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1. Introduction. The linearized theory of surface waves leads to several 
mixed boundary value problems which have been investigated by various 
methods. As the physical background of the theory has been repeatedly 
discussed, it will suffice to deal here mainly with the mathematical aspect of 
the question. 

Let D be a finite or infinite domain in the (x> ;y)-plane and let 0(x, y) denote 
a function in D satisfying one of the following differential equations 

(1.1) *± + & = 0, 
dx2 dy2 

(1.2) £ • + *± - ** = 0 
dx2 by2 

where k2 denotes a positive constant. Let n denote the external normal to the 
boundary C of D. The boundary condition on the part of C corresponding to 
the free surface of the fluid is given by the equation 

(1.3) J* = Pt, 
an 

The positive constant p is in some cases an unknown parameter. 
The boundary condition on the part of C corresponding to the rigid part of 

the boundary is given by the equation 

(1.4) £ = 0. 
dn 

In the classical theory <t> denotes (up to a factor depending on the time /) the 
velocity potential in the physical (x, y)-plane. However, in Levi-Civita's 
theory of plane waves, the independent variables are the velocity potential 
and the stream function. The unknown function <f> denotes in this case the 
angle which the velocity makes with the horizontal direction. The condition 
(1.3) remains unchanged in form, but (1.4) has to be replaced by the condition 
(1.5) « = 0. 
In most cases in application the domain D extends to infinity and is bounded 
by straight lines. However in Levi-Civita's theory of periodic waves, D can 
be mapped conformally on a finite domain such as a circle or circular ring 
without changing the form of the boundary conditions. 

I t should be emphasized that (1.3) differs essentially from the boundary 
condition discussed by Fourier in his classical theory of heat conduction. In 
Fourier's case p is essentially negative, a fact which implies that, for a finite 
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domain Dy the corresponding boundary value problem admits only the trivial 
solution 0 = 0. The situation is, however, different in the case of surface 
waves where the corresponding boundary value problem admits one or even 
several non-trivial solutions for certain positive values of the constant p. The 
important question of the uniqueness of the solution has been overlooked by 
standard treatises on hydrodynamics. Besides its intrinsic mathematical 
interest, a survey of all solutions is of great importance for the following 
reasons: first, the solutions of the linearized problem give a first approximation 
to the exact non-linear theory of a surface wave; second, the superposition of 
two standing waves obtained from two different solutions of the linearized 
problem leads to a travelling wave as required by the theory. 

There are at present three methods of approach to the various boundary 
problems encountered in the theory of surface waves: 

(i) The eigenvalue method, 
(ii) The method of reduction, 

(iii) The method of singular integral equations. 
Some of the problem can at present be discussed only by the first or by the 

third method. However this is not the case for problems discussed up to now 
by the second method alone. It is the purpose of the present paper to show 
that a combination of the method of reduction with the eigenvalue method 
leads to more complete results than the application of the reduction method 
alone. 

2. The eigenvalue method. This method has been developed by A. 
Weinstein [3] in connection with a problem in Levi-Civita's theory. For 
modification of this method see the papers by G. Hoheisel [4], S. Bochner [5], 
J. L. B. Cooper [6] and A. E. Heins [7]. As an illustration we shall use this 
method for the complete solution of Airy1 s Problem which corresponds to the 
hydrodynamical problem of plane waves in water of constant depth : To find 
all harmonic functions <f> in the infinite strip S, — « < x < + ° ° , 0 ^ y ^ l 
satisfying the boundary conditions 

(2.1) ^ = py, for y = 1 
dy 

and 

(2.2) ^ = 0, for y = 0. 
dy 

Airy's work contains only a particular solution of this problem which is periodic 
in x and which has been reproduced in all textbooks. 

In order to solve this problem let us consider first the eigenvalue problem 
given by the ordinary differential equation 
(2.3) Y"+ \Y = 0, F = Y(y) 
with the boundary conditions 
(2.4) Y'=pY, fory = l, 
(2.5) F'=0, îory = 0. 
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A complete set of eigenfunctions and of corresponding eigenvalues is given by 
the formulas 
(2.6) F 0 = cosh do?, X0= — a0

2, 

(2.7) F n = cos any> Xn= an
2, (n = 1,2 , . . . ) 

where ao is the unique (positive) root of the equation 

(2.8) ao tanh ao= p 

and ai, a2, . . . , an, denote the (positive) roots of the equation 

(2.9) an tan an = p, {n = 1, 2, . . .). 

Turning back to our boundary value problem (1.1), (2.1), (2.2) we develop 
<j>(x, y) for a fixed value of x, into the series 

(2.10) 4>(x,y) = E Cn(x)Yn(y). 
n=0 

This development is possible as <£ satisfies, for any fixed value of x, the same 
boundary conditions as Fn . The Fourier coefficients cn are given by the 
formulas 

(2.11) cn(x)= Cn \ <t>{x,y)Yn{y)dy 
Jo 

where 

(2.12) Cn=(^YnUyy\ 

The constant Cn is the normalization factor. 
From (2.11) and (1.1) it follows by differentiation that 

C"n(x)= — Cn <t>yyYndy. 

Jo 

Integrating twice by parts we obtain the formula 
C"»(*)= - Cn[<t>yYn- <t>Yf

n]\- Cn 

1 
<t>Y"ndy. 

The square bracket vanishes in view of the boundary conditions (2.1), (2.2), 
(2.4) and (2.5). By (2.3) we have therefore for cn(x) the differential equation 

(2 .13) c"n(x)-\nCn(x) = 0 

which has the following solutions: 

(2.14) Co(x) = ao cos aox + b0 sin a0x 

(2.15) cn(x) = ane
a"x+ bne~^\ (« = 1 ,2 . . . .)• 

On the other hand cn(x) is given by the formula (2.11). 
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Let us assume now that 4>(xyy) satisfies the inequality 

(2.16) 
1 

<t>2(x,y)dy <e2Mx\ A>0 
o 

for \x\ —»a>. An application of Schwarz* inequality to the formulas 

(2.17) ao cos aox + bo sin do* = Co 

(2.18) ane
anX+bne-a"x= Cn 

i 
4>(x, y) Y0(y)dy 

o 
ri 

4>(x,y)Yn(y)dy, (n = 1,2, . . . ) 
o 

shows immediately that an = bn = 0 for all values of n for which an is greater 
than A, n = 0, 1, 2, . . . . We have therefore the following result. All solu
tions of our boundary value problem satisfying the inequality (2.16) are given 
by the formulas 

(2.19) <f>(x, y) = (do cos a0x + b0 sin ao#) cosh aoy 

h 

+ L (cineanX+ bne~anX) cos any 

where a and b are arbitrary constants. The exponents an satisfy the inequality 

(2.20) 0 < a i < a 2 < . . . < a^< A < ah+1< . . . . 

In particular the only bounded solution of the problem is given by the formula 

(2.21) <t>(x, y) — (do cos aox + b sin aox) cos aoy. 

This solution is periodic in x and coincides with the particular solution given 
by Airy. The problem considered in this paragraph cannot be solved by the 
reduction method which will be discussed in the following section. 

3. The reduction method. In this method the unknown function <f> is re
placed by a new unknown $>(#, y) satisfying the same differential equation 
as (j> but vanishing on the boundary of D. The mixed boundary problem is 
reduced to a problem with the classical boundary condition <i> = 0. 

T. Boggio [1] was the first to determine all harmonic functions <f> satisfying 
the condition (1.3) on the boundary of a circle of radius one. Let us put 

(3.1) /(*) = $ + it, z = x + iy = reid 

7 r 

where \f/ denotes the conjugate function to <t>. Since the real part of z — equals 
dz 

f)th 
r — and since the external normal to the circle has the direction of the 

dr 
radius r, the harmonic function 

(3.2) $ = r ^ - p<i> 
dr 

vanishes by (1.3) on the boundary r = 1. Assuming that <j> is regular for 
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0 ^ r ^ 1, we see that </> vanishes identically and that/satisfies therefore the 
ordinary linear differential equation 

(3.3) z% - Pf = ** 
fife 

where a is a real constant. The integration of this equation shows that a 
regular solution # exists only for p = 1, 2, 3, . . . , in which case </> is given by 
the formula 

0 = r
p(a cos p$ + j8 sin £0). 

A more complete analysis of the problem could have been made by the eigen
value method, which yields also all solutions <t> with an isolated singularity 
at the origin r = 0. (See Sec. 4.) 

Recently some other interesting mixed boundary value problems corres
ponding to waves on sloping beaches have been discussed by Miche [8], H. 
Lewy [9], and J . J . Stoker [10], and others. The method of Lewy and Stoker 
introduces a different reduction procedure. In the following we shall discuss 
as an example one of the problems treated by Stoker and show that a 
combination of the reduction method and of the eigenvalue method yields a 
complete solution of the problem. 

4. A mixed boundary value problem in three-dimensional wave motion. 
Let us consider (see Stoker, loc. cit. [10] paragraph 9) the problem of waves 
in an ocean of infinite depth bounded on one side by a vertical cliff when the 
wave crests are not assumed to be parallel to the shore line. The corresponding 
boundary value problem is the following: 

To find all solutions <t>(x, y) of the differential equation 

(4.1) * * + * * - * * = 0 
dx2 dy2 

in the domain D, x è 0, y ^ 0, satisfying the boundary conditions 

(4.2) — = 0, for y = 0, x > 0, 
dy 

(4.3) — = 0, for x = 0, y < 0. 
dx 

Here k2 denotes an arbitrary positive constant. According to Stoker we reduce 
the boundary conditions (4.2), (4.3) to the boundary condition <j> — 0 by the 
introduction of the function 

(4.4) L(L-\\* = *(x,y) 
dx \dy / 
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which obviously satisfies the differential equation (4.1). It may be written in 
polar coordinates as follows: 

(4.5) — + ± — + i — - V$ = 0. 
dr2 r dr r2 dd2 

The boundary condition is 

(4.6) $ = 0, for x = 0, y < 0 and y = 0, x > 0. 

Instead of prescribing specifically the singularities of $ (see Stoker, Zoc. ci/., 
n. 28, p. 39) we shall determine $ by the eigenvalue method. A subsequent 
integration of the differential equation (4.4) will give us then all possible 
solutions of <j>. 

As in Sec. 2, we consider first the eigenvalue differential problem given by 
the equation 

(4.7) — + XG = 0 
dd2 

with the boundary conditions 

(4.8) 9 = 0, for 0 = 0 and 0 = - \ *•. 

A complete set of eigenfunctions and of the corresponding eigenvalues is given 
by the formulas 

(4.9) ew(fl) = sin 2n0, X = 4w2, (n = 1, 2, . . .). 

For a fixed value of r we have for the unknown function $ the expansion 

(4.10) $ = E Cn(r) sin 2nd 

where 

r° 
(4.11) cn{r) = Cn $(r, 0) sin 2ndd6t (n = 1, 2, . . .) 

J - * * 
where Cn is the normalizing factor. From this formula we find by differen
tiation with respect to r and by use of (4.5) 

c"n(r) + -c'n(r) - ( W —) cn(r) = — [~ '(— + 4 w 2 ^ sin 2n0d0. 
r \ r2 / r2 Jo \d02 / 

The right-hand side in this equation is equal to zero as can easily be seen by 
two successive integrations by parts and by the use of the boundary condition 
(4.6). We have therefore the following differential equation for cn(r) 

(4.12) c"n + i c'n - (k2+ ^f\ cn = 0. 

The general solution of (4.10) is given in terms of Bessel functions by the 
formula 
(4.13) cn(r) = A2nhn(kr) + B2ni

2n+1H2n^(ikr) 
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with arbitrary real constants A2n and B2n. The function I2n vanishes for 
r = 0 like r2n but tends to infinity like err~* for r = <». The functions i2n+1 

H2n^ behave like r~~2n for r tending to zero and tend to zero like e~rr~* at 
infinity. By the same procedure as in Sec. 2 we obtain the following results. 
The solutions $ of (4.5) and (4.6) given by (4.10), can be classified according 
to the behaviour of the integral 

("0 

(4.14) $2(r, 0)dd. 

The coefficients A2n in (4.13) are all equal to zero for any solution $ for which 
the integral (4.14) is o{e2rr~l) at infinity. The coefficients B2n vanish for n > h 
for all solutions 3> for which the integral (4.14) is o(r~2h) at the origin. The 
only solution $ which is regular everywhere is $ = 0. 

By taking $ = 0 and $ = iiJ2
( l ) (ikr) sin 20 and by integrating the corres

ponding differential equations (4.4) for 0, Stoker obtains two standing waves 
which can be combined into a travelling wave. One of these standing waves 
has a logarithmic singularity at the origin. From the results of the present 
paper we see the presence of a singularity is an unavoidable consequence of 
the linearized theory of surface waves. The contradiction of the original 
assumption of small amplitudes is somewhat mitigated by taking the 
solution with the weakest singularity at the origin. From the mathematical 
viewpoint, however, there is no reason to introduce any limitations on the 
behaviour of the solutions. 

5. The method of singular integral equations. We conclude with a few 
remarks about this method which has been applied to the case when the 
domain D is a parallel strip, as in Sec. 2. Let us replace in Airy's problem 
the condition (2.2) by the condition 

(5.1) </> = 0, for y = 0. 
Under certain restrictive assumptions on the behaviour of <f> at infinity the 
modified problem can be reduced to a Picard integral equation [2]. However, 
as has been mentioned in Sec. 2, the eigenvalue method gives the solution of 
the same problem under less restrictive conditions. The situation is, however, 
different in the dock problem in a channel of finite depth, which is obtained by 
imposing the condition (2.1) for y = 1, x > 0 and the condition (2.2) on the 
remaining part of the boundary of the strip. This problem, which seems at 
present inaccessible by any other method, has been solved by A. E. Heins [11] 
by a reduction of the problem to a Wiener-Hopf equation. The assumptions 
which are required in order that this problem be formulated as a Wiener-Hopf 
integral equation are discussed in paragraph 9 of the paper by Heins. Unique
ness is studied in relation to the Wiener-Hopf integral equation to be solved. 
This integral equation is equivalent to the original boundary value problem 
subject to the conditions mentioned above. The general uniqueness theorem 
under less restrictive conditions, has not been discussed yet for the dock 
problem. 
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