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Abstract

Abductive reasoning is a popular non-monotonic paradigm that aims to explain observed symp-
toms and manifestations. It has many applications, such as diagnosis and planning in artificial
intelligence and database updates. In propositional abduction, we focus on specifying knowledge
by a propositional formula. The computational complexity of tasks in propositional abduction
has been systematically characterized – even with detailed classifications for Boolean frag-
ments. Unsurprisingly, the most insightful reasoning problems (counting and enumeration) are
computationally highly challenging. Therefore, we consider reasoning between decisions and
counting, allowing us to understand explanations better while maintaining favorable complex-
ity. We introduce facets to propositional abductions, which are literals that occur in some
explanation (relevant) but not all explanations (dispensable). Reasoning with facets provides
a more fine-grained understanding of variability in explanations (heterogeneous). In addition,
we consider the distance between two explanations, enabling a better understanding of hetero-
geneity/homogeneity. We comprehensively analyze facets of propositional abduction in various
settings, including an almost complete characterization in Post’s framework.

KEYWORDS: propositional abduction, computational complexity, Post’s framework, fine-
grained reasoning
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1 Introduction

Pedro is a passionate sailor. Today is Wednesday and he is about to go on the usual race to

enjoy some waves and get a good challenge. But for some reason, nobody is out there for a

race (a manifestation). He looks up into the sky and is a bit undecided, could the weather

forecast have predicted calm winds or an unexpected storm resulting in calling off the race

(a hypothesis) trying to explain his observation by finding appropriate causes. This type

of backward reasoning is called abductive reasoning, one of the fundamental reasoning

techniques that is commonly believed to be naturally used by humans when searching for

diagnostic explanations. Abduction has many applications (Dai et al. 2019; Dellsén 2024;

Ignatiev et al. 2019; Yu et al. 2023; Yu et al. 2023; Hu et al . 2025) and is well-studied in

the areas of artificial intelligence, knowledge representation, and non-monotonic reasoning

(Minsky 1974; Kakas et al. 1992; Miller 2019).

Qualitative reasoning problems like deciding whether an explanation exists or whether

a proposition is relevant or necessary are computationally hard but still within range of

modern solving approaches. More precisely, these problems are located on the second level

of the polynomial hierarchy (PH) in the general case (Eiter and Gottlob 1995). However,

asking for relevance or necessary propositions does not provide much insight into the

variability of explanations. Enumeration and counting allow for more fine-grained reason-

ing but are computationally extremely expensive (Hermann and Pichler 2010; Creignou

et al. 2019). Instead, we turn our attention to the world between relevant (belongs to

some explanations) and necessary propositions (belongs to all explanations) and consider

propositions that are relevant but not necessary , called facets .

In this work, we study the computational complexity of problems involving facets.

To this end, we work in the universal algebraic setting by restricting the types of

clauses/relations that are allowed (e.g., only Horn-clauses, or only 2-CNF). The result-

ing sets can be described by functions called polymorphisms and in the Boolean domain

form a lattice known as Post’s lattice (Post 1941). This setting makes it possible to

obtain much more fine-grained complexity results and two prominent and early results are

Lewis’ dichotomy for propositional satisfiability (Lewis 1979) and Schaefer’s dichotomy

for Boolean constraint satisfaction (Schaefer 1978). However, this approach has been

applied to many more problems (Creignou and Vollmer 2008), including non-monotonic

reasoning and several variants of abduction (Nordh and Zanuttini 2008). We follow this

line of research for faceted abduction.

Our main contributions are the following:

1. We introduce facets to propositional abduction thereby enabling a better under-

standing of propositions in explanations.

2. We establish a systematic complexity characterization for deciding facets in

propositional abduction illustrated in Figure 1a.

(i) Our classification provides a complete picture in Post’s framework for all

fragments, which can be described via clauses, for example, Horn, 2CNF, and

dualHorn. Only two open cases remain: relations definable as Boolean linear

equations of even length (with, or without, unit clauses).
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Fig. 1. Illustration of complexity results via Post’s lattice.

(ii) Deciding facets is often not much harder than deciding explanation existence.

In some surprising cases, the complexity increases.

(iii) Our facet results imply a corresponding classification for the problem of

deciding relevance, which has received significant attention in the classical

abduction literature and mentioned as an open question.

3. We study the related problem of determining whether there exist two explanations

of sufficiently high diversity . This metric can be precisely related to the existence

of facets and several notions from our facet classification carry over. However,

this problem is provably much harder and becomes NP-hard already for a small

fragment of Horn consisting of just implication (x→ y).

1.1 Related works

The computational complexity of propositional abduction is well studied. Selman and

Levesque (1990) showed that explanation existence is tractable for Horn theories for
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special cases of propositional abduction, but NP-hard when checking for an explanation

that contains a particular proposition. Bylander et al. (1991) generalized the results to

“best” explanations (most plausible combination of hypotheses that explains all the data)

and present a tractable sub-class of abduction problems. Eiter and Gottlob (1995) proved

ΣP
2 -completeness for propositional abduction. Creignou and Zanuttini (2006) established

a precise trichotomy (P,NP,ΣP
2 ) in Schaefer’s framework where inputs are restricted to

generalized conjunctive normal form or subsets. Nordh and Zanuttini (2008) lifted results

to propositional knowledge bases and establish a tetrachotomy (P, NP, co-NP, ΣP
2 ).

Creignou et al. (2010) showed a complete complexity classification for all considerable

sets of Boolean functions. Relevance and dispensability are comparably speaking not as

well understood. An early result by Friedrich et al. (1990) show that it is NP-hard to

determine relevance over (definite) Horn theories, and Eiter and Gottlob (1995) addi-

tionally prove that it is ΣP
2 -hard to decide relevance if the knowledge base is an arbitrary

propositional formula. Zanuttini (2003) later asks if there is a simple relationship between

deciding relevance and the complexity of the underlying abduction problem. We find it

surprising that Zanuttini’s question (later repeated by Nordh and Zanuttini (2008)) still

remains unanswered given that we by now have a complete understanding of the classical

complexity of virtually all propositional abduction problems. In addition, counting and

enumeration complexity is also well studied (Creignou et al. 2010, 2019; Hermann and

Pichler 2010). Fellows et al. (2012); Pfandler et al. (2013); and Mahmood et al. (2021)

included semantical structural restrictions (parameterized complexity) in the complexity

study. The concept of facets has originally been introduced in the context of answer-set

programming to enforce/forbid atoms in solutions and systematically investigate solu-

tions without counting or enumeration (Alrabbaa et al. 2018; Fichte et al. 2022a). The

complexity of ASP facets for tight, normal, and disjunctive programs was established

very recently (Rusovac et al. 2024). Speck et al. (2025) lifted facets to symbolic plan-

ning for reasoning faster on the plan space, and Fichte et al. (2025) introduced facets to

abstract argumentation. Eiter and Geibinger (2023) studied justifications for the pres-

ence, or absence, of an atom in the context of answer-set programming including so-called

contrastive explanations. They provide a basic complexity theoretical characterization.

Diversity has been considered in the literature on propositional satisfiability and logic

programming, for example (Misra et al. 2024; Böhl et al. 2023). Abductive logic pro-

gramming (ALP) combines logic programming with abductive reasoning, which then

allows for generating hypotheses to explain observed facts or goals. Eiter et al. (1995)

studied the complexity of ALP regarding consistency, relevance, and necessity but focus-

ing on normal and disjunctive programs and commonly used semantics (well-founded,

stable).

2 Preliminaries

We follow standard notions in computational complexity theory (Papadimitriou 1994;

Arora and Barak 2009), propositional logic (Kleine Büning and Lettmann 1999),

and propositional abduction (Bylander et al . 1991). Below, we briefly state relevant

notations.
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2.1 Computational complexity

Let Σ and Σ′ be some finite alphabets. We call I ∈Σ∗ an instance and ||I|| denotes
the size of I. A decision problem is some subset L⊆Σ∗. Recall that P and NP are

the complexity classes of all deterministically and non-deterministically polynomial-time

solvable decision problems (Cook 1971). A polynomial-time many-to-one reduction (≤P
m)

from L to L′ is a function r : Σ∗ →Σ′∗ such that for all I ∈Σ∗ we have I ∈L if and

only if r(I)∈L′ and r are computable in time O(||I|| · c) for some constant c. In other

words, a polynomial-time many-to-one reduction transforms instances of the decision

problem L into instances of decision problem L′ in polynomial time. We also need the

PH (Stockmeyer and Meyer 1973; Stockmeyer 1976; Wrathall 1976). In particular, ΔP
0 :=

ΠP
0 := ΣP

0 := P and ΔP
i+1 := PΣp

i , ΣP
i+1 := NPΣP

i , and ΠP
i+1 := coNPΣP

i for i > 0 where CD

is the class C of decision problems augmented by an oracle for some complete problem

in class D.

2.1.1 Propositional logic

A literal is a variable x or its negation ¬x. A clause is a disjunction of literals, often rep-

resented as a set. A clause of arity 1, that is, either (x) or (¬x), is a unit clause. We work

in a general setting where atoms can be expressions of the form R(x1, . . . , xr) for vari-

ables x1, . . . , xr and an r-ary relation R⊆ {0, 1}r. A function f : {x1, . . . , xr}→ {0, 1}
is then said to satisfy an atom R(x1, . . . , xr) if (f(x1), . . . , f(xr))∈R. A (conjunctive)

propositional formula ϕ is a conjunction of atoms and we write var(ϕ) for its set of vari-

ables. A mapping σ : var(ϕ) �→ {0, 1} is called an assignment to the variables of ϕ and a

model of a formula ϕ is an assignment to var(ϕ) that satisfies ϕ. For two formulas ψ and

ϕ, we write ψ |=ϕ if every model of ψ also satisfies ϕ.

2.2 Restrictions of constraint languages

As alluded in Section 1, we work in a fine-grained setting where not all possible relations

are allowed. Formally, we say that a constraint language Γ is a set of Boolean relations,

and a Γ-formula is a propositional formula ϕ where R ∈ Γ for each atom R(x1, . . . , xr).

For a constraint language Γ, we write SAT (Γ) for the problem of deciding if a given

Γ-formula admits at least one model. If Γ is naturally expressible as a set of clauses, we

represent R ∈ Γ in clausal form. This is the the case for most, but not all, cases that we

consider in this paper. Usually, we do not distinguish between the relation, its defining

clause, or an atom involving the clause. For example, we simply write (x) for the unary

relation {(1)}, (¬x) for {(0)}, (x1 → x2) or (¬x1 ∨ x2) for {(0, 0), (0, 1), (1, 1)}, and so on.

The empty set ∅ is the (nullary) relation that is always false, and we write (x1 = x2) for

the equality relation {(0, 0), (1, 1)}. For a constraint language Γ and k≥ 1, we often use

the notation k-Γ for the set of relations/clauses of arity at most k. Thus, 2-CNF contains

all 1/2-clauses, and 2-affine contains the unary/binary relations definable as equations

mod 2. Additionally, for a language Γ we, let (1) Γ- =Γ \ {(x), (¬x)} be Γ without the

two unit clauses, and (2) Γ+ =Γ∪ {(x), (¬x)} be Γ expanded with the two unit clauses.

A language Γ is b-valid for b∈ {0, 1}, if (b, . . . , b)∈R for each R ∈ Γ. We introduce the

most important constraint languages for the purpose of this paper in Table 1. This
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Table 1. Constraint languages and their corresponding co-clones. Here, Pos(c) and
Neg(c) denote the number of positive and negative literals in a clause c, respectively. For

more details, we refer to the work by Böhler et al. (2005) and the table in the
supplemental material to this paper

Name Definition Corresponding co-clone

CNF {c | c is a clause} BR (II2)
Horn {c | c is a clause,Pos(c)≤ 1} IE2

dualHorn {c | c is a clause,Neg(c)≤ 1} IV2

EN {c | c is a clause,Pos(c) = 0} ∪ {(x), (x= y)} IS12

EP {c | c is a clause,Neg(c) = 0} ∪ {(¬x), (x= y)} IS02

affine (x1 ⊕ . . .⊕ xk) = b, k≥ 1, b∈ {0, 1} IL2

only covers a small number of the possible constraint languages. For many applications,

including the facet classification in this paper, doing an exhaustive case analysis of all

possible constraint languages is too complicated, and one needs simplifying assumptions.

Here, it is known that each constraint language Γ can equivalently well be described

as a set of functions closed under functional composition and containing all projections

πn
i (x1, . . . xn) = xi, clones . Thus, each clone groups together many similar constraint

languages and the Boolean clones form a lattice known as Post’s lattice when ordered

by set inclusion (Post 1941). Many classification tasks become substantially simpler via

Post’s lattice, and it is well known that each clone corresponds to a dual relational

object called a co-clone, which in turn induces a useful closure property on relations. In

this paper we only need a small fragment of this algebraic theory and define this closure

property via so-called primitive positive definitions (pp-definitions) and say that an r-ary

relation R has a pp-definition over Γ if

R(x1, . . . , xr) := ∃y1, . . . , yn . ϕ(x1, . . . , xr, y1, . . . , yn)
where ϕ is a (Γ∪ {(x= y)})-formula. Thus, put otherwise, R can be defined as the

set of models of ∃y1, . . . , yn . ϕ(x1, . . . , xr, y1, . . . , yn) with respect to the free variables

x1, . . . , xr. The reason for allowing the equality relation (x= y) as an atom is that it

leads to a much simpler algebraic theory. However, we sometimes need the corresponding

definability notion without (free) equality. A pp-definition where ϕ is a Γ-formula is called

an equality-free primitive positive definition (efpp-definition).

Definition 2.1.

For a constraint language Γ, we let 〈Γ〉 and 〈Γ〉 �=, resp., be the smallest set of relations

containing Γ and where R ∈ Γ for any (ef)pp-definable relation R over Γ.

The set Γ is in this context said to be a base, and it is known that all co-clones can

be defined in this way. For details, we refer to the work by Böhler et al. (2005) and the

Table in the supplemental material to this paper. These notions generalize and unify

many types of reductions and definability notions in the literature.

Example 2.2.

For example, consider the classical reduction from 4-SAT to 3-SAT by splitting a 4-

clause (�1 ∨ �2 ∨ �3 ∨ �4) into two 3-clauses (�1 ∨ �2 ∨ x) and (�3 ∨ �4 ∨¬x) where x is a
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fresh variable. This can be viewed as a pp-definition (�1 ∨ �2 ∨ �3 ∨ �4)≡∃x . (�1 ∨ �2 ∨
x)∧ (�3 ∨ �4 ∨¬x), and we conclude that k-CNF⊆ 〈3-CNF〉 for any k≥ 1.

A table of all Boolean co-clones is available in the supplemental material as well as

another more elaborate example.

2.3 Propositional abduction

Let Γ be a constraint language, for example, a set of clauses. An instance I of the positive

propositional abduction problem over Γ, ABD(Γ) for short, is a tuple I = (KB, H,M)

with KB being a Γ-formula over a finite set of Boolean variables called the knowledge base

(or theory), H ⊆ var(KB) called hypotheses , M ⊆ var(KB) called manifestations . Since

we have defined a Γ-formula as a conjunctive formula with atoms from Γ we sometimes

take the liberty of viewing the knowledge base as a set rather than as a formula. A

positive explanation E, explanation for short, is a subset E ⊆H such that (i) KB∧E is

satisfiable and (ii) KB∧E |=M . An explanation E is (subset-)minimal if no other set

E′ �E is an explanation of I.

The problem ABD(Γ) asks whether there is an explanation, which in the decision

context is the same as asking whether there is a minimal explanation. If Γ is arbitrary,

we omit Γ from the problem and write ABD. Note that the complexity of ABD(Γ) is

completely determined (Nordh and Zanuttini 2008) and illustrated in Figure 1b.

We write E(I) to refer to the set of all explanations and EM (I) for the set of all subset-

minimal explanations. A variable x∈H is relevant if x belongs to some subset-minimal

explanation E ∈ EM (I) and necessary if x belongs to all subset-minimal explanations

E ∈ EM (I). We abbreviate the sets of all relevant and necessary variables by RelE(I)
and N ecE(I), respectively.
Example 2.3.

Consider our abduction example from the introduction, which we slightly extend.

Therefore, let the ABD instance I = (KB, H,M) consists of the knowledge base

KB= {wednesday→ raining, wednesday ∧ calm→no-race,

wednesday ∧ storm→no-race},
the manifestation n, and the hypothesis {w, c, s, r}.

The set of all explanations E(I) consists of the explanations {w, c}, {w, c, s}, {w, c, r},
{w, s}, {w, s, c}, {w, s, r}, and {w, s, c, r}. The explanations {w, c} and {w, s} are subset-
minimal and hence constitute the set EM (I). When considering the elements of EM (I),

we immediately observe that the set of relevant propositions RelE(I) is formed of w, c,

and s. Whereas the only element in the necessary propositions N ecE(I) is w.

3 Facets in explanations

In non-monotonic reasoning, we commonly consider knowledge bases with multiple pos-

sible solutions, each leading to different conclusions. Central decision-based reasoning
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problems consider all possible solutions and consider how a variable relates to all solu-

tions. When asking for brave (credulous) or cautious (skeptical) reasoning, we decide

whether a variable belongs to one solution or all solutions, respectively. The underlying

idea is that brave reasoning allows for multiple potential conclusions from a knowledge

base, that is, a knowledge base may have uncertain outcomes. In contrast, skeptical rea-

soning requires a guaranteed outcome. This concept is also known in abductive reasoning

with relevant and necessary explanations and has been considered in the literature, for

example (Friedrich et al. 1990; Eiter and Gottlob 1995; Eiter et al. 1997; Zanuttini 2003;

Nordh and Zanuttini 2008). However, a detailed complexity classification in Post’s lattice

is open to date. In this section, we consider reasoning between relevant and necessary

explanations, so-called facets. Intuitively, a variable p is a facet if it is (i) part of some

explanation (relevant), but (ii) not included in every explanation (dispensible). We start

by defining facets formally.

Definition 3.1 (Facets).

Let I = (KB, H,M) be an ABD instance. A variable x∈H is a facet in the instance I

if x∈RelE(I) \N ecE(I).
Based on this definition, we define a computational problem whose task is to decide

whether a given variable is a facet or not.

(Γ)
Given: I = (KB,H,M, x) where (KB,H,M) is an ABD(Γ) instance and x ∈ H.
Task: Is x a facet in I?

The following example illustrates facets in the sailing scenario.

Example 3.2 (Cont.).

Consider our ABD instance from Example 2.3 . Since RelE(I) =
{wednesday, calm, storm} and N ecE(I) = {wednesday}, we observe that c

and s are facets allowing for a variability in explanations whereas wednesday occurs

in all explanations and is thus not a facet. Note that without minimality in the relevance

definition raining would (contrary to intuition) qualify as relevant and also as a facet.

The dispensability condition can be checked fairly easy in many cases. To this end, we

test, given (KB, H,M, x), whether (KB, H \ {x}, M) admits an explanation or not. In

particular, if ABD(Γ) is in P, we can check this in polynomial time. Thus, the interesting

computational aspect of ISFACET(Γ) is to decide when both relevance and dispensability

can be decided without a major blow up in complexity. The core parts of our proofs give

an immediate classification for relevance as well. Overall, we obtain an almost complete

classification of ISFACET(Γ).

Theorem 3.3.

The classification of ISFACET(Γ) in Figure 1a is correct.

Before we prove Theorem 3.3 systematically, we observe that for most complexity

questions of ISFACET(Γ) it is sufficient to consider the efpp-closure 〈Γ〉 �= of Γ.

Lemma 3.4.

Let Γ and Γ′ be two constraint languages. If Γ′ ⊆ 〈Γ〉 �=, then ISFACET(Γ′)≤P
m ISFACET(Γ).
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Proof (Idea).

We omit details, since the construction is exactly the same as in previous work ((Nordh

and Zanuttini 2008), Lemma 22), but the basic idea is simply to replace each relation

by the set of constraints prescribed by the efpp-definition, and introducing fresh vari-

ables (kept outside the hypothesis) for any existentially quantified variables. This exactly

preserves the set of (minimal) explanations.

Lifting Lemma 3.4 to pp-definability does not appear to be possible in general: the

classical trick when encountering an equality constraint (x= y) is to identify the two

variables throughout the instance. But consider, for example, an instance with knowledge

base {(x= y), (x→m), (y→m)}, H = {x, y}}, and M = {m}. Then, x and y are both

facets since {x} and {y} are both minimal explanations, but if we identify y with x

and remove the equality constraint, we obtain the instance {x→m} where x is not a

facet, since there is only one minimal explanation {x}. However, the loss of the equality

relation in the efpp-closure 〈Γ〉�= turns out to be manageable. We explain, in the proof

of Theorem 3.3, why our results in the next two sections extend to all co-clones. To

obtain the systematic cases, we require numerous lemmas, which we establish in the

following.

3.1 Computational upper bounds

Recall from Figure 1b that ABD(Γ) is always either in (i) P, (ii) (co)NP, or (iii) ΣP
2 .

Hence, our first task is to identify the corresponding classes for the ISFACET(Γ) prob-

lem. Ideally, one could hope that ISFACET(Γ) can be solved without a large increase in

complexity, for example, going from P to being NP-hard. We will see that this can often,

but not always, be achieved. We begin by analyzing the simple language {x→ y} where

the only allowed constraint is an implication between two variables. From Figure 1b, we

know that ABD({x→ y}) is in P, and this can be extended to ISFACET({x→ y}) via a

more involved algorithm.

Lemma 3.5.

ISFACET({x→ y})∈ P .
Proof.

Let (KB, H,M, x) be an instance of ISFACET({x→ y}), that is, KB only consists of

implications. Note that KB is 1-valid. Consequently, there is an explanation if and only

if H is an explanation. To see this, we observe that H is always consistent with KB.

Thus, it has “maximal” entailment power. To explain a single m∈M , a single h∈H
is always sufficient. For m∈M , we denote by h(m) = {h∈H |KB∧ h |=m}, that is, all
hypotheses from H that explain m.

Now, we observe that h(m) can be computed in polynomial time, for each m∈M .

Denote by Mx ⊆M the manifestations from M that are explained by x alone, that is,

Mx = {m∈M |KB∧ x |=m}. The set Mx can also be computed in polynomial time by

repeatedly checking whether KB∧ x |=m. Since Mx is explained by x, we make x “rele-

vant” by finding an E ⊆H \ {x} that avoids explaining at least one m∈Mx. A maximal

candidate for this is H \ h(m). We can accomplish this as follows:
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1: E← ’none’
2: for m∈Mx do
3: if KB∧H \ h(m) |=M \Mx then
4: E←H \ h(m) # candidate found
5: end if
6: end for
7: if E = ’none’ then
8: return False # x can not be made relevant
9: end if
10: return KB∧H \ {x} |=M # is there an explanation without x?

This runs in p-time, since entailment for SAT (x→ y, x, x̄) is in p-time (Schaefer

1978).

We continue with dualHorn where ABD is also in P. Here, membership in P for

ISFACET(dualHorn) is less obvious. Given that ABD(Horn) is NP-complete, we could

suspect that checking for relevance and dispensability is computationally more expen-

sive. First, we need the following technical lemma, where we recall that dualHorn- =

dualHorn \ {x,¬x} is the set obtained from dualHorn by removing the two unit clauses.

Lemma 3.6 (�1).

ISFACET(dualHorn)≤P
m ISFACET(dualHorn-).

Next, we show that the result for ISFACET({x→ y}) can be extended to

ISFACET(dualHorn-), and, thus, also to ISFACET(dualHorn) via Lemma 3.6.

Lemma 3.7 (�).

ISFACET(dualHorn-)∈P.

Our second major tractability result concerns 2-affine, that is, either unit clauses or

relations definable by (x⊕ y= 0) (equality) or (x⊕ y= 1) (inequality).

Lemma 3.8.

ISFACET(2-affine)∈P.

Proof.

Let (KB, H,M, x) be an instance of ISFACET(2-affine). We assume that each relation in

KB is represented by precisely one linear equation of arity at most 2, see (Creignou et al.

2011) and (Mahmood et al. 2021). First, if KB is not satisfiable we answer no. Second, we

propagate all unit clauses as in Lemma 3.6. Each remaining equation then expresses either

equality or inequality between two variables. With the transitivity of the equality relation

and the fact that in the Boolean case a �= b �= c implies a= c, we can identify equivalence

classes of variables such that each two classes are either independent or they must have

contrary truth values. We call a pair of dependent equivalence classes (X, Y ) a cluster ,

that is X and Y must take contrary truth values. Denote by X1, . . . , Xp the equivalence

classes that contain variables from M such that Xi ∩M �= ∅. Denote by Y1, . . . , Yp the

equivalence classes such that for each i the pair (Xi, Yi) represents a cluster. We make

the following stepwise observations: (1) there is an explanation if and only if H ∩Xi �= ∅
for every 1≤ i≤ p, (2) a subset-minimal explanation is constructed by taking exactly one

1 We prove statements marked by “�” in the supplemental material.
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representative from each Xi. (3) x can be made relevant if x∈Xi, for some i. (4) x is a

facet if additionally each Xi contains at least one representative different from x. These

checks can be done in polynomial time. We conclude that ISFACET(2-affine)∈P.

We continue with the corresponding membership questions for complexity classes above

P. Here, we make a case distinction of whether the underlying satisfiability problem is

in P, and in particular whether SAT (Γ+) is in P. We begin with the following lemma.

Lemma 3.9 (�).

If SAT (Γ+)∈P, then there is a polynomial time algorithm to determine whether a given

E ⊆H is an explanation for a given abduction instance (KB, H,M).

In particular, we obtain the following general statement, which shows that the

complexity of ISFACET(Γ) for many natural cases does not jump to ΣP
2 .

Lemma 3.10 (�).

For any constraint language Γ, SAT (Γ+)∈P⇒ ISFACET(Γ)∈NP.

This covers a substantial number of cases since SAT (Γ+) is in P when Γ is Schaefer ,

that is, contained in IV2 (dualHorn), IE2 (Horn), IL2 (affine), or ID2 (2-CNF). Our last

major tractable case concerns the set of essentially negative clauses EN.

Lemma 3.11.

ISFACET(EN)∈ P .
Proof.

We assume an arbitrary instance of ISFACET(EN): (KB, H,M, x). We first apply unit

propagation, exactly as in Lemma 3.6. We can now assume that the instance only contains

negative clauses of size ≥ 2 and equality clauses. We organize all variables which are equal

to each other into equivalence classes as in Lemma 3.8, with the exception that all classes

are independent in this case. If some equivalence class that contains an mi ∈M does not

contain variables from H, this mi cannot be entailed. Thus, the abduction problem has

no solutions and no facets.

Otherwise, if all classes that contain an mi ∈M contain at least one variable from H,

we set all variables in these classes to true and check if this is consistent with KB. This,

guarantees the existence of abduction solutions. If this is the case, we can check if x is a

facet. For this, we need two conditions: let x∈C where C is an equivalence class. First,

there must be at least one manifestation mi ∈C, else x cannot imply any mi and thus

is never needed in a subset-minimal solution (x would not be relevant). Second, there

must be at least one variable xi ∈C different from x, otherwise x will always be needed

to explain mi and there can be no solution without it (x would be necessary).

3.2 Computational lower bounds

We begin with a general result that implies that the facet problem is always at least as

hard as the underlying abduction problem, provided the Boolean equality relation can

be expressed.

Lemma 3.12.

ABD(Γ)≤P
m ISFACET(Γ) if (x= y)∈ Γ for any constraint language Γ.
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Proof.

Given an instance (KB, H,M) of ABD(Γ) we let x, y, m be fresh variables. We define the

instance (KB′, H ′, M ′, x) of ISFACET(Γ) as KB′ =KB∪ {(x=m), (y=m)}, H ′ =H ∪
{x, y}, M ′ =M ∪ {m}. We claim that (KB, H,M) admits an explanation if and only if

x is a facet in (KB′, H ′, M ′). (“⇒”): assume that E ⊆H is a subset-minimal explanation.

Then, E ∪ {x} and E ∪ {y} are both subset-minimal explanations in (KB′, H ′, M ′), so x
is a facet. (“⇐”): assume that x is a facet in (KB′, H ′, M ′). Then, there exists a subset

minimal explanation E′ ⊆H ′ where x∈E′, and it follows that E′ \ {x} is a (subset-

minimal) explanation for (KB, H,M).

By combining this with Lemmas 3.4 and 3.13, we inherit all hardness results from

ABD. All non-polynomial cases of ABD(Γ) satisfy Γ �⊆ IS12 and Γ �⊆ IS02, that is, such

languages are not essentially negative and not essentially positive (Nordh and Zanuttini

2008).

Lemma 3.13.

((Mahmood et al. 2021), Lemma 9) Let Γ be a constraint language. If Γ �⊆ IS12 and

Γ �⊆ IS02, then (x= y)∈ 〈Γ〉 �= and 〈Γ〉= 〈Γ〉 �=.
However, the facet problem ISFACET is generally even harder than ABD. We present a

technical lemma, providing us the unit clause (x) for free. Then, we will present languages

where ABD is polynomial and ISFACET is NP-hard, as well as languages where ABD is

coNP-complete, while ISFACET is ΣP
2 -complete.

Lemma 3.14 (�).

For any constraint language Γ, it holds that ISFACET(Γ∪ {(x)})≤P
m ISFACET(Γ).

We are now ready to state a crucial reduction, which is at the heart of the increased

complexity of ISFACET versus ABD. The ISFACET-problem allows to simulate negative

unit clauses, provided that the language is 1-valid and can express implication (x→ y).

Lemma 3.15.

If Γ is 1-valid, then ABD(Γ∪ {(¬x)})≤P
m ISFACET(Γ∪ {x→ y}).

Proof.

Let (KB, H,M) be an instance of ABD(Γ∪ {(¬x)}). If KB contains two unit clauses ¬x
and ¬y for distinct variables x and y, we may simply identify x with y and obtain an

equivalent instance. Thus, we may wlog assume that KB=ϕ∧ (¬z), z ∈ var(ϕ), for a Γ-

formula ϕ. Let x, y, m denote fresh variables and define V =var(ϕ)∪H ∪M ∪ {x, y, m}.
We define the target instance (KB′, H ′, M ′, x) as

KB′ =ϕ∧
∧

xi∈V

(z→ xi)∧ (x→m)∧ (y→m), H ′ =H ∪ {x, y}, M ′ =M ∪ {m}.

Note that KB′ is a Γ∪ {x→ y}-formula, as required.

In the following, we prove correctness formally. Observe first that for z = 0, KB and ϕ

have exactly the same models (upto the fresh variables x, y, m). For z = 1, ϕ may admit

additional models. However, due to KB′ containing the construct
∧

xi∈V (z→ xi), the

only additional model is the all-1 model.
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Correctness:

(“⇒”): Be E ⊆H an explanation for (KB, H,M). Then, with the above observation

that the only additional model is the all-1 model (which satisfies M and m), it is easily

observed that

1. E′ =E ∪ {x} constitutes an explanation for (KB′, H ′, M ′)
2. E′ \ {x} is no explanation for (KB′, H ′, M ′)
3. there is an explanation without x, namely E ∪ {y}

In summary, x is a facet.

(“⇐”): Be x a facet for (KB′, H ′, M ′). Then there is a set E′ ⊆H ′ such that

1. E′ is an explanation for (KB′, H ′, M ′)
2. E′ \ {x} is no explanation for (KB′, H ′, M ′)
3. there is an explanation for (KB′, H ′, M ′) without x

From the construction it is easily observed that E′ must be of the form E′ =E ∪ {x}, for
an E ⊆H. Since E′ \ {x}=E fails as explanation for (KB′, H ′, M ′), and E is obviously

consistent with (1-valid) KB′, we conclude that E fails due to KB′ ∧E not entailing

M ′ =M ∪ {m}. That is,
KB′ ∧E �|=M ∪ {m} (1)

Further, since E ∪ {x} is an explanation, we know that KB′ ∧E ∪ {x} does entail M ′ =
M ∪ {x}. Since by construction, x can not be responsible for entailing M , we conclude

that KB′ ∧E entails M . That is,

KB′ ∧E |=M (2)

From (1) and (2) we conclude that that KB′ ∧E �|=m. From this we conclude that KB′ ∧
E admits models where z = 0 (otherwise, KB′ ∧E would entail m, due to KB′ containing
z→m). Therefore, we conclude that KB′[z = 0]∧E admits models (is consistent) and

entails M . Since KB′[z = 0]≡KB (upto the “irrelevant” variables x, y, m) we conclude

that 1) KB∧E is consistent, and 2) KB∧E |=M . That is, E is an explanation for

(KB, H,M).

We are now ready to derive the hardness results in a series of short, technical lemmas.

Lemma 3.16 (�).

If II1 = 〈Γ〉 or IE1 = 〈Γ〉, then ABD(Γ∪ {(¬x)})≤P
m ISFACET(Γ).

Lemma 3.17 (�).

If IN⊆ 〈Γ〉, then ISFACET(Γ) is ΣP
2 -hard.

Lemma 3.18 (�).

If IE⊆ 〈Γ〉, then ISFACET(Γ) is NP-hard.

We remark that Friedrich et al. (1990) prove NP-hardness for the relevance problem

for IE1. While this proof can be adapted to our setting it does not generalize to the

other cases in this section. By combining all results, we obtain the main result of the

paper.
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Proof of Theorem 3.3.

First, we observe that the each language Γ considered in Lemma 3.7, Lemma 3.8, or

Lemma 3.11 either contains or can define equality (x= y). Hence, Lemma 3.4 is applicable

and proves tractability for any language Δ such that Δ⊆ 〈Γ〉 �= = 〈Γ〉. This covers all

tractable cases in Figure 1a.

For intractability, all NP-complete cases except IE1 and IE follow from Lemma 3.10

(since SAT (Γ+) is in P for every such Γ), Lemma 3.12, and Lemma 3.13. The former

two cases are instead proven to be NP-hard in Lemma 3.18, and inclusion in NP follows

from Lemma 3.10. Last, ΣP
2 -hardness for all remaining cases follow from Lemma 3.17,

and inclusion in ΣP
2 is straightforward via arguments similar to Lemma 3.10.

We view the two missing cases IL (even linear equations) and IL1 (even linear equations,

and unit clauses) as interesting future research questions. However, via Lemma 3.10 we

may at least observe that ISFACET(Γ)∈NP for any base Γ of IL or IL1. Hence, the only

question remaining is whether these problems are in P, NP-complete, or — unlikely but

still possible — NP-intermediate.

We conclude this section with the observation that all membership and hardness proofs,

which we have given for the ISFACET problem are also applicable to the relevance problem

(deciding if x∈H is relevant).

Theorem 3.19.

The classification of ISFACET(Γ) in Figure 1a also describes the complexity of the

relevance problem.

Proof.

Recall that an instance of the relevance problem is given by I = (KB, H,M, x) and the

question is whether x∈RelE(I), that is, whether x belongs to a subset-minimal explana-

tion. We revisit now all membership and hardness proofs for ISFACET and observe that

they can easily be adapted to the relevance problem.

Membership in P. First observe that the reduction of Lemma 3.6 to get rid of unit

clauses can be performed analogously on the relevance problem. Next we observe that all

algorithms showing P-membership, that is, Lemmas 3.5, 3.7, 3.8, and 3.11, first decide

whether the given x is relevant, and then in a second (independent) step decide whether

x is dispensable (not necessary). By dropping the dispensability check, we obtain a

polynomial time algorithm to decide the relevance problem.

Membership in NP. Analogously to the P-membership algorithms we drop the step

of the dispensability check: in Lemma 3.10 omit guessing an E2 ⊆H \ {x} and verifying

that E2 is an explanation.

Membership in ΣP
2 . Inclusion in ΣP

2 is straightforward via arguments similar to

Lemma 3.10 using an NP-oracle.

NP-hardness and ΣP
2 -hardness . First observe that Lemma 3.4 is also applicable to

relevance, since the underlying reduction preserves the exact set of explanations. Next

observe that the reduction from Lemma 3.12 carries over one-to-one to relevance. It is

optional to simplify the proof by removing the clause (y=m) and the variable y (whose

only purpose was to assure that x is not necessary). Lemma 3.14 is easily observed to carry

over one-to-one to relevance. Lemma 3.15 carries over one-to-one, again it is optional to
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simplify the proof by removing y and the clause (y→m). Finally, Lemmas 3.16, 3.17,

and 3.18 hold analogously, since all used lemmas carry over, as shown above.

In summary, this theorem is proven analogously to Theorem 3.3.

4 Diverse explanations

In the previous section on facets, we considered whether there exists a variable that is

relevant in explanations but dispensable. Thereby, we obtain a notion on flexibility on

one variable belonging to explanations. Now, we lift flexibility from one variable to a set

of variables in explanations and ask whether there exist two explanations of sufficiently

high diversity . It turns out that this metric can be precisely related to the existence of

facets and several notions from our facet classification carry over. However, measuring the

distance is provably much harder and becomes NP-hard already for the small fragment

of Horn consisting of a single implication (x→ y). Before, we illustrate our complexity

results in detail, we define our distance measure and computational problem.

Definition 4.1.

Let I = (KB, H,M) be an ABD instance, and E1 ⊆H and E2 ⊆H be two sets of vari-

ables over the hypotheses H. Then, the distance d(E1, E2) between E1 and E2 is the

cardinality of their symmetric difference. More formally,

d(E1, E2) := |E1�E2 |= | (E1 ∪E2) \ (E1 ∩E2) |
= | {x∈H | x∈E1 and x /∈E2 or x /∈E1 and x∈E2} |.

If E1 and E2 are explanations, i.e., E1, E2 ∈ E(I), and d(E1, E2)≥ k, then we call E1

and E2 k-diverse explanations.

Note that the maximum distance is |H|, which is reached by d(H, ∅). Our notion of

distance is in line with the corresponding notion for SAT (Γ) (Misra et al. 2024) and

many other diversity problems studied in AI. Note that we do not require that the two

explanations are minimal, since the distance notion does not require this.

Next, we define the diversity problem for abduction.

(Γ)
Given: An (Γ) instance I = (KB,H,M) and k ≥ 0.
Task: Does I have two k-diverse explanations E1 and E2?

We have the following relationship to facets.

Proposition 4.2.

Let I = (KB, H,M) be an instance of ABD(Γ) and E1, E2 ∈ EM (I). Then, every x∈
E1�E2 is a facet.

Proof.

Let x∈E1�E2 = (E1 ∪E2) \ (E1 ∩E2). We observe that if x is not a facet then either (1)

x∈E1 ∩E2 since it is part of every explanation, or (2) x /∈E1 ∪E2 since it is not included

in any subset-minimal explanation. Hence, x /∈E1�E2, meaning that x∈E1�E2 is only

possible if x is a facet.
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From the relationship between facets and the distance notion, which we establish

in Proposition 4.2, we can suspect similarities between the computational problems

ISFACET(Γ) and DIV−ABD(Γ). First, we establish that all hardness results are inherited

from ABD, analogously to Lemma 3.12 and Lemma 3.4 for ISFACET(Γ).

Lemma 4.3 (�).

ABD(Γ)≤P
m DIV-ABD(Γ) if (x= y)∈ Γ.

Also, ΣP
2 -hardness for 1-valid and complementive languages is obtained analogously.

Lemma 4.4 (�).

If IN⊆ 〈Γ〉, then DIV-ABD(Γ) is ΣP
2 -hard.

However, the problem DIV-ABD is generally harder than ISFACET. Below, we establish

NP-hardness for simple implicative languages. We reduce from the problem DIV-POS2SAT

where we are given a positive 2-CNF formula ϕ and an integer k. Therefore, we require

two models of Hamming distance at least k, which is NP-hard (Misra et al. 2024).

Lemma 4.5 (�).

DIV-POS2SAT≤P
m DIV-ABD({x→ y}).

Thus, despite the similarities between ISFACET(Γ) and DIV-ABD(Γ), the latter seems

to be significantly harder. However, we observe two tractable cases.

Lemma 4.6 (�).

DIV-ABD(2-affine),DIV-ABD(EP)∈P.

5 Conclusion

In this paper, we introduce faceted reasoning to propositional abduction. We illustrate

that this reasoning allows more fine-grained decisions than previously explored notions

such as relevance and necessity/dispensability. We relate facets to the problem of finding

diverse explanations. We establish an almost complete complexity classification in Post’s

lattice. In many cases, facets can be found without a major blow-up in complexity. This

is particularly interesting, given that counting minimal explanations is almost always

substantially harder (Hermann and Pichler 2010). Our facet classification also implies a

corresponding classification for the relevance problem, thus answering an open question

(Zanuttini 2003; Nordh and Zanuttini 2008). For diversity, our results are less conclusive,

but any major tractable cases seem unlikely, since it is hard already for the fragment

(x→ y).

5.1 Completing the trichotomy

The two open cases, affine equations of odd length with, or without, unit clauses, could

be interesting to resolve. It seems unlikely that ISFACET(Γ) could be tractable for such

languages, but, at the same time, any hardness proof likely needs to involve significant

new ideas. Note that affine languages were also absent in earlier counting complexity

classifications (Hermann and Pichler 2010). Hence, there is a blind spot for complexity

of abduction. One possible way forward could be to first classify the complexity of

DIV-ABD(Γ) for all affine languages, which seems likely to be hard.
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5.2 Parameterized complexity and diversity

It is reasonable that DIV-ABD(Γ) can be fully classified, but without any large, tractable

cases. However, more fine-grained investigations involving problem structure (parameter)

remains interesting. For DIV-ABD(Γ) a natural parameter is the maximum allowed dis-

tance. A systematic classification could not only open up new efficiently solvable cases

but could also prove to be a useful framework for proving hardness for other types of

diversity problems, especially, since the classical complexity of abduction is much richer

than the one for SAT.

5.3 Abductive logic programming (ALP)

Since detailed complexity results on logic programs (Truszczyński 2011) and results on

the complexity of ALP regarding consistency, relevance, and necessity (Eiter et al. 1995)

exist, it could be interesting to extend our results to stable models in ALP where the

input is given in form of rules.

5.4 Applications

Faceted reasoning can aid the search for heterogeneous explanations, which could be

valuable in any domain with classical applications of abduction, for example, diagno-

sis, and explainable AI. More concretely, a practical application of facets are logistics

applications where solutions need to be explained such as in the Beluga AI Competition

(Gnad et al. 2025). There, several tasks aim at flexibility in explanations or alternatives.

Finally, we hope that our results on diverse explanations will spark interest into a deeper

complexity study and exploration to use these for tasks like model debugging or decision

support. Beyond abductive reasoning, we expect that facets and diversity could be inter-

esting for epistemic logic programs (Eiter et al. 2024), default logic (Fichte et al. 2024),

and probabilistic reasoning (Fichte et al. 2022b).
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