
∫

�

{
|Yα|p3−1 + |Yα|p3−2

∫
Bα

(|H̃ ∗
2 (dβ)| + |H̃2(dβ)|)

}
|H̃2(dα)|

≤ r̃1(p3) + r̃2(p3).

Finally,

r1 ≤ E

∣∣∣∣
∫

�

Yα 1{|Yα |≤1} H̃2(dα) − E
∫

�

Yα 1{|Yα |≤1} H̃2(dα)

∣∣∣∣ + 2r2 =: r ′
1 + 2r2,

where, temporarily writing h1(y) := y 1[−1,1](y),

(r ′
1)

2 ≤ var
∫

�

Yα 1{|Yα |≤1} H̃2(dα)

= E
∫∫

�2
{h1(Yα)h1(Yβ)H̃2(dα)H̃2(dβ) − h1(Yα)h1(Y

∗
β )H̃2(dα)H̃ ∗

2 (dβ)}

≤ E
∫∫

B∗
{|h1(Yα)h1(Yβ)H̃2(dα)H̃2(dβ)| + |h1(Yα)h1(Y

∗
β )H̃2(dα)H̃ ∗

2 (dβ)|}.
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Since |y1y2| ≤ 1
2 (y2

1 + y2
2 ), it follows that

(r ′
1)

2 ≤ E
∫∫

B∗
Y 2

α 1{|Yα |≤1} |H̃2(dα)|(|H̃2(dβ)| + |H̃ ∗
2 (dβ)|)

≤ E
∫∫

B∗
|Yα|p−2|H̃2(dα)|(|H̃2(dβ)| + |H̃ ∗

2 (dβ)|)
= r̃2(p).

Collecting the estimates for ri, i = 1, . . . , 6, and substituting them into the bound in
Theorem 2.1 gives the result.

To prove Theorem 2.3, we need the following result, which is similar to, but slightly different
from, Proposition 3.2 of Chen and Shao (2004). Although the proof follows rather directly from
theirs, we prefer to give it here for the sake of completeness.

Proposition 4.1. Assume that condition (LD3) holds, and let η(α) := H̃2|Bα . Then, for any
a ≡ a(η(α)) and b ≡ b(η(α)), we have

Pη(α)(a ≤ W̃ ≤ b) ≤ 1
8 (4uα + 5)(b − a) + 1

8 (12uα + 17)r3 + 4r2 + 2r ′
2,α + 4r10

≤ 1
8 (4uα + 5)(b − a) + 1

8 (12uα + 17)r3 + 4r2 + 2r14 + 4r10,

where Pη(α) denotes probability conditional on the σ -field generated by η(α),

uα = E |H̃2(N(Cα))|, and r ′
2,α =

∣∣∣∣E
∫

N(Cα)

[((−1) ∨ Yβ) ∧ 1]H̃2(dβ)

∣∣∣∣.
Proof. Let fη(α) be defined by fixing fη(α)((a + b)/2) = 0 and setting f ′

η(α) to be the
continuous function given by

f ′
η(α)(w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for a ≤ w ≤ b,

0 for w ≤ a − r3 and w ≥ b + r3,

(w − a + r3)/r3 for a − r3 < w < a,

(b + r3 − w)/r3 for b < w < b + r3.

Then |fη(α)(w)| ≤ (b − a + r3)/2. Let

M̂(t) :=
∫

N(Cα)c
K̂(t, dβ), M(t) := E M̂(t),

let Eη(α) stand for the conditional expectation in terms of the σ -field generated by η(α), and let
W̃α := ∫

N(Cα)c H̃2(dβ). Owing to the independence between H̃2|Bα and H̃2|N(Cα)c , we have

1
2 (b − a + r3)(1 + uα) ≥ 1

2 (b − a + r3) E |H̃2(N(Cα)c)|
≥ Eη(α){H̃2(N(Cα)c)fη(α)(W̃ )}
= Eη(α)

∫
N(Cα)c

(fη(α)(W̃ ) − fη(α)(W̃ − Yβ))H̃2(dβ)

= Eη(α)

∫ ∞

−∞
f ′

η(α)(W̃ + t)M̂(t) dt

=:
4∑

i=1

Hi,η(α),
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where

H1,η(α) = Eη(α)

{
f ′

η(α)(W̃ )

∫
|t |≤1

M(t) dt

}
,

H2,η(α) = Eη(α)

∫
|t |≤1

(f ′
η(α)(W̃ + t) − f ′

η(α)(W̃ ))M(t) dt,

H3,η(α) = Eη(α)

∫
|t |>1

f ′
η(α)(W̃ + t)M̂(t) dt,

H4,η(α) = Eη(α)

∫
|t |≤1

f ′
η(α)(W̃ + t)(M̂(t) − M(t)) dt.

Noting that η(α) and M̂(t) are independent and that

1 = E(W̃ 2) = E
∫

�

YβH̃2(dβ),

we obtain∫
|t |≤1

M(t) dt = E
∫

N(Cα)c
[((−1) ∨ Yβ) ∧ 1]H̃2(dβ)

= 1 − E
∫

�

{Yβ − [((−1) ∨ Yβ) ∧ 1]}H̃2(dβ)

− E
∫

N(Cα)

[((−1) ∨ Yβ) ∧ 1]H̃2(dβ)

≥ 1 − E
∫

�

|Yβ | 1{|Yβ |>1} |H̃2(dβ)| − E
∫

N(Cα)

[((−1) ∨ Yβ) ∧ 1]H̃2(dβ)

≥ 1 − r2 − r ′
2,α

and, hence,

H1,η(α) ≥ Eη(α) f ′
η(α)(W̃ )(1 − r2 − r ′

2,α) ≥ Pη(α)(a ≤ W̃ ≤ b) − r2 − r ′
2,α.

Also,

|H3,η(α)| ≤ Eη(α)

∫
N(Cα)c

|Yβ | 1{|Yβ |>1} |H̃2(dβ)| = E
∫

N(Cα)c
|Yβ | 1{|Yβ |>1} |H̃2(dβ)| ≤ r2

and

|H4,η(α)| ≤ 1

8
Eη(α)

∫
|t |≤1

[f ′
η(α)(W̃ + t)]2 dt + 2 Eη(α)

∫
|t |≤1

(M̂(t) − M(t))2 dt

≤ 1
8 (b − a + 2r3) + 2ρ,
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where, temporarily writing h(y, t) := 1[−y,0)(t) − 1[0,−y](t),

ρ = Eη(α)

∫
|t |≤1

(M̂(t) − M(t))2 dt = E
∫

|t |≤1
(M̂(t) − M(t))2 dt

= E
∫∫

[N(Cα)c]2

∫
|t |≤1

{h(Yβ1 , t)h(Yβ2 , t)H̃2(dβ1)H̃2(dβ2)

− h(Yβ1 , t)h(Y ∗
β2

, t)H̃2(dβ1)H̃
∗
2 (dβ2)}

= E
∫∫

[N(Cα)c]2∩B∗

∫
|t |≤1

{h(Yβ1 , t)h(Yβ2 , t)H̃2(dβ1)H̃2(dβ2)

− h(Yβ1 , t)h(Y ∗
β2

, t)H̃2(dβ1)H̃
∗
2 (dβ2)}

= E
∫∫

[N(Cα)c]2∩B∗
{1{Yβ1Yβ2 ≥0}(|Yβ1 | ∧ |Yβ2 | ∧ 1)H̃2(dβ1)H̃2(dβ2)

− 1{Yβ1Y ∗
β2

≥0}(|Yβ1 | ∧ |Y ∗
β2

| ∧ 1)H̃2(dβ1)H̃
∗
2 (dβ2)}

≤ E
∫∫

B∗
{(|Yβ1 | ∧ |Yβ2 | ∧ 1)|H̃2(dβ1)| |H̃2(dβ2)|
+ (|Yβ1 | ∧ |Y ∗

β2
| ∧ 1)|H̃2(dβ1)| |H̃ ∗

2 (dβ2)|}
= r10.

To bound H2,η(α), define

Lη(α)(c) = lim
k→∞ sup

x∈Q

Pη(α)

(
x − 1

k
≤ W̃ ≤ x + 1

k
+ c

)
,

where Q is the set of all rational numbers. Since

| Eη(α){f ′
η(α)(W̃ + t) − f ′

η(α)(W̃ )}| =
∣∣∣∣
∫ t

0
Eη(α) f ′′

η(α)(W̃ + s) ds

∣∣∣∣
≤ 1

r3
Lη(α)(r3)

∣∣∣∣
∫ t

0
ds

∣∣∣∣
= |t |Lη(α)(r3)

r3
,

we have

|H2,η(α)| ≤ Lη(α)(r3)

r3

∫
|t |≤1

|t | |M(t)| dt ≤ Lη(α)(r3)

2r3
E

∫
N(Cα)c

{Y 2
β ∧ 1}|H̃2(dβ)|

≤ 1
2Lη(α)(r3).

Therefore, collecting the estimates of Hi,η(α), i = 1, 2, 3, 4, gives

Pη(α)(a ≤ W̃ ≤ b) ≤ 1
8 (4uα+5)(b−a)+ 1

4 (2uα+3)r3+2r2+r ′
2,α+2r10+ 1

2Lη(α)(r3). (4.9)

Setting a = x − 1/k and b = x + 1/k + r3, taking the supremum over x ∈ Q, and then taking
the limit in terms of k → ∞ gives

1
2Lη(α)(r3) ≤ (uα + 11

8 )r3 + 2r2 + r ′
2,α + 2r10,
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and combining this with (4.9) yields

Pη(α)(a ≤ W̃ ≤ b) ≤ 1
8 (4uα + 5)(b − a) + 1

8 (12uα + 17)r3 + 4r2 + 2r ′
2,α + 4r10.

Proof of Theorem 2.3. Let

hz,c(w) =

⎧⎪⎨
⎪⎩

1 for w < z,

1 + (z − w)/c for z ≤ w ≤ z + c,

0 for w > z + c,

and let fz,c be the solution to the Stein equation

f ′
z,c(w) − wfz,c(w) = hz,c(w) − �(hz,c),

where �(h) := (1/
√

2π)
∫ ∞
−∞ h(x)e−x2/2 dx. Then, from Chen and Shao (2004, p. 2010), we

have

0 ≤ fz,c(w) ≤ 1, |f ′
z,c(w)| ≤ 1, |f ′

z,c(w1) − f ′
z,c(w2)| ≤ 1, (4.10)

|f ′
z,c(w + s) − f ′

z,c(w + t)| ≤ (|w| + 1) min{|s| + |t |, 1} + 1

c

∣∣∣∣
∫ t

s

1{z≤w+u≤z+c} du

∣∣∣∣.
(4.11)

Writing F(z) := P(W̃ ≤ z), we note that

sup
z

|F(z) − �(z)| ≤ 1
5c + sup

z
| E hz,c(W̃ ) − �(hz,c)|. (4.12)

For F(z) < �(z), this follows because

|F(z) − �(z)| = �(z) − F(z)

≤ {�(z) − �(hz−c,c)} + {�(hz−c,c) − E hz−c,c(W̃ )}
≤ c

2
√

2π
+ sup

z
| E hz,c(W̃ ) − �(hz,c)|;

the argument for F(z) ≥ �(z) is analogous.
Let K(t, dα) = E K̂(t, dα). Since H̃2|{α} is independent of H̃2|Ac

α
in the sense of condition

(LD1)(a) and H̃2|Aα is independent of W̃ − Zα , we have

E f ′
z,c(W̃ ) − E{W̃fz,c(W̃ )}

= E

{∫
�

∫ ∞

−∞
f ′

z,c(W̃ )K(t, dα) dt −
∫

�

∫ ∞

−∞
f ′

z,c(W̃ + t)K̂(t, dα) dt

}

= E
∫

�

∫ ∞

−∞
[f ′

z,c(W̃ ) − f ′
z,c(W̃ − Zα + t)]K(t, dα) dt

+ E
∫

�

∫ ∞

−∞
[f ′

z,c(W̃ − Zα + t) − f ′
z,c(W̃ + t)]K̂(t, dα) dt

= Q1 + Q2 + Q3 + Q4,
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where

Q1 := E
∫

�

∫
|t |≤1

(f ′
z,c(W̃ ) − f ′

z,c(W̃ − Zα + t))K(t, dα) dt,

Q2 := E
∫

�

∫
|t |>1

(f ′
z,c(W̃ ) − f ′

z,c(W̃ − Zα + t))K(t, dα) dt,

Q3 := E
∫

�

∫
|t |>1

(f ′
z,c(W̃ − Zα + t) − f ′

z,c(W̃ + t))K̂(t, dα) dt,

Q4 := E
∫

�

∫
|t |≤1

(f ′
z,c(W̃ − Zα + t) − f ′

z,c(W̃ + t))K̂(t, dα) dt.

It follows from (4.10) that

|Q2| + |Q3| ≤ 2 E
∫

�

∫
|t |>1

(1{−Yα≤t<0} + 1{0≤t≤−Yα})|H̃2(dα)| dt

≤ 2 E
∫

�

|Yα| 1{|Yα |>1} |H̃2(dα)|

= 2r2.

Using (4.11), we obtain

|Q4| ≤ E
∫

�

∫
|t |≤1

(|W̃ | + |t | + 1)(|Zα| ∧ 1)|K̂(t, dα)| dt

+ 1

c
E

∫
�

∫
|t |≤1

1{Zα≥0}
∫ 0

−Zα

1{z≤W̃+t+u≤z+c} du|K̂(t, dα)| dt

+ 1

c
E

∫
α∈�

∫
|t |≤1

1{Zα<0}
∫ −Zα

0
1{z≤W̃+t+u≤z+c} du|K̂(t, dα)| dt

≤ E
∫

�

(|W̃ | + 1)(|Zα| ∧ 1)(|Yα| ∧ 1)|H̃2(dα)|

+ 1

2
E

∫
�

(|Zα| ∧ 1)(Y 2
α ∧ 1)|H̃2(dα)| + Q4,1

≤ r8 + r9 + 1
2 r3 + Q4,1,

where

Q4,1 = 1

c
E

∫
�

∫
|t |≤1

1{Zα≥0}
∫ 0

−Zα

1{z≤W̃+t+u≤z+c} du|K̂(t, dα)| dt

+ 1

c
E

∫
�

∫
|t |≤1

1{Zα<0}
∫ −Zα

0
1{z≤W̃+t+u≤z+c} du|K̂(t, dα)| dt.
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Let η(α) = H̃2|Bα . It then follows from Proposition 4.1 that

Q4,1 = 1

c
E

∫
�

∫
|t |≤1

1{Zα≥0}
∫ 0

−Zα

Pη(α)(z ≤ W̃ + t + u ≤ z + c) du|K̂(t, dα)| dt

+ 1

c
E

∫
�

∫
|t |≤1

1{Zα<0}
∫ −Zα

0
Pη(α)(z ≤ W̃ + t + u ≤ z + c) du|K̂(t, dα)| dt

≤ { 1
8 (4r13 + 5) + c−1[ 1

8 (12r13 + 17)r3 + 4r2 + 2r14 + 4r10]}
× E

∫
�

∫
|t |≤1

|Zα| |K̂(t, dα)| dt

= 1
8 (4r13 + 5)r8 + c−1[ 1

8 (12r13 + 17)r3 + 4r2 + 2r14 + 4r10]r8.

Hence,

Q4 ≤ 1
8 (4r13 + 13)r8 + r9 + 1

2 r3 + c−1[ 1
8 (12r13 + 17)r3 + 4r2 + 2r14 + 4r10]r8.

In similar fashion, we obtain

|Q1| ≤ E
∫

�

∫
|t |≤1

(|W̃ | + 1) min{|Zα| + |t |, 1}|K(t, dα)| dt

+ 1

c
E

∫
�

∫
|t |≤1

1{Zα≤t}
∫ t−Zα

0
1{z≤W̃+u≤z+c} du|K(t, dα)| dt

+ 1

c
E

∫
�

∫
|t |≤1

1{Zα>t}
∫ 0

t−Zα

1{z≤W̃+u≤z+c} du|K(t, dα)| dt

≤ E
∫

�

∫
|t |≤1

(|W̃ | + 1){(|Zα| ∧ 1) + |t |}|K(t, dα)| dt + Q1,1

≤ E
∫

�

(|W̃ | + 1)

{
(|Zα| ∧ 1)(|Y ∗

α | ∧ 1) + 1

2
(|Y ∗

α |2 ∧ 1)

}
|H̃ ∗

2 (dα)| + Q1,1,

where

Q1,1 = 1

c
E

∫
�

∫
|t |≤1

1{Zα≤t}
∫ t−Zα

0
1{z≤W̃+u≤z+c} du|K(t, dα)| dt

+ 1

c
E

∫
�

∫
|t |≤1

1{Zα>t}
∫ 0

t−Zα

1{z≤W̃+u≤z+c} du|K(t, dα)| dt.

Since E |W̃ | ≤ 1, it follows that, on the one hand,

|Q1| ≤ E
∫

�

(|W̃ | + 1)(|Zα| ∧ 1)(|Y ∗
α | ∧ 1)|H̃ ∗

2 (dα)|

+ E
∫

�

(|Y ∗
α |2 ∧ 1)|H̃ ∗

2 (dα)| + Q1,1

= r12 + r3 + Q1,1.
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On the other hand, applying Proposition 4.1 gives

Q1,1 = 1

c
E

∫
�

∫
|t |≤1

1{Zα≤t}
∫ −(Zα−t)

0
Pη(α)(z ≤ W̃ + u ≤ z + c) du|K(t, dα)| dt

+ 1

c
E

∫
�

∫
|t |≤1

1{Zα>t}
∫ 0

−(Zα−t)

Pη(α)(z ≤ W̃ + u ≤ z + c) du|K(t, dα)| dt

≤ { 1
8 (4r13 + 5) + c−1[ 1

8 (12r13 + 17)r3 + 4r2 + 2r14 + 4r10]}
× E

∫
�

∫
|t |≤1

(|Zα| + |t |)|K(t, dα)| dt

≤ { 1
8 (4r13 + 5) + c−1[ 1

8 (12r13 + 17)r3 + 4r2 + 2r14 + 4r10]}
× E

∫
�

{
|Zα|(|Y ∗

α | ∧ 1) + 1

2
(|Y ∗

α |2 ∧ 1)

}
|H̃ ∗

2 (dα)|
≤ { 1

8 (4r13 + 5) + c−1[ 1
8 (12r13 + 17)r3 + 4r2 + 2r14 + 4r10]}(r ′

8 + 1
2 r3).

Hence,

|Q1| ≤ r3 + r12 + { 1
8 (4r13 + 5) + c−1[ 1

8 (12r13 + 17)r3 + 4r2 + 2r14 + 4r10]}(r ′
8 + 1

2 r3).

Combining (4.12) and the estimates of Qi, i = 1, . . . , 4, gives

sup
z

|F(z) − �(z)|
≤ 1

5c + 2r2 + 1
16 (29 + 4r13)r3 + 1

8 (4r13 + 13)r8 + 1
8 (4r13 + 5)r ′

8 + r9 + r12

+ c−1( 1
8 (12r13 + 17)r3 + 4r2 + 2r14 + 4r10)(r8 + r ′

8 + 1
2 r3). (4.13)

Letting
c = {5( 1

8 (12r13 + 17)r3 + 4r2 + 2r14 + 4r10)(r8 + r ′
8 + 1

2 r3)}1/2

(thus minimizing the right-hand side of (4.13)) and then using
√

xy ≤ 1
2 (x + y) gives

dK(L(ϑ−1(W − E W)), N (0, 1))

≤ 2r2 + 1
16 (29 + 4r13)r3 + 1

8 (4r13 + 13)r8 + 1
8 (4r13 + 5)r ′

8 + r9 + r12

+ 1
5

√
5{( 1

8 (12r13 + 17)r3 + 4r2 + 2r14 + 4r10) + (r8 + r ′
8 + 1

2 r3)}
≤ 4r2 + (3 + r13)r3 + 1

2 (4.2 + r13)r8 + 1
2 (2.2 + r13)r

′
8 + r9 + 2r10 + r12 + r14,

as claimed in (2.2). The claim in (2.3) is due to the fact that r14 ≤ r13, and, if r13 is not less
than 1, the bound becomes obvious.

Proof of Theorem 2.4. Since max{|Yα|, |Zα|, |Uα|} ≤ G(N(Cα))/ϑ and G({α})/ϑ ≤
G(N(Cα))/ϑ , we have

r2 ≤ E
∫

�

|Yα|p−1|H̃2(dα)| ≤ η1,

r3 ≤ E
∫

�

|Yα|p−1|H̃2(dα)| ≤ η1,

r8 ≤ E
∫

α∈�

|Yα|p−2|Zα||H̃2(dα)| ≤ η1.
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We similarly find that r ′
8 ≤ η2. By the independence between W̃ − Uα and H̃2|Bα , and since

|Uα| ≤ G(N(Cα))/ϑ , we obtain

r9 ≤ E
∫

�

(|W̃ − Uα| + |Uα|)(|Zα| ∧ 1)|Yα|p−2H̃2(dα)

≤
(

sup
α

E |W̃ − Uα| + 1
)
η1

≤
(

sup
α

E{|W̃ | + G(N(Cα))/ϑ} + 1
)
η1

≤
(

sup
α

E G(N(Cα))/ϑ + 2
)
η1,

r10 ≤ E
∫

β1∈�

∫
β2∈N(Aβ1 )

|Yβ1 |p−2(|H̃2(dβ2)| + |H̃ ∗
2 (dβ2)|)|H̃2(dβ1)|

≤ η1 + η2

and

r12 ≤ E
∫

α∈�

(|W̃ − Uα| + |Uα| + 1)(|Zα| ∧ 1)|Y ∗
α |p−2|H̃ ∗

2 (dα)|

≤
(

sup
α

E |W̃ − Uα| + 2
)
η2

≤
(

sup
α

E G(N(Cα))/ϑ + 3
)
η2,

r13 ≤ sup
α

E G(N(Cα))/ϑ,

completing the proof, from (2.3), because the bound is obvious if supα E G(N(Cα))/ϑ > 1.

There is one final technical lemma.

Lemma 4.3. If Z ∼ Po(�), then, for all r > 0 and all integers n ≥ max{r, 2e�},
E(Z + 1)r ≤ nr{1 + 2.2e−�2−n}.

Proof. It is immediate that E(Z +1)r = E{(Z +1)r 1{Z<n}}+E{(Z +1)r 1{Z≥n}}, with the
first term on the right-hand side equalling at most nr . To bound the second term, just observe,
by simple comparison, that, for n in the chosen range,

∑
j≥n

(j + 1)r
e−��j

j ! ≤ nr e−��n

n!
∑
s≥0

(
n + s + 1

n

)r(
�

n

)s

≤ nr e−��n

n!
er/n

1 − n−1�er/n

≤ 2enr e−�

√
2πn

(
�e

n

)n

,

this last from Stirling’s formula. The lemma now follows.
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