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ON LAGRANGE INTERPOLATION WITH
EQUALLY SPACED NODES

MICHAEL REVERS

A well-known result due to S.N. Bernstein is that the sequence of Lagrange interpola-
tion polynomials for \x\ at equally spaced nodes in [—1,1] diverges everywhere, except
at zero and the end-points. In this paper we present a quantitative version concerning
the divergence behaviour of the Lagrange interpolants for |x| at equidistant nodes.
Furthermore, we present the exact rate of convergence for the interpolatory parabolas
at the point zero.

1. INTRODUCTION

Let / be a function defined on [—1,1] and denote by Ln (/,.) the Lagrange interpo-
lating polynomial of degree at most n to f associated with the equidistant nodes

(1) x^:=-l + ^-, 0 = 0 , 1 , . . . , n , n = l , 2 , . . . ) .

As is well known, the assumption that / is continuous on [—1,1] does not guarantee that
Ln (/,.) converges to / everywhere in [-1,1] as n -t oo. In 1918, Bernstein [1] showed
that for / (x) = |x|, the sequence {Ln {f, XQ)}n>1 diverges for every point XQ & [—1)1]
different from — 1,0,1. The points —1 and 1 are interpolation points for every polynomial
Ln (/,.) and therefore Ln(|a;|, —l) = Ln(|^| > l) = 1- For the point zero it is proved in
Natanson [8, pp.30-35] that

l i m L n ( | z | , 0 ) = 0 .
n—yoo

This result is due to D.L. Berman in 1939 and S.M. Lozinskii showed more exactly that
Ln( | i | ,0) < C/n. A short survey on this topic is given in [13, p.285]. There is a

wide range of literature around Bernstein's classical divergence result. For example, see
[2, 3, 7, 9, 10, 11, 12, 14]. An extension of Bernstein's result is given in [10]:

THEOREM 1 . LetO <a €1. Then

lim Ln(|z|a,z0)|=oo,
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Theorem 1 informs us that the divergence behaviour is rather general and does not
depend on the special characteristics of \x\. In 1990, Byrne, Mills and Smith, amplifying
the classical result of Bernstein, showed that the rate of divergence of the sequence
<Ln(|x| ,x0) \ depends on the location of xo in [—1,1]. More precisely, in [3] they
proved the following:

THEOREM 2 . Let o < \xo\ < l. Tien

lim -log Ln(\x\ ,x0) - \xo\ = - [ ( 1 +x 0 ) log( l+ x0) + (1 - x0)log(l - x0)].
n-»oo n+ 1 2

For further references, see also Li and Mohapatra [5]. An extension of Theorem 2 to
Hermite-Fejer (HF) interpolation with equidistant nodes (but for a different / ) is given
in Mills and Smith [7]. The aim of this paper is to show that Theorem 2, which is
concerned with the rate of divergence of Lagrange interpolation for \x\, is not an isolated
phenomenon and thus can be extended to the following result.

2. RESULTS

We shall prove the following:

THEOREM 3 . Let 0 < \xo\ < 1. Tien

lim ——-log Ln(|x|3,x0) - |zo|3 = r [ ( l + x0) log (1+x0) + (1 - x0)log(l - xo)j.
n—voo 7 1 + 1 Z

Furthermore, recalling the above mentioned results of D.L. Berman and S.M. Lozin-
skii, we establish the exact rate of convergence at the point zero. More precisely we shall
prove:

THEOREM 4 . Let n - 2m - 1, m € N, m ^ 2. Tien

Before presenting the details for the proofs let us mention some interesting aspects
concerned with the results so far demonstrated. Certainly, Theorem 2 and Theorem 3
are attractive in so far as they lead us to the following conjecture:

CONJECTURE 5 . Let a € R+\2N and 0 < |xo| < 1. Tien

fiin ——rlog
n-Kx> 71 + 1

LB(|x|a
Jx0) -

We point out that a careful investigation into the proof of Theorem 1 strongly
indicates the truth of Conjecture 5, at least for the restricted case a € (0,1]. However,
at the moment I do not see a way of furnishing a proof for Conjecture 5 based on the
methods established in this paper. On the other hand, turning to Theorem 4 combined
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with the results of Berman and Lozinskii, no choice is left but to believe that the exact
rate of convergence at the point zero for the interpolants of |x|Q is given by O{n~a).
This, if true, would match perfectly with the following result established in [11]:

THEOREM 6 . Let m € N, n = 2m - 1 and 0 ^ a ^ 1. Then

We briefly describe the organisation of this paper. In section 3 we introduce some
preparatory work which is required later in the proof. The next sections 4 and 5 deal
with estimates for the cases n = 2m and n = 2m — 1, respectively. Then we establish
the proof of Theorem 3. The last section presents the proof of Theorem 4. We note that
some ideas in this paper were motivated by the work of Byrne, Mills and Smith [3],

3. PRELIMINARIES

We introduce the Pochhammer notation (.)j, the generalised hypergeometric function

pFq, and we collect some important lemmata. For a € R, j = 0 , 1 , 2 , . . . , we define (a) •

by

(a)0 = 1,
- 1 ) , (j = l ,2 ,3 , . . . ) .

The generalised hypergeometric function pFq is introduced by

( ai,a2,...,ap
 > \=^(ai)J(a2)J---(°p)j£

" q \ A, ft,..., pq ) j ^ (ft)j (ft), • • • (pq). j\

Then one can easily establish the following identities.

LEMMA 7 . If not defined otherwise, let m € N, k = 0 ,1 ,2 , . . . ,m and j =
0 , 1 , 2 , . . . . We have

(b) For j ^ m — k — 1 and k < ra-1 we have (m - k - j - 1)! =
(_iy (m-k-l)\

(c) (1+^-771)^ = 0, (j ^ m- k andk s$ m - 1).

(A\ j -\- h z= h — (k = 1 2 ^

(3/2 + Jfc).
(e) For jfc = 0 , 1 , 2 , . . . we have 1 + 2j + 2Jfc = (1 + 2Jfc) y - r -—r^ - .

For k = 0 , 1 , 2 , . . . and i e (0,1) we have
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(f)

(g) 1

k + mx _ (k 4- mx)i

j + k + mx (1 + k + mx)j'

2 f c + ( 2 m - 1 ) x _ ( { mx).

7 + 2fc + ( 2 m - l ) x ((3-x)/2 + k + mx)j

LEMMA 8 . We shall denote the gamma function by T (.).

(a) Let c ^ 0, - 1 , - 2 , . . . and c - a - b > 0. Then

2 * 1
a,b

1 =
r (c) r (c - a - 6)
r (c - a) r (c - 6) '

(b) Let s = d + e - a - 6 - c and s / 0. Tien

T ( d ) r ( e ) r ( S ) „ ( d-a,e-a,sa,b,c
d,e

1 = 1 .

(c) Let n = 0 ,1 ,2 , . . . and P (z - n) ^ 0 with | 3 , z e t Then

\ =

The above mentioned formulas are well known. See, for example in [6], p.99 for
assertion (a), p.104 for (b) and p.113 for (c). The next lemma establishes some identities
for certain binomial sums in terms of hypergeometric functions.

LEMMA 9 . Let m e N and x e (0,1). For k = 1,2,... , m we have
2k-l m + k

2 2m-I'

k + mx, k - m, 1
1 + k + mx, 1 + k + m

For k = 0 , 1 , . . . , m — 1 we have

(d)

m-l
EH
j=k
m-l
V C-1 (2m ~ lN\ l + 2j = k (2m - 1\

V m + j J 1 + 2j + (2m - l ) x ^ ' \m + k )

(2m - 1) x / (1 - x) /2 + Jfc + mx, 1 + k - m, 1
1 + 2k + (2m - 1) x ' (3 - x) /2 + k + mx, l + k + m

m + k

2 m - 1
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PROOF: The proof of Lemma 9 can be established by some elementary calculations
which are based on the identities in Lemma 7 and 8. For illustration, we present a proof
of assertion (d). First, the left-hand side of (d) can be rewritten as

m-l-Jfc

j = 0

/ 2 m - l \
\m + j + k)

- (2m - 1) x
7 = 0

2 m --+g__± {2m-l)x'

We now apply Lemma 7(a-c) and (g) and calculate the latter quantity to be

k+l I *,I,L - M I ^ / ±-rk-m,l
(-1)*

l /2m- l \
\m + k) [' \ 1 + k + m

(2m - 1) x F / (1 - x) /2 + k + mx, 1 + k - m, 1
I (3 - x) /2 + k + mx, 1 + k + m( 2 m - l ) x

1

Next, by applying Lemma 8(a), we are able to establish the right-hand side of Lemma
9(d). D

Our next task is to find a presentation for the interpolating polynomials for |x|Q

based on the equidistant nodes (1). To this end let n € N, x" to be defined from (1)
and denote by

i(n)/_x_ W(X) iL-ni - \

the Lagrange fundamental polynomials with w (x) = fj (x — xj1). From the well known
j=0

Lagrange interpolating formula it follows that

L f\x\a \ = ^L(n) |" |W / x = y^UWl0 .
" V I ' 0/ /_^\ j \ j \ 0) / _ J j | ( (n)\ .( (n)\-

3=0 j=0 \x0 xj )w \xj )

Then, calculating the polynomials w (xo) and w'(x" ) (following the method from Runck
[12, pp.56-57]) we establish for a = 3, m = 1,2,... and all fixed x0 in [0,1] the formulas

(2) L2m(\x\3,x0)-\x0f
(2m)!

XQ_

m2
j3 - (mxpf
j2 - K ) !
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and

(3)

COSTT (m — 1/2) [l + (m - 1/2) (1 + x0)] T [l + (m - 1/2) (1 - z0)]

( 2 m -

(2m - 1)!
,.. (l + 2j)3-[(2m-l)x0]3

2i)2-[(2m-l)x0]'

Since the polynomials L n ( | x | a , . ) , as well as |x|Q, are even functions, it is sufficient
to restrict ourselves to the interval (0,1). The essential analysis now depends on the
estimates of the right-hand sides in (2) and (3). We approach this problem by separating
the cases n — 2m and n = 2m - 1. In the next two sections we shall establish lower and
upper estimates for the corresponding formulas (2) and (3).

<<>

4. ESTIMATES FOR THE EVEN CASE

Let n = 2m with m £ N. For xo € (0,1) we define

f - (mxo)3

_ C:)]-
A standard argument (combined with Lemma 9(a-b)) enables us to rewrite the right-hand

side in (4) more concisely as

(5)
xo (2m\
m\mj

(mx0)2

2m - 1 1 + m 1 + "3^2
o, 1 — m, 1

mxo,2 + m
- x 0

We embark now on our study of the properties of (5).

4 .1 . LOWER ESTIMATE TO this end, we shall show that (5) is positive (for sufficiently

large m) and tends to infinity for m —¥ oo somewhat less than I I. We begin with
\m )

a summation of the zF2 function in (5) by applying Lemma 8(b). With a = 1 4- mx0,
6 = 1 - m , c—l,d = 2 + mxo, e = 2 + m it follows that s = 2m+1. A simple observation
establishes

(6)
1 + m x 0 , 1 — m, 1
2 + mxo, 2 + m

1+mxp 1,1 + m — mxo, 1 + 2m
2 -I- m, 2 + 2m

From Lemma 8(b) we see that we can express the (finite) alternating series in the left-
hand side of (6) as an infinite sum which consists only of positive terms. Again, by
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applying Lemma 8(b) to the right-hand side of (6) we get with a new s (s = 1 + mx0)

, ( 1 + mx0,1 - m, 1
(7)

2 + 77110,2 + 771

T (2 + mx0) r (1 + 2m) 1 + m, 1 + 2m, 1 + mx0

T (2 + 2m + mx0) \ 2 + m, 2 + 2m + mx0

Since 3F2 is a symmetric function in its arguments we may exchange the arguments l+2m
and 1 +mx 0 on the right-hand side in (7). Now we apply the same procedure once again.
With a new s (s = 1) we establish

(8)
1 + mx0,1 - m, 1
2 2 + m

\ 1 + m
1 = I T 2 ^ 3 J P 2

•m + mx0,1,1
• mxo, 2 + 2m

1

Now, armed with expression (8), we can give an appropriate lower estimate. By rewriting

3F2 in terms of Pochhammer symbols we establish

1+m ^ (l+m + mxo)j(l)j
(9) 3^2

1 + TUXQ, 1 - 771, 1

2 + mx0,2 + m
1

1 + 2m ^ (2 + mxo)j (2 + 2m).,'

We combine estimate (9) and formula (5). By a careful, but absolute elementary calcu-
lation, one shows that

(10) S

We point out that the reader may, if he wishes, easily find comparable estimates to (10).
However, it is not to hard to see that the upper summation index 3 in (9) may not be
replaced by a smaller index to give a result which is comparable to (10).

4.2. U P P E R ESTIMATE TO proceed further, we turn again to (4) and (5), to give an
appropriate upper estimate for Sm(xo). From (6) a standard argument leads to the
following estimate given by

(11) 3^2
1 + rnx0,1 — m, 1
2 + mxo,2 + m

Then, by applying Lemma 8(a) to (11), we are able to estimate (5) for all m 6 N by

. . XQ /2T7I\ I 1 2mxo 1 _ / 2m'

Combining (10), (12) and (2) we obtain

sin ?rmxo r[l + m (1 + xo)]r[l + m (1 -

m*

(13)

T (1 + m) T (1 + m)

,x0) - |xo|3|

[l + m(l+xo)]r[l + m(l-xo)] _ Z o

2m - 1 m '
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where both inequalities are valid for x0 € (0,1) and m ̂  170. Of course, we may extend

(13) to all z0 € [0,1].

5. ESTIMATES FOR THE O D D CASE

Let n = 2m - 1 with m € N. As before, we define for x0 € (0,1)

2j)3-[(2m-l):c0]
3

Following the procedure for the even case (and applying Lemma 9(c-d)) we rewrite (14)

more concisely as

(2m

4 /2m-l \[
- I)3 V rn ) [

m
- 3 1 + (2m -

(1 — x0) /2 + mx0,1 — m, 1
(3-xo)/2 + mxo,l + m

1 j - ( 2 m - l)m:co .

5.1. L O W E R ESTIMATE For the 3F2 function in (15) we apply a similar triplicate sum-
mation as in the corresponding subsection for the even case. We calculate

Mfrt F ( ( 1 ~ : r o ) / 2 + 7 n a ; o , l - m , l
{ ' 3 2 \ (3-xo)/2 + mxo,l+m

1- 1 F l (1

~ 2 3 2\^ (3-xQ)/2 + mxo,l + 2m

1 * ((1 - x0) /2 + m + mx0). (l)j

^ 2 ̂  ((3 - x0) /2 + mx0). (1 + 2m)j-'

Let us remark that the upper summation index 4 in the last expression of (16) is the
smallest possible which works. Now, inserting (16) in (15), one establishes after a tedious
calculation the following estimate:

(17) Tm (so)
(2m - 1\
V rn ) 729m2 ( 2 m - I ) 3 '

m ^ max I —5-,

5.2. U P P E R ESTIMATE By a routine observation one checks that for x0 € (0,1), m e N,
j = 0 , 1 , . . . the following inequality

(18)
((3-xo)/2
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holds, from which we conclude that

/ ( l - x o ) / 2 + m + mx0,l , l
(19)

(3 - x0) /2 + mx0, 1 + 2m

m, 1
2m

1 = 2 ,

where we have used Lemma 8(a) for the last equality. Combining (15), the summation
in (16) and (19), it is easy to establish (for all m € N, x0 € (0,1))

f2m
-1)-

8
( 2 0 ) T m v~u' ^ V m J2m-i

Combining (17), (20) and (3) we derive our second substantial result. We have

COSTT (m — 1/2) XQ 1

(21)

729m (2m - I)3

[1 + (m - 1/2) (1 + s0)] r [l + (m - 1/2) (1 - x0)]
r (i + m) r (i + m)

cos 7r (m — 1/2) XQ

7T

8m

2 m - 1
r [ l + (TO - 1/2) (1 + x o )] r [ l + (TO - 1/2) (1 - xp)]

r (i + m) r (i + TO)

where both inequalities are valid for x0 € (0,1) and m ^ max((l/xj)),744). Of course,
we may extend this result to XQ € (0,1].

6. P R O O F OF THEOREM 3

With the results (13) and (21) at our disposal, we are able to enter into the main
proof. We begin with the right-hand side in (21). An easy computation reveals that, for
all sufficiently large m, we may write

(22) l l o g | L 2 m _ 1 ( | x | 3
I x o ) - | x 0 | 3 |

r[l + (m-l/2)(l+xo)]r[l + (m-l/2)(l-xo)]
^ m g r(l+TO)T(l+TO) '

Now, as m -> oo, we may apply the asymptotic expansion for logF (x) (see, for example,
[6, p.31])

logr(x) = (x - i logx - x + ilog27r X - > OO,
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to (22) and we obtain (by some calculations)

<23> m"
1/2 + (m - 1/2) (1 + xp), 1 + (m - 1/2) (1 + x0)log

m \ + m
| 1/2 + (m - 1/2) (1 - s0) 1 + (m - 1/2) (1 - x0)

m 1 + rn
Q / l ognA

\ m ) '

Then, as m —> oo in (23), we obtain

(24) ilm —- log L2m_! (|a:|3 , x0) - |xo|3

< - [(1 + x0) log (1 + xo) + (1 - x0) log (1 - x0)].

Employing similar arguments to the right-hand side of (13) implies that

(25) IIS -J—logl^f laf .soJ- larol3

m->oo 2m + 1

^ - [(1 + x0) log (1 + x0) + (1 - x0) log (1 - x0)].

Now we turn to the left-hand side in (21). By passing to an appropriate subsequence we
can establish the following

LEMMA 1 0 . For every fixed XQ € (0,1) we can find two small positive numbers
Ei and e2 and increasing subsequences {my} > 1 and {m^} >x of positive integers such
that for all j = 1,2,... the following assertions hold:

(a)

(b)

X

COS7r(77l} > - l / 2 ) x 0

(XO) > 0,

e2 (x0) > 0.

P R O O F : We establish only assertion (a), since the proof of (b) is very similar. We
consider two cases:

C A S E A. XQ € Q. We write XQ in the form a/b with a, b € N, and (a, b) — 1. It is easy
to give an explicit subsequence that works. For instance, the subsequence denned by
mj1' = jb + 1, j = 1,2,... will establish this case.

C A S E B. X0 e K \ Q . Then the sequence {|sin7rma;o|}m>1 is dense in the interval [0,1].
This follows from the continuity of sin and the well known fact that the Kronecker se-
quence {mxo mod l } m > 1 is dense in [0,1]. Of course, this sequence is uniformly distributed
modulo 1 (see [4, p.8]). From this observation it follows at once that, for an appropriate
small Ei > 0, we may select an increasing subsequence of positive integers such that the
assertion holds in this case.
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D

Combining Lemma 10 with the left-hand side of (21) establishes

(26) * lOgL2ra<,)_1(|s|3,x0)-M3

T [l + (mf - 1/2) (1 +*„)] r [l + (mf' - 1/2) (1 - x0)]
l o g

mf
iwhere the estimate is only valid for sufficiently large integers rrij . As before, the right-

hand side of (26) tends to

(1 + x0) log (1 + x0) + (1 - x0) log (1 - x 0 ) ,

as m f -¥ oo. Thus we arrive at the conclusion that

(27) Bm - ! - log L2m_x (|x|3 , x0) - |xo|3
m-HX 2 m

> 2 [(1 + xo) log (1 + x0) + (1 - x0) log (1 - x0)].

To finish the proof, we combine (24), (25) and (27) to establish Theorem 3.

7. P R O O F OF THEOREM 4

Combing Lemma 9(c) and formula (3) (with x0 — 0) it follows at once that

4

(2m

4 (2m-\\ m

- l ) 3 V m J 2 ^ ^

(28)
2F_(m+l/2)r(m-l/2)2m-l 1
•K (m) r (m) 2m - 3 (2m - I)3

Recalling the log-convexity of the gamma function, a standard argument shows that for
m 6 N, m ̂  2 and 0 ̂  Xo ̂  1 the function

r (m + x0) r (m - x0)

r(m)r(m)

is increasing (in x0). Thus we have the estimates

-, < r ( m + l / 2 ) r ( m - l / 2 ) 1

^ r(m)r(m) ^ 1 + m ^ I ' m > %

Combining (30) and (28) establishes Theorem 4 and so we are done.
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