
FINITE CO-DEDEKINDIAN GROUPS
by MARIAN DEACONESCUt and GHEORGHE SILBERBERG

(Received 18 October, 1994)

1. Introduction. A group G is called Dedekindian if every subgroup of G is normal
in G.

The structure of the finite Dedekindian groups is well-known [3, Satz 7.12]. They are
either abelian or direct products of the form Q X A X B, where Q is the quaternion group
of order 8, A is abelian of odd order and exp(B) ^ 2 .

We may view a Dedekindian group G as a group satisfying the property that
a(H) = H for every / / < G and for every a e Inn(G). This remark suggests the
consideration of a new class of groups, called co-Dedekindian groups which are defined
by a similar requirement. Although our definition makes sense for infinite groups we shall
restrict here to the finite case.

DEFINITION. Let G be a group and let Autc(G) be its group of central automorph-
isms, so that Autc(G) = {a E Aut(G) \a(x) e JCZ(G), for every x s G}. G is called a
co-Dedekindian group (^-group for short) if a(H) = H for every / / < G and for every
a e Autc(G).

A first glance at the definition shows that the class of <i?-groups is very large. If G is a
group and if Z(G) = 1 or if G' = G, then Autc(G) = 1 and G is a 'if-group in an obvious
manner. By a trivial ^-group we shall mean a group G with Autc(G) = 1.

Since Z(Sn) = 1 for n >3 , it follows by Cayley's theorem that every finite group can
be embedded into a trivial <i?-group. This means that there is no hope for a compact
description of the trivial 'if-groups and turn the focus on nontrivial ^-groups.

The parallel with Dedekindian groups is clear. We may regard the abelian groups as
trivial Dedekindian groups. A Dedekindian group is trivial if and only if Inn(G) = 1. The
nontrivial Dedekindian finite groups are the Hamiltonian groups whose structure was
described above.

All groups in this paper are finite. The notation is standard and conforms to that of
[2]. If G is a group and if a e Autc(G) we shall denote Fa = Cc(a) = {x e G \ a(x) = x},
Ka = [G,a) = (x^a(x)\x sG). Also, F = fl {Fa \ a e Autc(G)} and K = (Ka | a e
Autc(C)>.

Our first result is a Dedekind-like structure theorem. Unfortunately it holds only for
"^-groups with trivial Frattini subgroup:

THEOREM 1. Let G be a nontrivial ^-group such that 3>(G) = 1. Then G = F x K,
(\F\, \K\) = 1, F is a trivial ^-group and K is a cyclic group of odd square-free order.

The nilpotent ^-groups are good candidates for nontrivial ^-groups and we may
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expect that their structure is quite restricted. The following result shows that this is indeed
the case under certain additional assumptions.

THEOREM 2. Let G be a p-group. If G is a nonabelian ^-group, then Z2(G) is a
Dedekindian group. If Z2(G) is nonabelian, then G — Q8. If Z2(G) is cyclic, then G = Q2-,
n > 4, where Q2» is the generalized quaternion group of order 2".

2. Nontrivial ^-groups with trivial Frattini subgroup. In order to prove Theorem 1,
we need first a number of results about arbitrary 9?-groups. The first lemma is well-known
(see [1]).

(2.1) Let G be a group and let a e Autc(G).
(i) The function <f)a:G^>G, defined by 4>Q(x) = x~ia(x) for all xeG is an

endomorphism of G, Ker <f>a = Fa, 4>a{G) = Ka and \G\ = \Fa\.\Ka\. If, moreover,
(|a|, |G|) = l thenG = FaXKo.

(ii) G' ^ F and K £ Z(G), so in particular F, K, Fa, Ka are normal subgroups in G.

The following elementary consequence of (2.1)(i) will be used in the sequel:

(2.2) Let G be a ^-group, let a s Autc(G) and let H < G. Then

\H\ = \HDFa\.\<t>a(H)\.

If G is a ^-group and if a e Autc(G), then Fa and Ka play a special role in the lattice
of all subgroups.

(2.3) Let Gbea %-group, let a e Autc(G) and let H < G. Then
(i) H
(ii) / /
(iii) G =
(iv) G =

Proof. Since the proofs are similar, we shall prove only (iv). Let G = HKa, so that
\G\ = \H\.\Ka\/\HnKa\. By (2.1)(i), \H\ = \H D Ka\. \Fa\. By (2.2), \H D Fa\. \4>a{H)\ =
\H n A:Q|. \Fa\. Then \{H n Ka): 4>a(H)\. \Fa : (H D Fa)\ = 1, forcing Fa < H.

Now we can prove the following result.

(2.4) Let G be a %-group and let a e Autc(G). Then
(i) FanKa^^(G)
(ii) F n K < 0>(G).

Proof. It is sufficient to prove only (ii). We may assume that F ^ $ ( G ) . Choose a
maximal subgroup M of G such that F^M. Then G = FM, so G = FaM for all
a e Autc(G). By (2.3)(iii) it follows that Ka<M for all a e Autc(G), whence K < M. We
have thus proved that if M is a maximal subgroup of G and if F^M, then K^M. Now
F n K < (~){M | M is maximal inGandF<M}n (~\{M \ M is maximal in G and F $ M) = <&(G).

The next result shows that the elements of prime order are "separated" by Fa and Ka.

(2.5) Let G be a ^-group, let a e Autc(G) and let p e n{G). If Tp is the set of all
elements of order pofG, then Tp g Fa or Tp g Ka.

Proof. Let x e Tp. If (x)nfa = l, then by (2.3)(i) (x)<Ka. This shows that
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Tp £ Fa U Ka. Assume now that x,y e Tp such that x e Fa - Ka and y e Ka - Fa. Since
y e Ka^ Z(G), [x,y] = 1, so xy s Tp. But clearly xy $ Fa\J Ka, a contradiction. Thus
Tp^FaOT Tpc.Ka, as asserted.

As a corollary we have the following result.

(2.6) Let G be a %-group and let a s Autc(G), such that FaDKQ = 1. Then
G = FaxKa and (\Fa\, \Ka\) = 1.

Proof. That G = FaxKa follows from hypothesis and (2.1)(i), while (\Fa\, \Ka\) = 1
follows by (2.5).

We are now in position to give a

Proof of Theorem 1. Let G be a nontrivial ^-group with <5(G) = 1. Then F n K = 1
by (2.4) and if a e Autc(G) we also have that G = Fax Ka, (\Fa\, \Ka\) = 1 by (2.4) and
(2.6).

We prove first that (|F|, \K\) = 1.
Let p e K{K). Since K is abelian we can find a e Autc(G) such that p e n(Ka). Then

(p, \Fa\) = 1 and since F < Fa, (p, \F\) = 1.
Now we prove that G = F x K. Since F,K^G and F n/C = 1, it suffices to show that

G = FK. Let x be a p-element of G. From (2.2) and (2.3) it follows that either (x) < Fa or
(x)^/CQ if a e Autc(G). It is easy to deduce that either (x)<F or (x)^K, which shows
that G = FK = FXK.

Since (|F|, |/q) = 1, Autc(G) = Autc(F) x Autc(K).
Since G is a ^-group, both F and K are ^-groups. Of course, F is a trivial ^-group,

because F = Cc(Autc(G)). K is a cyclic group because K is abelian and the condition of
being a ^-group is equivalent to that of every subgroup of K being characteristic in K.
Since K s G , Q>(K) < 0>(G) = 1, so |/q is square-free. Note that if 2 e n(G), then
2 e ?r(F). Indeed, if a e Autc(G), then a(x) = x for every involution of G. Hence |/C| is
odd and the proof is complete.

3. Nilpotent 'Sf-groups. If G is a nilpotent ^-group, then G is the direct product of
its (characteristic) Sylow p-subgroups and every Sylowp-subgroup of G is also a ^-group.
We will therefore focus here on p-groups which are nontrivial ^-groups. Note that an
abelian p-group is a 'if-group if and only if it is a cyclic p-group and that a cyclic p-group
G is a trivial 'S-group if and only if \G\ ^2.

We shall now concentrate on nonabelian p-groups which are ^-groups. The following
two lemmas are helpful:

(3.1) Let G be a nonabelian p-group. If G is a ^-group, then fij(G) ^ F.

Proof. Observe first that, since G is a ^-group, Autc(G) is an abelian group. This
follows at once from the condition that a(x) e (x) for every x e G and every a e
Autc(G). We may use now Corollary 2 of [1] to derive that Autc(G) is a p-group.

If x E Tp, so that \x\=p, then by [2, Lemma 2.6.3], x s F. This proves that Qi(G) < F.

(3.2) Let G be a nonabelian p-group. If G is a VH-group, then Z2(G) is a Dedekindian
group.
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Proof. Since G is nonabelian, Z{G) < Z2(G). Every element of Z2(G) induces by
conjugation a central automorphism of G because [Z2(G), G] ^ Z(G). Since G is a
•if-group, it follows that [H, Z2(G)] s H for every H < G. In particular, every subgroup of
Z2{G) is normal in Z2(G), so Z2(G) is a Dedekindian group.

If G is a nonabelian p-group which is a ^-group then by (3.2) Z2(G) is either abelian
or Z2(G) is the direct product of Q% by a group of exponent at most 2. It is a rather easy
matter to determine those nonabelian p -groups G which are 'tf-groups and in which
Z2(G) is a cyclic group.

(3.3) Let G be a nonabelian p-group which is a ^-group. If Z2(G) is cyclic, then p = 2
and G — Q2-, n^4, where Q2» is the generalized quaternion group of order 2".

Proof. Since Z2(G) is cyclic, it follows by [3, Satz 7.7] that p = 2 and G has a cyclic
maximal subgroup. Then G must be isomorphic to one of the groups of the following list:

(i) D2n = (a,b\ a2""' = b2 = 1, [a, b] = a~\
(ii) SD2. = (a,b\ a2"" = b2 = 1, [a, b] = a~2+2"'\
(hi) Mod2, = (a, b | a2"" = b2 = 1, [a, 6] = a2""),
(iv) g*. = <fl, b | a2"" = 1, b2 = a2-1, [a, b] = a~2).

Since G is a <<?-group, it follows that Z2{G)<Cc{£lx{G)) by (3.1). If G = D2», than
CC(Q1(G)) = CG(G) = Z(G), a contradiction. If G=SD2*, than CG(Q,(G)) =
Cc((a

2, *>)) = Z(G), a contradiction. If G = Mod2n, then G has class 2, whence Z2(G) = G
and G is not cyclic. The groups Q2* are co-Dedekindian groups for n > 3, but if n = 3,
Z2(G) = G = Q8 is not cyclic. Therefore G = Q2*, n 2:4, as asserted.

We are now in position to prove Theorem 2. Notice that by (3.2) and (3.3) we have
only to tackle the case in which Z2{G) is nonabelian. We start by fixing some notation.

Let G be a nonabelian p-group which is a ^-group such that Z2(G) is nonabelian.
Then, by (3.2), Z2{G) must be a nonabelian 2-group; in particular, p = 2 and Z2(G) =
HxS, where / / = {a,b \ a4 = 64 = 1, a2 = b2, b~^ab = a~l) = Q8 and 5 is a group of
exponent at most 2.

Throughout the rest of the proof we shall keep this notation fixed. We split the proof
into a number of steps.

Step 1. O(G) < CG(H).

Proof. Since $(G) = ({x2 \ x e G}), it suffices to prove that x2 E CC(H) for all x e G.
But Cc(//) = CG(fl)nCc(6) and, for symmetry reasons, it suffices to prove that
x2 E Cc(a) for every x e G.

Let xeG-Cc(a). Since a E Z2(G), [ O , X ] E Z ( G ) and [a,x]*l. Then [a,x] has
order 2 because exp(Z(G)) = 2 by hypothesis. Since G is a 'g-group, [a,x] E (X). Let
|JC| = 2*, so that [a,x]=x2k'\ Then a*1 = 1 and x2 e CG(a).

Step 2. G = CG(fl) U Cc(b) U CG(ab).

Proof. Let x e G - (CG(a) U CG(6)) and let |x| = 2*. Then, as in Step 1, we can write
[a,x] = x2k'\ [b,x] = x2k". This yields x" = x2'"+\ xb=x2k"+\ whence xah = *2"'2+1.
Since JC e CG(//) so x e F = CG(Autc(G)). Then |;c| > 2 by (3.1), whence |x| = 2k \ 22k~2.
As a consequence xah = x, whence x e Cc(ab).
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Step 3. Cc(a), Cc(b) and Cc{ab) are maximal subgroups of G.

Proof. It follows from [4] and from the previous Step that G has a quotient K which
is a Klein four group, and Cc(a), CG(b), Cc(ab) are the preimages of the three nontrivial
subgroups of K, hence they are maximal subgroups of G.

Step 4. Z(G) = (a2) = Z2 and Z(G) < <D(G).

Proof. Let z G Z(G) be an involution. Define <j> :G —>G by <j>(x) = x if x G C G (O)
and $(.*) = ZJC if x $. CG(a). Then </> G Autc(G) and since G is a <£-group </>(ft) G 0 ) ,
whence zb e (fc) and z = b2 = a2. In particular, Z(G) has a unique involution. This shows
that Z(G) is cyclic. Since Z(G) < Z(Z2(G)) = (a2) X 5, it follows that Z(G) = (a2) = Z2.

It is now clear that Z(G) < <I>(G).

Step 5. Q,(G) < $(G) a«rf a2 e (x), for all x e G - $(G).

Proof. It is enough to show that there are no involutions in G — O(G).
Suppose that x s G - 3>(G) is an involution and let M be a maximal subgroup of G

such that x $ M. Let <f>:G-^>G be defined by <j>(g) = g, if g e M, and <}>(g) = a2g, if
g & M. Then </> G Autc(G) and in particular </>(*) e (x), since G is a <£-group. Then
a2x e (*) and a2 s (x). Since |JC| = 2, a2 = Jt. This contradicts Step 4.

Step 6. ^(G) « elementary abelian.

Proof. Assume the contrary and let x e *&(G) with |*| = 4. Then ax £ ^(G) because
a e Cc(6) and Cc(6) is a maximal subgroup of G by Step 3. Since ^(G) £ CC(H) by Step
1, (ax)4 = a V = 1. In particular, |axi<4 and since ax &<£>(G) it follows by Step 5 that
|fljt| = 4. Then (ax)2 = a2 by Step 5. We get x2 = 1, a contradiction.

Step 7. |0>(G)| = 2.

Proo/. By Step 6, if x e $(G), then |JC| = 2. If JC $ 4>(G), then x2 G $(G) = <{g2 | g e
G}). Also, by Step 5, a2 e (x) if x e G - <t>(G). Then x2 = a2 for every x e G - <t>(G),
whence

Step 8. G = H = Q8.

Proof By Steps 5 and 7, G contains a unique involution. Then G = Q2" for some
n > 3, by [3, Satz 8.2]. Since if n > 4, Z2(G) = Z4, it follows that « = 3 and G = Q8.

The proof of Theorem 2 is now complete.

Notice that by (3.2), (3.3) and by Theorem 2 the classification of all ^-groups of
prime power order is reduced to that of nonabelian p-groups with abelian noncyclic
second center.

4. Concluding remarks, (a) If G is a ^-group and <I>(G) # 1 then Theorem 1 does
not hold; for example, the cyclic group Z4 is a nontrivial ^-group which is
indecomposable.

(b) The problem of deciding whether a group is a trivial ^-group is not a trivial one.
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Of course, by (2.1)(ii), G is surely a trivial <<?-group if G = G', or if Z(G) = 1. But these
conditions are not necessary: if G = Z2 X H and H is a nonabelian group of order 21, then
G is a trivial 'if-group but clearly Z(G) ¥=1 and G^C. Theorem 1 gives a sufficient
condition for a ^-group G to be a trivial <#-group: it suffices to have ^ (G) = 1, G
noncyclic and G purely nonabelian (i.e. G has no abelian direct factors).

(c) We remark here that nonabelian p-groups with abelian noncyclic second center
and which are ^-groups do exist. An example is G = (a,b | a 9 = l , b3 = a6, [a,b]3=l,
[a, [a, b]] = a3, [b, [a, b]] = 1) whose order is 81.

It can be shown that G is the unique group of order p* satisfying all these properties:
Let G be a nonabelian <#-group of order/?4, with Z2(G) abelian and noncyclic.
Then 1 < Z(G) < Z 2 ( G ) < G, \Z(G)\=p, | Z 2 ( G ) | = / r , Z2(G) is elementary abelian

and G has class 3. From the relations G' <Z 2 (G) , C n Z { G ) * l , G ' 4 Z ( G ) , G' <<J>(G)
we derive G' = 0>(G) = Z2(G). Now let z be a generator of Z(G).

If x $. <&(G) and M is a maximal subgroup of G such that x $. M, then (p : G-+G
defined by 4>{x'm) = x'z'm, for every m e M and for every / E { 0 , 1 , . . . , / ? - 1} is a central
automorphism of G with <fi(x) = xz. Because G is a 'tf-group, a(x) s (x), that is
Z(G) c (x) for every I E C - $(G) .

We obtain \x\>p for every x e G - < I > ( G ) and Q,(G) = Z2(G). It is known that
G" £ 0>(G), so that exp(G) = p2. Now if x e G - $ ( G ) then |x| = p2 and Z(G) c (JC), that
is Z(G) = (xp). It follows that Gp = Z(G).

Finally we get

1 < Z(G) = GP< Z2(G) = $ (G) = n , (G) < G. (**)

Conversely, we will show that a group G of order p4 satisfying (**) is a nonabelian
^-group with abelian noncyclic second center.

Let G be such a group. Obviously G has class 3, |Z(G)| =p and |Z2(G)| = p2. Being
generated by elements of order p , Z2(G) is elementary abelian.

Now let (/» be a nontrivial central automorphism of G. Then l^K^ ^Z(G), that is
K,,, = Z(G). It follows that / ^ is a maximal subgroup of G. This implies <£(*) = Jt, for
every x E 3>(G).

Let x E G - $(G). From (* *) we get \x\ >p and x" e Z(G), that is Z(G) = (xp).
Now (f>(x) E J : Z ( G ) <r (x), hence G is a 'if-group. We may observe that such a group

G is nonregular because \GP\. |&i(G)| ^ \G\ and the lack of regularity implies p =£ 3 (See
[3], Satz 10.2 and Satz 10.7).

Moreover, p¥2 because Gp ^<J>(G). We may conclude that the only nonabelian
"^-groups G of order p4 which have abelian noncyclic second center are the groups of
order 81 satisfying (**).

There is a single group with these properties, namely G = (a,b\a9 = 1, bi = af>,
[a, bf = 1, [a, [a, b]] = a3, [b, [a, b]] = l> (See [3], Aufgabe 29 p. 349).

It is easy to see that Z(G) = G3 = (a3) = Z3 and

Z2{G) = 4>(G) = Q,(G) = (a3, [a, b]) - Z3 x Z3.
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