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Abstract

Scanning transmission electron microscopy (STEM) is an extremely versatile method for studying materials on the atomic scale. Many
STEM experiments are supported or validated with electron scattering simulations. However, using the conventional multislice algorithm
to perform these simulations can require extremely large calculation times, particularly for experiments with millions of probe positions as
each probe position must be simulated independently. Recently, the plane-wave reciprocal-space interpolated scattering matrix (PRISM)
algorithm was developed to reduce calculation times for large STEM simulations. Here, we introduce a new method for STEM simulation:
partitioning of the STEM probe into “beamlets,” given by a natural neighbor interpolation of the parent beams. This idea is compatible with
PRISM simulations and can lead to even larger improvements in simulation time, as well requiring significantly less computer random
access memory (RAM). We have performed various simulations to demonstrate the advantages and disadvantages of partitioned PRISM
STEM simulations. We find that this new algorithm is particularly useful for 4D-STEM simulations of large fields of view. We also provide
a reference implementation of the multislice, PRISM, and partitioned PRISM algorithms.
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Introduction measurements of many different material properties with high stat-
istical significance (Spurgeon et al., 2021).

The combination of computational methods and advanced
STEM experimentation has lead to atomic-resolution 3D tomo-
graphic reconstructions (Yang et al, 2017), measurements of
highly beam-sensitive samples over functional length scales
(Panova et al., 2019), images of samples with resolution better
than the diffraction limit (Chen et al., 2021), and many other
advances in STEM imaging techniques. Many of the technique
developments and validation of these experiments make heavy
use of electron scattering simulations. The application of data-
intensive machine learning methods to STEM experiments can
also be aided by simulations (Kalinin et al., 2021).

It is possible to simulate the propagation and scattering of
STEM probes through a material by directly computing the
Bloch wave eigenstates of the electron scattering matrix
(S-matrix) (Bethe, 1928). The Bloch Wave method can be
employed in diffraction simulations (Zuo et al., 2021), but it is
only practical to use for small, periodic unit cells. The majority
of the STEM simulations performed currently implement the
multislice method (Cowley & Moodie, 1957). The multislice
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Transmission electron microscopy is a powerful tool for studying
atomic-scale phenomena due to its unmatched spatial resolution
and ability to perform imaging, diffraction, and multiple types
of spectroscopic measurements (Egerton et al., 2005; Carter &
Williams, 2016; Zuo & Spence, 2017). Scanning TEM (STEM)
is a particularly versatile TEM technique, as the STEM probe
size can be tuned to any desired experimental length scale, from
sub-Angstrom to tens of nanometers, to best match the length
scale of the structures being probed (Pennycook & Nellist, 2011).
The size of the probe is also completely decoupled from the step
size between adjacent probe positions, allowing experimental fields
of view up to almost 1 mm? (Kuipers et al., 2016). Advances in
detector technology have lead to high-speed electron cameras capa-
ble of recording full 2D images of the diffracted STEM probe with
microsecond-scale dwell times, which has lead to many experi-
ments which record the full four-dimensional (4D) dataset, in a
family of methods called 4D-STEM (Ophus, 2019). In parallel,
the rise of powerful computational methods have enabled
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require extremely large computation times when simulating
STEM experiments which can contain 1,000 probe positions or
even higher. To alleviate this issue, various authors have imple-
mented parallelized simulation codes that make use of multiple
central processing unit (CPU) or graphics processing unit
(GPU) resources (Grillo & Rotunno, 2013; Allen et al., 2015;
Hosokawa et al., 2015; Van den Broek et al, 2015; Kirkland,
2016; Lobato et al.,, 2016; Oelerich et al, 2017; Barthel, 2018;
Radek et al., 2018).

It is possible to perform large STEM simulations more effi-
ciently by computing them as a superposition of plane waves
(Chen et al., 1995). This idea was developed into an efficient sim-
ulation algorithm by Ophus (2017), who named it the plane-wave
reciprocal-space interpolated scattering matrix (PRISM) algo-
rithm. In the PRISM algorithm, the S-matrix elements are
directly computed by multislice simulations. The equivalence of
the Bloch wave S-matrix and multislice simulation outputs have
been investigated in detail by Allen et al. (2003) and Findlay
et al. (2003). The PRISM algorithm has been implemented into
multiple simulation codes (Pryor et al, 2017; Brown et al,
2020a; Madsen & Susi, 2020). It has also been extended to a
double-S-matrix formalism which can provide an even higher
speed boost relative to multislice for inelastic scattering such as
in STEM electron energy loss spectroscopy (STEM-EELS) simula-
tions (Brown et al., 2019).

The PRISM algorithm achieves large decreases in calculation
times by reducing the sampling of the probe wavefunction in
reciprocal space and is highly accurate when the detector config-
uration is given by large monolithic regions. However, PRISM
simulations are less accurate where fine details in the STEM
probe and diffracted Bragg disks are necessary, for example, in
Juchtmans et al. (2015), Hubert et al. (2019), and Zeltmann
et al. (2020). A different form of interpolation has been proposed
by Pelz et al. (2020a), where the STEM probe is partitioned into
different beams by the interpolation of basis functions con-
structed from the initial STEM probe. This partitioning of the
probe has been shown to be a highly efficient and accurate repre-
sentation of dynamical scattering of the STEM probe in experi-
mental data and is fully compatible with the PRISM algorithm
(Pelz et al., 2020b).

In this manuscript, we introduce the partitioned PRISM algo-
rithm for use in STEM simulations. We describe the theory of
multislice, PRISM, and partitioned PRISM simulations and pro-
vide a reference implementation of these algorithms. We show
that beam partitioning simulations provide an excellent trade
off between calculation times and accuracy by measuring the
error of diffracted STEM probes with respect to multislice simu-
lations as a function of the number of included beams. We also
use this method to simulate the full field of view for a common
experimental geometry, a metal nanoparticle resting on an amor-
phous substrate. These simulations demonstrate that the parti-
tioned PRISM method can produce comparable accuracy for
coherent diffraction to PRISM simulations, but for much lower
calculation times and lower random access memory (RAM)
usage. This is important since many PRISM simulations are con-
strained by the available RAM of a GPU to hold the S-matrix.
Finally, we demonstrate the utility of this method in 4D-STEM
simulations by simulating the full 4D dataset of an extremely
large (5127 probes, 4.6 million atoms) sample cell and measuring
the sample strain, where the partitioned PRISM algorithm pro-
vides superior performance to a PRISM simulation using roughly
the same total calculation time.
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Theory

For previously published TEM simulation methods, we will briefly
outline the required steps here. We refer readers to Kirkland
(2020) for more information on these methods. We will also
only describe the scattering of the electron beam while passing
through a sample; probe-forming optics and the microscope
transfer function mathematics are described in many other
works (Williams & Carter, 2009; Spence, 2013; Kirkland, 2020).

Elastic Scattering of Fast Electrons

Transmission electron microscopy simulations aim to describe
how an electron wavefunction w(r) evolves over the 3D coordi-
nates r=(x, y, z). The evolution of the slow-moving portion of
the wavefunction along the optical axis z can be described by
the Schrodinger equation for fast electrons (Kirkland, 2020)

d

iA
55 ) = 2 Vi PUe) + iV (1)), M

where 2 is the relativistic electron wavelength, V,,* is the 2D
Laplacian operator, o is the relativistic beam-sample interaction
constant, and V(r) is the electrostatic potential of the sample.

The Bloch Wave Algorithm

The Bloch wave method uses a basis set that satisfies equation (1)
everywhere inside the sample boundary, which is assumed to be
periodic in all directions. This basis set is calculated by calculating
the eigendecomposition of a set of linear equations that approxi-
mate equation (1) up to some maximum scattering vector |
Gmax]- Then, for each required initial condition (such as different
STEM probe positions on the sample surface), we compute the
weighting coefficients for each element of the Bloch wave basis.
Finally, the exit wave after interaction of the sample is calculated
by multiplying these coefficients by the basis set. This procedure
can be written in terms of an S-matrix as Kirkland (2020)

U (1) = Sy (o), )

where y(r) and w(r) are the incident and exit wavefunctions, respec-
tively. The Bloch wave method can be extremely efficient for small sim-
ulation cells, such as periodically tiled crystalline materials. High
symmetry is also an asset for Bloch wave simulations, as it allows
the number of beam plane waves (beams) included in the basis set
to be limited to a small number. However, for a large STEM simulation
consisting of thousands or even millions of atoms in the simulation,
the S-matrix may contain billions or more entries, which requires
an impractical amount of time to calculate the eigendecomposition
(roughly ©(B>) for Bbeams). Using equation (2), many times for mul-
tiple electron probes could require extremely large computational
times. Thus, Bloch wave methods are only used for plane wave, diffrac-
tion, or very small size STEM simulations.

The Multislice Algorithm

The formal operator solution to equation (1) is given by Kirkland
(2020),

Z
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where w/(r) is the exit wavefunction after traveling a distance z
from the initial wave yy(r). This expression is commonly approx-
imately solved with the multislice algorithm first given by Cowley
& Moodie (1957), which alternates solving the two operators
using only the linear term in the series expansion of the exponen-
tial operator.

In the multislice algorithm, we first divide up the sample of
total thickness ¢ into a series of thin slices with thickness Az.
Solving for the first operator on equation (3) yields an expression
for free space propagation between slices separated by Az, with the
solution given by

Pr (1) = P4y (x), 4)

where P*¢ is the Fresnel propagator defined by
'PAZIZIZ — f('; (F. (4] e*i?T/\qZAZ], 5)

where q = (4., q,) are the 2D Fourier coordinates and r = (x, y) are
the 2D real-space coordinates. Fy[-] denotes the two-
dimensional Fourier transform with respect to x and .7-"1[ -] the
2D inverse Fourier transform with respect to x.

To solve for the second operator in equation (3), integrate the
electrostatic potential of the sample over the slice of thickness ¢
z+t

Vi(x, y, 2) = j Vix, y,2)dz. (6)

z

Figure la shows an example of this slicing procedure. If we
assume that the electron scattering inside this slice occurs over
infinitesimal thickness, the resulting solution to this operator is

(1) = exp 10V, (1) (6). %)
We can then write one iteration of the multislice algorithm as
T Vi) =Py 7] = T, ®)

where Vi is the projected potential at slice k. This algorithm is
shown schematically in Figure 1b. The multislice solution of a
wavefunction y after k potential slices is then

if k=0
if k>0

. eloVi

My={ e 9
et { TMY s Vi) ®
for which we introduce the short notation Mj, if the potential is
assumed to be fixed. It is important to note that 7 (¢, Vi) is linear
in ¥ and nonlinear in Vj and thus M,‘(/ is linear in y and nonlin-
ear in V. Traditionally, a STEM or 4D-STEM simulation was
computed by shifting the incoming wave function to the scan
positions p and computing the resulting far-field intensity using
the multislice algorithm at each position:

I(q, p) = |F:[Mulr — p)]I*. (10)
An example of this output is shown in Figure 1c. This requires us
to perform a full multislice calculation at each scan position,
which makes large fields of view that could contain millions of
probe positions computationally expensive.

The PRISM Algorithm for STEM Simulations

Recently, Ophus (2017) proposed an elegant solution to this prob-
lem. The incident wave-function of a microscope in a scanning
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geometry usually passes through a beam-forming aperture with
maximum allowed wave vector h,,,, and is then focused onto
the sample. It can therefore be described as

Yep)= Y Wh)Sm™P), (1n

[h|<hmax

with W(h) the Fourier transform of w(r) and p the two-
dimensional scan coordinate. Using the linearity of the multislice
algorithm with respect to y and equation (11), we can then
rewrite equation (10) as

2

I(q,p) = ‘f[ > W e“"“ﬂMkeW‘”} (12)

h<hpa

We take equation (12) to link our algorithm to the existing Bloch
wave literature in electron microscopy. Traditionally, the set h of
incoming plane waves is referred to as “beams,” and the linear
operator that maps from plane waves entering the sample to
plane waves exiting the sample is referred to as the S-matrix.
Using equation (12), we can define the real-space scattering
matrix S, : = My e2™, which is the set of exit waves produced
by running the multislice algorithm on the set of plane waves pre-
sent in the probe-forming aperture of the microscope. The scat-
tering matrix encapsulates all amplitude and phase information
that is required to describe a scattering experiment with variable
illumination, given a fixed sample potential V.

Given the S-matrix and a maximum scattering angle h,.x in
the condenser aperture, we can rewrite equation (12) with the
real-space scattering matrix as

2

I(g, p) = ‘f[ Y W(h) e-”"“'f'sr,h} . (13)

h<Hmax

To introduce the concepts used in the PRISM algorithm, we now
need to consider the variables r and h on a discretely sampled
grid. The bandwidth-limitation |h| < /)., means that the incom-
ing probe is represented by a finite number of Fourier coefficients
h, € H = {(hy, hy) | ||h]l; < hpax}. Let the discretely sampled
S-matrix have dimensions S;;, € CVN*8 with Ny x N, the
real-space dimensions and B = |H| the number of pixels sampled
in the condenser aperture.

To compute the S-matrix, we run the multislice algorithm for
each wavevector hy, that is sampled in the detector plane. These
steps are shown schematically in Figures 2a and 2b. This strategy
yields favorable computational complexity when a large number
of probe positions needs to be calculated, which is necessary for
large field-of-view STEM simulations. It has the additional advan-
tage that a series of scanning diffraction experiments with differ-
ent illumination conditions can be simulated without
recomputing the S-matrix. This method was named the PRISM
algorithm by Ophus (2017). It was first implemented into a sim-
ulation code parallelized for both CPUs and GPUs in the
Prismatic implementation (Pryor et al, 2017). Since then, the
PRISM algorithm has also been implemented in the GPU simu-
lations codes py_multislice (Brown et al., 2020a) and abTEM
(Madsen & Susi, 2020). The PRISM algorithm introduced an
additional concept to improve the scaling behaviour of STEM
simulations via the scattering matrix. If only each fth beam in
the condenser aperture is sampled, the field of view in real-space
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Fig. 1. The multislice simulation algorithm. (a) Calculate the projected potential slices from the atomic coordinates and lookup tables. (b) Initialize the probe
wavefunction, and then alternate between propagation and transmission operators. (c) Final probe at the sample exit plane.

contains f> copies of the probe with size N /f x N,/f. If one of
these probe copies is cropped out, and then the far-field intensi-
ties computed via equation (13), we can perform simulations that
trade a small amount of accuracy for a significant speed-up in
computation times (Ophus, 2017). The new model then reads

2

>

B
I(g p) = ‘fr [Z [Cpe Sep] W () emhw}
b=1

where we have introduced a cropping operator

C. — 1 if [r—p| < [|A/2],
P10 otherwise

with the absolute value | - | applied element-wise, a two-dimensional
rectangular function of width A € RN/>*N2//' centered about each
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probe scan position p. This cropping procedure to compute STEM
probes using PRISM is shown in Figures 2c and 2d.

The Partitioned PRISM Algorithm
Natural Neighbor Interpolation of the Scattering Matrix

Theoretical and experimental investigations of S-matrix recon-
structions have shown that once the plane-wave tilts have been
removed from all beams, the resulting matrix elements are
remarkably smooth (Brown et al., 2020b; Pelz et al, 2020b;
Findlay et al, 2021). We have also observed that in many
PRISM simulations, the information contained in neighboring
beams is very similar. These observations have inspired us to pro-
pose a new method for simulating STEM experiments. Rather
than computing all beams of the S-matrix with the multislice
algorithm, we could instead interpolate them from a reduced set
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Fig. 2. The PRISM simulation algorithm. (a) Calculate the projected potential slices from the atomic coordinates and lookup tables. (b) Select an interpolation
factor f and a maximum scattering angle |gmax|, and initialize all tilted plane waves needed for these beams. (c) Perform a multislice simulation for each beam
over the full field of view, store in the S-matrix. (d) Compute outputs by shifting the initial STEM probes and cropping 1/f of the total field of view, and multiplying

and summing all S-matrix beams.

P of parent beams, which are computed with the multislice algo-
rithm in the manner described above.

Defining the interpolation weights as a matrix w € R”*® that
stores the interpolation weights for each beam, we can then com-
pute the 4D-STEM intensities as

I(q, p) =

B
fr[z W(hy) e 2mmee
b=1

2

'Cp,r |:e27rihb<r Z W e—2th.rSr’pi|i| . (14)

PEP
Through numerical tests we found that the interpolation of the

S-matrix beams at the exit surface can produce substantial relative
errors compared with the multislice algorithm, and the
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approximation only becomes highly accurate when the S-matrix par-
ent beams S, are back-propagated to the probe crossover plane (zero
defocus) before interpolation. An intuitive explanation for the neces-
sity of the back-propagation is the fact that the interpolated beams
rapidly acquire different phase offsets due to propagation through
the sample, and back-propagating the S-matrix beams to the probe
crossover plane minimizes these phase offsets. With the additional
back-propagation, the partitioned PRISM model then reads

B
I(q, p) = ‘}'r |:Z W(hy) e 2mhep
b=1
2

'Cp,r |:eZm'h;,~r Z Wb e—2'rrihp.r P_tSr,p:|j| , (15)

PEP
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where t was the total sample thickness defined above. While
re-focusing the S-matrix beams in the PRISM algorithm (Ophus
et al., 2020) is optional to further reduce approximation errors,
in the partitioned PRISM algorithm it is essential to achieve high
accuracy.

The remaining tasks are then to choose an interpolation strat-
egy to determine the weights w and to choose the set of parent
beams P. To maximize the flexibility in choosing the parent
beams, which form the interpolation basis of the S-matrix, the
chosen interpolation scheme must be able to interpolate an
unstructured grid of parent beams. Here, we have chosen to
employ the natural neighbour interpolation (Sibson, 1981;
Amidror, 2002).

We note two additional methods which can save further com-
putational time. First, part of the computational overhead when
performing matrix multiplication of the S-matrix is the cropping
operator. When using interpolation factors of f>1 for either tra-
ditional or partitioned PRISM, this overhead can represent a sig-
nificant amount of computation time due to the need for a
complex indexing system to reshape a subset of the S-matrix.
Thus, in many cases, simulations with f=2 may require longer
computational times than f=1. We therefore recommend that
the scaling behaviour be tested in each case.

A second and more universal speed-up can be achieved by pre-
calculating and storing a set of parent-beam basis functions. To
position a STEM probe at any position that is not exactly centered
on a pixel with respect to the plane-wave basis functions, we use
the Fourier shift theorem to apply the sub-pixel shifts of the initial
probe, represented by the phase factors e >™'# in equation (15).
This requires that the beamlet basis functions be stored in Fourier
space coordinates, multiplied by a plane wave to perform the sub-
pixel shift, and then an inverse Fourier transform be performed
before multiplication by the S-matrix. To avoid this potentially
computationally-costly step, we can set the simulation parameters
such that all STEM probe positions fall exactly on the potential
array pixels (e.g., calculating 512 x 512 probe positions from a
1024 x 1024 pixel size potential array). This eliminates the sum-
mation over the complete set of basis beams b and the shift of
the STEM probe can be achieved by indexing operations alone,
allowing the probe basis functions to be stored in real space.
After factoring out the summation over the Fourier basis, the
4D-STEM intensities can then be calculated as

2

I(q p) = fLZ Uy Coe P Sy e‘”"‘*"]} (16)
€P
with
A B P
o, p) =Y wpp W(hy) @70, (17)

b=1

We call the functions fpp(r, p) the “beamlet” basis due to their
similarity to wavelets in the signal processing literature (Mallat,
2009). An example beamlet basis is depicted in Figure 3a in the
center panel. These new probe basis functions can be pre-
computed and stored in memory, such that only summation
over the parent beams is necessary to calculate a diffraction
pattern.
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Algorithmic Steps of Partitioned PRISM Simulations

Figure 3 shows the steps of our new simulation algorithm as a
flow chart. As in all of the above electron scattering simulation
methods, the first step is to compute the projected potentials
from the atomic coordinates. Figure 3a shows the sum of all 40
projected potential slices, each having a thickness of 2 A.

The second step, shown in Figure 3b, is to choose a set of par-
ent beams and then calculate the weight function of all beamlets
using the desired partitioning scheme. Here, we have used two
rings of triangularly tiled beams, where each ring has a constant
radius and the beams are separated by 10 mrads across the 20
mrad STEM probe. The beamlet weights w are calculated using
natural neighbor interpolation and are shown in Figure 3a in
the top right panel. The parent beams are indicated by small
red circles in the condenser aperture, and the beamlet weight dis-
tributions for each parent beam are show in gray scale. By taking
the inverse Fourier transform of each weight function, we can
generate the real-space beamlet basis functions QIP.

Figure 3c shows the third step of the partitioning simulation
algorithm, where we perform a plane-wave multislice simulation
for each of the parent beams defined above. After the plane
waves have been propagated and transmitted through all 40 slices,
the tilt of each beam is removed. These outputs are then stored in
the compact S-matrix S;.p.

Finally, we compute the intensity of each desired STEM probe
position as shown in Figure 3d. First, if we are using a PRISM
interpolation factor other than f=1, we crop out a subset of the
S-matrix. Next, each beam of the S-matrix is multiplied by the
beamlet basis functions, and all beamlet exit waves summed to
form the complex STEM probe in real space. Finally, we take
the Fourier transform of these probes and compute the intensity
from the magnitude squared of the wavefunction. If we require
sub-pixel shifts of the STEM probes with the cropped region of
the S-matrix, we must first multiply the probe basis functions
by the appropriate complex plane wave in Fourier space to achieve
the desired shift. This adds some computational overhead to each
probe, and so if possible we suggest using a potential sampling
pixel size that produces a simulation image size which is an inte-
ger multiple of the spacing between adjacent STEM probes.

Computational and Memory Complexity

We now approximate computational complexity and memory
complexity for the multislice, PRISM, and partitioned PRISM
algorithms. We neglect calculation time for the sample-projected
potential slice and thermal diffuse scattering, as the added com-
putational and memory complexity is equal for all methods. For
simplicity, we assume a quadratic simulation cell with
N = N; = N,. Each slice of the multi-slice algorithm requires
transmission and propagation operations in equation (8), which
is 6N?log, (N), and 2N? operations to multiply the potential
and the Fresnel propagator. For a STEM simulation with P
STEM probe positions and H slices for the sample, the total
multi-slice complexity is then O(HP(6N?log, (N)+ 2N?)
(Ophus, 2017). The complexity of the PRISM algorithm is given
by O((HB/f?)[6N?log, (N) + 2N?] + PBN?/4f*) (Ophus, 2017),
which consists of HB multi-slice simulations for each of the
sampled beams, and PBN?/4f* operations for the summation
of the beams. For the partitioned PRISM algorithm with B, par-
titions, the complexity for the multi-slice calculations is
@((HBp/fz)[6N2 log, (N) + 2N?]). For the real-space summation
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Fig. 3. Flow chart of the beam partitioning algorithm for STEM simulation. (a) Calculate the projected potential slices from the atomic coordinates and lookup
tables. (b) Partition the probe into the desired number of beams, calculate the basis functions for all beamlets. (c) Perform a multislice simulation of all
beams defined by the partitioning, store results in compact S-matrix. (d) Construct STEM probes at all positions by multiplying the shifted initial probes by

the S-matrix and then summing over all beams.

with subpixel precision, a maximum of PBB,N?/4f* operations is
necessary, while for the integer positions on the S-matrix-grid,
only PB,N?/4f? operations are necessary.

The memory complexity of the multi-slice algorithm is lowest,
since only the current wave of size ®(N?) needs to be held in
memory for an unparallelized implementation. All algorithms
need @(PN?/f?) memory to store the results of the calculation
if 4D datasets are computed. The PRISM algorithm requires
O(BN?/4) memory to store the compact S-matrix. For simula-
tions which require a finely sampled diffraction disk, B can
quickly grow to 10* or larger, since the number of beams scales
with the square of the bright-field disk radius, such that large-
scale simulations with fine diffraction disks can outgrow the avail-
able memory on many devices. The memory requirements of the
partitioned PRISM algorithm scale with @(BPN2 /4). Since the
number of parent beams B, can be chosen freely, the memory
requirements of the partitioned PRISM algorithm can be freely
adjusted to the available hardware (Table I).

Methods

All the simulations shown in this paper were performed using a set
of custom Matlab codes. In addition to implementing the parti-
tioned PRISM algorithm, we have also implemented both the con-
ventional multislice and PRISM algorithms for STEM simulation, in
order to make a fair comparison between the different methods. We
have used a single frozen phonon configuration in all cases, in order
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Table 1. Computational and Memory Complexity of Alternatives for Computing
STEM Data.

Memory
Algorithm Time Complexity Complexity
Multislice O(HP(6N? log, (N) + 2\?) O(N? +24)
PRISM O(H8[6N? log, (N) + 2N?] + P2 OB + 2)
Partitioned @(% [6N? log, (N) + 2N?] + %,‘;Nz) (el B"TNZ + P,—"z’z)
PRISM
subpixel
precision
Partitioned @(% [6N? log, (N) + 2N?] + —Pi’;flz ) O 5"TN2 + %’2)
PRISM
integer pixel
precision

H: number of slices, B: number of beams, B,: number of beam partitions, P: number of
probes, N: side length of field of view in pixels, f: interpolation factor.

to increase the number of features visible in diffraction space. No
effort was made for performance optimization or parallelization
beyond MATLAB’s inline compiler optimizations.

The microscope parameters used in Figures 4, 5, and 6 were an
accelerating voltage of 80 kV, a probe convergence semiangle of
20 mrad, and a pixel size of 0.1 A. The probe was set to zero defo-
cus at the entrance surface of the simulation cell. The projected
potentials were calculated using a 3D lookup table method
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Fig. 4. Individual STEM probes computed with beam partitioning. (a) Projected
potential and probe position. (b) Partitioning diagram showing beamlet weights.
(c) Calculated CBED intensity on a logarithmic scale. (d) Error versus multislice
probe simulation. (e) Estimated calculation time of the different probe partitions
as a function of the number of probes calculated.
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Error versus multislice probe simulation. (e) Estimated calculation time of the differ-
ent probe partitions as a function of the number of probes calculated.


https://doi.org/10.1017/S1431927621012083

Microscopy and Microanalysis

(a) (b)

843

(¢)  Error vs Multislice [% of probe]

—PRISM ] 25% | speed-up 16.6X | | speed-up 54.4X
= 2.5 mrads = :
—smrags ] Bright
= 10 mrads ] Field
[0-8

mrads]

STEM Image Intensity [% of probe]
> speed-up 171X

| speed-up 370X

Qrocs
Q1ce
© 100 MB
°10MB 1

0.0%

1onff=8 4 2 1

0.5%F

v

=)
=1
.
=]
)
=
g
w
% 1.5% FOe@r—o—>0
3 5, ™, ~
=3
w
c
1]
]
=
B
<]
=]
o«

0.0% 1

1.0%F b 15%
05% | o AO—O0—0 Dark
Field
[61-100
mrads)]
0.0% 0% 4 s 61 beams £ 5
0.1% 1% 10% ~=100% PRISM Partitioned  Partitioned  Partitioned PRISM Partitioned ~ Partitioned  Partitioned
Calulation Time vs Multislice f=4 2.5 mrads 5 mrads 10 mrads f=4 2.5 mrads 5 mrads 10 mrads

Fig. 6. Simulation of STEM images using beam partitioning and PRISM interpolation. (a) Calculation time, RMS error relative to multislice, and total RAM required
for the S-matrix of all simulations. The four detector configurations considered are BF detector from 0 to 8 mrads, an ABF detector from 9 to 20 mrads, a LAADF
detector from 25 to 60 mrads, and a HAADF detector from 61 to 100 mrads. Gray circles indicate the simulations where images are shown. (b) STEM images for the
four detector configurations and four simulation cases labeled below. Calculation of time speed-up-relative multislice is inset into the top row, while the number of
included beams is inset into the bottom row. (c) Pixel-wise errors of each image in (b) with respect to multislice simulations.

(Rangel DaCosta et al., 2021) using the parameterized atomic
potentials given in Kirkland (2020). Slice thicknesses of 2 A
were used for all simulations, and an anti-aliasing aperture was
used to zero the pixel intensities at spatial frequencies above
0.5 - gmax during the propagation step.

The atomic coordinates utilized for our single probe position
and imaging simulations are identical to that used previously
(Ophus, 2017). The structure consists of a Pt nanoparticle with
a multiply-twinned decahedral structure, with screw and edge dis-
locations present in two of the grains. The nanoparticle measures
approximately 7 nm in diameter and was tilted such that two of
the platinum grains are aligned to a low index zone axis. It was
embedded into an amorphous carbon support to a depth of
approximately 1 nm, with all overlapping carbon atoms removed.
The cell size is 10 nm x 10 nm x 8 nm and contains 57,443 total
atoms. The nanoparticle coordinates were taken from Chen
et al. (2013), and the amorphous carbon structure was adapted
from Ricolleau et al. (2013).

The atomic coordinates of our 4D-STEM simulations were a
multilayer stack of semiconductor materials inspired by the exper-
iments from Ozdol et al. (2015). The simulation cell consists of a
GaAs substrate where the Ga and As sites are randomly replaced
with 10% Al and P, respectively. The multilayers are an alternating
stack of GaAs doped with 10% P and pure GaAs, respectively,
each 9 unit cells thick along a [001] direction. The lattice param-
eters of the GaAs and GaAsP were fixed to be +1.5 and —1.5% of
the substrate lattice parameter, which was set to 5.569 A. The field
of view was approximately 500 x 500 A, and the potential pixel
size and slice thicknesses were set to 0.1 and 2 A, respectively.
The cell thickness was approximately 40 A, giving 4.6 million
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atoms inside the simulated volume. The STEM probe convergence
semiangle was set to 2.2 mrads, the accelerating voltage was set to
300 kV, and the probe was scanned over the field of view with 2 A
step sizes, giving an output of 250 x 250 probes.

The simulations shown in Figures 4, 5, and 7 were computed
on a laptop with an Intel Core i7-10875H CPU, operating at 2.30
GHz with eight cores, and 64 GB of DDR4 RAM operating at
2,933 MHz. The simulations shown in Figure 6 were performed
on Intel Xeon Processors E5-2698v3 with eight Physical cores
(16 threads) and 25GB RAM per simulation. The multislice
512 x 512 results were obtained by splitting the 512 x 512 array
into 32 jobs with 16 x 512 positions. Prism f=2 results with
512 x 512 probe positions were obtained by splitting the array
in to eight jobs with 64 x 512 each, all using an identical calcu-
lated S-matrix. All calculations were performed using Matlab’s
single floating point complex numbers, and simulation run
times were estimated using built-in MATLAB functions, and
memory usages were based on theoretical calculations.

Results and Discussion
Calculation of Individual STEM Probes

To demonstrate the accuracy of our proposed algorithm, we have
performed STEM simulations of a common sample geometry: a
multiply-twinned Pt nanoparticle resting on an amorphous sur-
face. The total projected potential of this sample is plotted in
Figure 4a, as well as the location of a STEM probe positioned
just off-center. We have tested a series of beam partitioning
schemes, shown graphically in Figure 4b. The first case tested
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Fig. 7. Simulated 4D-STEM datasets and strain maps of a multilayer semiconductor stack. (a) PRISM simulation with f=25 interpolation and 21 total beams. (b)
Partitioned PRISM simulation with f=5 interpolation and 19 total beams. Each simulation shows a virtual bright field image, the mean CBED image, and strain
maps in the two cardinal directions. Line traces show average strain perpendicular to the layer direction.

was a single beam, which is equivalent to convolving a plane-wave
HRTEM simulation with the STEM probe. We have also used nat-
ural neighbor partitioning to calculate the beamlet weights when
using a series of concentric hexagonal rings of beams, distorted
slightly to the circular probe geometry. These simulations include
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partitioning the 20 mrad probe by 20, 10, 5, 2.5, and 1.25 mrads,
resulting in a total of 7, 19, 61, 217,and 817 parent beams,
respectively.

The calculated diffraction space intensities of the probes corre-
sponding to the above cases are shown in Figure 4c, along with
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the corresponding conventional multislice simulation. We see that
using a single parent beam is extremely inaccurate, reproducing
only the coarsest features of the multislice simulation. However,
the partitioning scheme rapidly converges to the multislice result,
shown by the error images plotted in Figure 4d. The 19 beam case
has errors falling roughly within 5%, while the 61 beam case
drops to <2%. The calculated probe for the 217 beam case has
errors on the order of <0.5%, which would likely be indistinguish-
able from an identical experiment due to measurement noise.
Finally, the 817 beam case is essentially error-free.

We can make additional observations about the character of
the errors present in the partitioning algorithm. Inside the initial
probe disk and in directly adjacent regions, the errors are roughly
equally distributed in the positive and negative directions.
However, at higher angles, the errors are biased in the negative
direction. This indicates that the partitioning approximation is
highly accurate at low-scattering angles where coherent diffraction
dominates the signal, and is less accurate at high-scattering angles
where thermal diffuse scattering dominates. We attribute this
effect to the complex phase distribution of the pixels; at low-
scattering angles, adjacent beams have very similar phase distribu-
tions, which in turn makes the interpolation a good approxima-
tion. However, at high-scattering angles, the phases of each
pixel are substantially more random, due to thermal motion of
the atoms. This means that if too few beams are used to approx-
imate the signal, the coherent summations will tend towards
zero due to the random phase factors. Thus, when using a
small number of beams in partitioned STEM simulations, high-
angle-scattering intensities can be underestimated. In the example
diffraction pattern shown in Figure 4d, we also observe that the
error magnitude decays from low to high angles when very few
beamlets are used, but becomes more uniform when the approx-
imation approaches the fully sampled S-matrix. We expect the
error distribution to vary with the complexity of the simulated
specimen and recommend testing the approximation at few
selected positions with high values of projected potential.

The estimated calculation times for these simulations are
shown in Figure 4e. When calculating a single STEM probe, mul-
tislice is always fastest because the only overhead to the calcula-
tion is computation of the projected potentials. The partitioned
simulations by contrast require evaluation of the S-matrix,
which requires the same calculation time as each STEM probe
multislice propagation for each beam. However, once the
S-matrix has been computed, the calculation of STEM probes
via matrix multiplication becomes substantially faster than multi-
slice. The overall simulation time becomes lower than multislice if
many STEM probe positions must be calculated. For the 61, 217,
and 817 beam cases, these crossovers in calculation time occur for
32, 135, and 1,000 probe positions, respectively. Therefore, even
for 1D simulations of STEM probe positions, the partitioning
scheme is faster, and for simulations with a grid of 2D probe posi-
tion this scheme is significantly faster than multislice.

However, using the beam partitioning algorithm on the entire
field of view does not utilize the algorithm to its full speed-up
potential. The beam partitioning approximation is also compati-
ble with the PRISM approximation. Partitioning reduces the
number of entries of the S-matrix in diffraction space, whereas
PRISM reduces the number of entries using cropping in real
space. Figure 5a shows STEM simulations that combine partition-
ing with a PRISM interpolation factor of f=5. The 25-fold reduc-
tion in sampling of the STEM probes is evident in Figure 5b,
where the underlying beam pixels are clearly visible in the
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STEM probe. The partitioning scheme used is identical to that
of Figure 5b, except for the 1.25 and 2.5mrad partitioning
cases. For the 1.25mrad partitioning, the number of parent
beams outnumbers the number of available beams; after removing
duplicate beams, this simulation becomes equivalent to a PRISM
f=5 simulation. The 2.5 mrad partitions were changed to a diag-
onal grid, where every other beam is included in order to produce
a more uniform sampling of the S-matrix.

The calculated probe intensities are shown in Figure 5¢, along
with the corresponding multislice simulation (which was sampled
on the same 25-fold reduced grid). The errors of the partitioned
PRISM simulations have been compared with the multislice sim-
ulation in Figure 5d. The resulting convergence towards zero error
is essentially identical to the non-PRISM case (where f=1). These
simulations are also slightly biased towards negative errors at
high-scattering angles.

The estimated calculation times are plotted in Figure 5e as a
function of the number of probe positions. These simulations
are substantially faster than multislice. The 61, 161, and 325
beam cases have a crossover in the calculation with multislice
for 32, 83, and 155 probe positions, respectively. If the error for
the 161 beam case is within an acceptable tolerance, a 1,000 x
1,000 probe position simulation of this sample can be performed
in roughly 50 min, without additional parallelization or utilization
of GPU or HPC resources.

Calculation of Full STEM Images

We have also simulated full STEM images with a variety of stan-
dard detector configurations, in order to demonstrate the poten-
tial of the partitioned PRISM algorithm. These simulations are
shown in Figure 6 and include four radially symmetric detector
configurations. These are a bright-field (BF) image from 0 to 8
mrads, an annular bright-field (ABF) image from 9 to 20
mrads, a low-angle annular dark field (LAADF) image from 25
to 60 mrads, and a high-angle annular dark field (HAADF)
image from 60 to 100 mrads. We have performed these simula-
tions with 512 x 512 probe positions using multislice, PRISM,
and partitioned PRISM algorithms. The PRISM simulations
used interpolation factors of f=1, 2, 4, and 8, giving a total num-
ber of beams equal to 7,377, 1,885, 489, and 137 beams, respec-
tively. The partitioning included was the scheme described
above, where the 20 mrad STEM probe was subdivided by 10, 5,
and 2.5 mrads into the parent beams, and where no partitioning
was performed (i.e. the original PRISM algorithm). The number
of beams for the 10, 5, and 2.5 mrad partitioning was equal to
19, 61, and 217 respectively, except for the 2.5 mrad partitioning
for f=8 interpolation, where the simulation is equivalent to
PRISM (137 beams).

Figure 6a shows a summary of the results, where the
root-mean-square (RMS) errors in units of probe intensity and
calculation times relative to multislice simulations are plotted.
Additionally, the RAM requirements for storing the S-matrix
are shown by the marker sizes. Overall, the results follow the
same trend as in the previous section. Using less beams either
in the partitioning or higher PRISM interpolation results in a
less accurate simulation for all cases. The only exception to this
is PRISM f=1 simulations, which are mathematically identical
to multislice simulations (Ophus, 2017). Interestingly, the
PRISM f=1 simulations are faster than f=2, due to not needing
any matrix indexing operations to crop out a portion of the
S-matrix. However, f=1 PRISM simulations also have the largest
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RAM requirements by a large margin, requiring 15.5 GB. This is
potentially an issue for large simulations if we wish to utilize GPU
resources, since RAM capacities of current GPUs are often in the
range of 4-16 GB, and there is additional overhead for other
arrays that must be calculated. This problem can be alleviated
by streaming only part of the S-matrix into the GPU RAM
(Pryor et al., 2017), but then the large speed-up afforded by per-
forming only a single matrix multiplication per STEM probe is
lost.

The BF and ABF simulation errors are shown in Figure 6a, and
the partitioned simulations have a very favourable balance
between calculation time and accuracy. For PRISM interpolation
factors of f=2 and f=4, the partitioned simulations have essen-
tially identical accuracy to the PRISM simulations, while requiring
far lower calculation times and less RAM to store the S-matrix.
The 5 mrad partitioning case (61 beams), for example, is 46 (f
=2)and 171 (f=4) times faster than an equivalent multislice sim-
ulation, while having RMS errors on the order of 0.2 and 0.1%,
respectively, for the 0-8 mrads BF image and RMS errors on
order of 0.5 and 0.2%, respectively, for the 9-20 mrads ABF
image.

For the LAADF and HAADF images shown in Figure 6a, the
partitioned simulations show somewhat less favourable error scal-
ing than the PRISM algorithm. While the calculation times are
reduced by partitioning for a given PRISM interpolation factor,
the errors increase roughly inversely proportional to the number
of include beams. These errors are still relatively low however,
staying roughly constant with the interpolation factor f.

Figure 6b shows the STEM images for the f=4 cases including
conventional PRISM and the 3 partitioning schemes. It is imme-
diately evident that all images contain the same qualitative infor-
mation, for example, showing that the ABF image is far more
interpretable than the BF image. Visually, the BF and ABF images
appear indistinguishable from each other, with all atomic-scale
features preserved across the different partitioning schemes. The
LAADF and HAADF images similarly all contain the same qual-
itative information, and all highlight the differences between these
two dark-field imaging conditions. Here, however, we can see an
overall reduction of image intensity inside the nanoparticle for the
partitioned simulations with less beams. In the LAADF case, the
19 beam image is noticeably dimmer than the other cases, and for
the HAADF case both the 19 and 61 beam partitioning show
reduced intensities.

To show the errors more quantitatively as a function of the
probe position, we have plotted the difference images with respect
to a multislice simulation in Figure 6c. For the BF images, a slight
offset in the overall intensities is visible, likely due to the slightly
different probe and detector sampling when using f= 4 interpola-
tion. The spatially resolved differences are very low however, for
both PRISM and the 2.5 and 5mrad partitioning simulations.
In the regions of highest scattering in the nanoparticle, some
errors along the atomic planes are visible in the 10 mrad parti-
tioned simulation. The 2.5 and 5 mrads partitioned PRISM simu-
lations are an excellent replacement for the PRISM simulations, as
they offer large calculation time speed-ups for a negligible change
in the error.

In the LAADF and HAADF error images plotted in Figure 6c,
the errors are increasing proportionally to the inverse of the num-
ber of beams included, as we observed in Figure 6a. The HAADF
images show higher overall errors than the LAADF images due to
the increasing randomness of the pixel phases at high-scattering
angles where thermal diffuse scattering dominates the signal.
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The relative error is also higher at these high-scattering angles,
as the number of electrons that scatter to these high angles are sig-
nificantly lower than those which reach the other detector config-
urations. Both the LAADF and HAADF errors scale nearly
linearly with the nanoparticle projected potential, which indicate
that they may be tolerable for relative measurements such as com-
paring different thicknesses or the signal measured for different
atomic species. For quantitative intensity simulations at high
angles, we recommend using as many beams as possible for the
partitioned PRISM algorithm.

Calculation of 4D-STEM Datasets

Many 4D-STEM experimental methods require fine enough sam-
pling of reciprocal space to resolve the edges of scattered Bragg
disks, or fine details inside the unscattered and scattered Bragg
disks (Ophus, 2019). In particular, for machine learning methods
which are trained on simulated data, we want the sampling and
image sizes to be as close to the experimental parameters as pos-
sible (Xu & LeBeau, 2018; Yuan et al., 2021). Here, compare the
PRISM and partitioned PRISM algorithms for 4D-STEM simula-
tions and assess their accuracy by performing a common
4D-STEM workflow of strain mapping by measuring the Bragg
disk spacing (Pekin et al., 2017).

We have simulated a 4D-STEM experiment for a multilayer
stack of semiconductor materials similar to the experiments per-
formed by Ozdol et al. (2015), as shown in Figure 7 and described
above. Two simulations were performed: the first used only the
PRISM algorithm with interpolation factors of f=25, giving 21
total beams, as shown in Figure 7a. The second combined a
PRISM interpolation of f=5 with partitioning into 19 beams, as
shown in Figure 7b. These parameters were chosen to require
approximately the same total calculation time (157 and 186 min
for pure PRISM and partitioned PRISM, respectively). Both sim-
ulations used the same atomic potentials which required 113 min
to compute. The S-matrix calculation steps required 42 and 30
min for the pure PRISM and partitioned PRISM simulations,
respectively. Finally, the 62,500 probe positions required 2 and
43 min for the pure PRISM and partitioned PRISM simulations,
respectively.

We have used the py4DSTEM package published by Savitzky
et al. (2020) to measure strain in both of the simulations, as
shown in Figure 7, by fitting the positions of the Bragg disks.
These strains are compared to the ideal strain, estimated by con-
volving the underlying lattice spacing with a Gaussian kernel with
a standard deviation given by the 5 A estimated size of the STEM
probe. In the pure PRISM simulation shown in Figure 7a, there
are artifacts visible in both strain maps. The strain perpendicular
to the layer direction shows rapid oscillations of +0.1%, while the
strain parallel to the layer direction shows discrete steps. Both of
these are due to the very small cropping box used when f=25,
which cuts off the tails of the STEM probe in this simulation.
Additionally, the limited sampling of the diffraction disk edges
strongly limits the achievable precision in the disk position
measurements.

By contrast, the partitioned simulation shown in Figure 7b
samples diffraction space five times more finely in both the x
and y directions. The resulting strain maps are much flatter,
and the measured strain positions agree better with the ideal mea-
surements. This simulation demonstrates that beam partitioning
combined with PRISM interpolation can provide a much more
efficient use of the calculation time required to generate the
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S-matrix beams than a pure PRISM simulation. This partitioning
case uses approximately the same number of beams and requires
roughly the same calculation time, but is substantially more accu-
rate at the low-scattering angles used in a coherent diffraction
4D-STEM simulation. We also estimate that a multislice simula-
tion of this same experiment would require approximately 60 days
using the same simulation parameters. Even if we were to increase
the beam sampling by a factor of 8, the partitioned PRISM sim-
ulation would still complete in less than a day.

Conclusion

We have introduced the beam partitioning algorithm for STEM
simulation. This algorithm splits the STEM probe into a series
of basis functions generated by natural neighbor interpolation
between a set of parent beams. We construct the diffracted
STEM probe by matrix multiplication of these basis functions
with plane-wave multislice simulations of each parent beam
which are stored in a S-matrix that can be re-used for each
new STEM probe position. We have demonstrated that the result-
ing algorithm converges rapidly to low error with respect to the
conventional multislice algorithm, and that it is fully compatible
with the PRISM algorithm for STEM simulation.

We have compared our new algorithm with multislice and
PRISM simulations of a nanoparticle on an amorphous substrate.
With these simulations, we have shown that in general, parti-
tioned beam simulations can provide the same accuracy as
PRISM at low- to intermediate-scattering angles (where coherent
diffraction dominates the signal), but with much lower calculation
times and lower RAM usage. We have also shown that at high-
scattering angles, beam partitioning simulation accuracy is some-
what worse than the PRISM algorithm, though still with lower
calculation times. These low calculation times may allow the par-
titioned PRISM algorithm to be used “in the loop” with 3D tomo-
graphic reconstruction algorithms, in order to properly model the
nonlinear dependence of STEM image contrast on the underlying
atomic potentials.

Finally, we have also demonstrated the utility of partitioned
PRISM for simulations of large 4D-STEM datasets. We used a
common sample geometry composed of a multilayer stack of
semiconductor materials with varying compositions on a sub-
strate and performed strain mapping from the diffracted probe
signals by measuring the position of the Bragg disks and fitting
a lattice. These simulations show that the partitioned PRISM algo-
rithm is particularly well suited for performing fast simulations of
large fields of view where high sampling of diffraction space is
needed. We believe that our algorithm will find widespread appli-
cation in simulations of very large simulated cells, such as those
calculated with molecular dynamics. Our simulations also show
that the beam partitioning S-matrix can efficiently represent
complex three-dimensional scattering, which may make it useful
for inverting experimental data efficiently.

Availability of data and materials. Reference implementations of the algo-
rithms presented in this paper (multislice, PRISM, and partitioned beam
STEM simulations) are available at https:/github.com/cophus/superPRISM.
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