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A NEW MINIMAX INEQUALITY ON Z7-SPACES
WITH APPLICATIONS

XIE PING DING, WON KYU KIM AND KOK-KEONG TAN

A new minimal inequality on ff-spaces is obtained together with six equivalent
formulations. As applications, some results on fixed point theorems and system
of inequalities are proved. Our results generalise the corresponding results on (1)
minimax inequalities due to Fan, Yen, Tan, Shih-Tan and Ding-Tan, (2) fixed
point theorems due to Browder, Tarafdar, Shih-Tan and Ding-Tan, (3) convex
inequalities due to Fan, (4) systems of inequalities due to Granas-Liu and (5) a
minimax theorem due to Kneser.

1. INTRODUCTION

In 1961, Fan [13] gave an extension of the classical Knaster-Kuratowski-
Mazurkiewicz theorem [20] to an arbitrary Hausdorff topological vector space. Since
then this result has been widely used in non-linear functional analysis and is known
as Fan's Lemma. Among various applications of Fan's Lemma, an application (both
simple and non-trivial) is the celebrated 1972 minimax inequality of Fan [14]. The
minimax inequality of Fan is of a topological nature and has important repercussions
both in convex analysis and non-linear functional analysis.

Since 1972, there have been numerous generalisations of Ky Fan's minimax in-
equality by weakening the compactness assumption or the convexity assumption in
topological vector spaces, for example see [1, 2, 4, 7, 15, 26, 27, 29, 30]. In [17, 18,
19], Horvath obtained some minimax inequalities by replacing convexity with pseudo-
convexity [17] or contractibility [18, 19] in topological spaces but only in a compact
setting. In [3], using Horvath's approach in [19], Bardaro and Ceppitelli introduced the
notions of "JT-space", "weakly H-convex" and " 27-compact" to obtain some minimax
inequalities in non-compact setting for mappings taking values in an ordered vector
space.

In this paper, we first give two versions of a new generalisation of the Ky Fan
minimax inequality to non-compact if-spaces which include a generalisation of Ky
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Fan's minimax inequality by Shih-Tan [26]. Next five equivalent formulations of our
mini max inequality are given, extending some earlier results of Fan [13], Browder [5, 6],
Shih-Tan [24, 26], Ding-Tan [10] and Tarafdar [28]. As applications, some results on
system of inequalities are proved which generalise those of Granas-Liu [16] and Kneser
[21].

2. MINIMAX INEQUALITIES

Let X be a non-empty set; we shall denote by 2X the family of all non-empty
subsets of X and by T(X) the family of all non-empty finite subsets of X. If F: X —+
2X, we define F'1, F*, Fc by

F~\y) = {* € X : y G F(x)}, F*(y) = {x G X : y £ F{x)} and

Fc(x) = {yeX:y<t: F(x)}.

The following notions, which were introduced by Bardaro and Ceppitelli in [3],

were motivated by an earlier work of Horvath [19].

A pair (X, {-̂ Vi}) is said to be an H-space if X is a topological space (which
need not be Hausdorff) and {FA} is a family of non-empty contractible subsets of X
indexed by A G T(X) such that FA C FA, whenever A C A'. Let (X, {FA}) be an
27-space. A subset D of X is called H-convex if FA C D for each A G ̂ F(D). A map

F: X -> 2X is called H - KKM if FA C U F(x) for e a c h A G Hx)-
xeA

The following lemma is a slight improvement of Corollary 1.1 of Horvath in [19].

LEMMA 1 . Let (X, {FA}) be an H-space and G: X -» 2X be such that

(a) G is an H - KKM map;

(b) {or some xo G X , G(xo) is compact and for each x G X, G(x) is closed

in X.
Then fl G(x)^<D.

PROOF: From Theorem 1 of Horvath in [19], it follows that the family {G(x): x G
X } has the finite intersection property. By (b), f] G(x) ^ 0 . U

xex

T H E O R E M 1 . Let ( X , {FA}) be an H-space and </>, V > : X x X - » R U { - o o , o o }

be such that

(a) <f>(x,y) < ij>(x,y) for each (x,y) G X X X and ^(x,z) < 0 for each

x£X;

(b) for each fixed x G X , (f>(x,y) is a 7ower semfconfinuous function of y on

X;
(c) the map x -» F(x) = {y G X : i>(x, y) < 0} is H - KKM;
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(d) there exist a non-empty closed and compact subset K of X and XQ £ X

such that il>(xo,y) > 0 for all y £ X\K.

Then there exists y £ X such that <f>(x, y) ^ 0 for all x £ X.

PROOF: For each x £ X, let

F{x) = {y£X: l>(x,y) < 0}, G(x) = {y £ X : <f>(x,y) < 0}.

Then we have

(i) for each x£X, F{X) C G(X) by (a),
(ii) for each x £ X, G(x) is closed in X by (b),

(iii) by (a) and (d), F(x0) C K so that F(x0) C ~K = K and hence F(x0) is
compact.

By Lemma 1, f| F(x) ^ 0. Hence, it follows from (i) and (ii) that f| G{x) ^ 0.

Take any y £ f| G(x); then <f>{x,y) < 0 for all x £ X . D
xex

LEMMA 2 . Let (X, {FA}) be an H-space and i>: X x X -> R be such that

tp(x, x) ^0 for all x £ X.

Then the following two conditions are equivalent:
(1) the map x -> F(x) = {y £ X : ip(x,y) ^ 0} is H - KKM;
(2) for each A £ T{X) and for each y £ FA, min^s:,!/) < 0.

PROOF: (1) => (2): Suppose (2) does not hold; then there exist A £ F{X) and
y £ FA such that mini0(x,y) > 0; it follows that y £ f(x) for all x £ A so that

z€A

V £ U Hx)- T h i s contradicts (1) that FA C \J F[x) and y £ FA.
x£A x€A

(2) =>• (1): Suppose (1) does not hold; then there exists A £ F(X) such that

FA <£ |J .F(x). Choose any y £ FA such that y £ \J F(x); it follows that V>(z,y) > 0

for all a; g 4 so that minV'fx,!/) > 0 which contradicts (2). D
xeA

The condition (2) in Lemma 2 generalises the notion of 0-diagonally quasi-concave

in y introduced in [31]. In view of Lemma 2, we have the following result which is

equivalent to Theorem 1.

THEOREM 2 . Let (X, {FA}) be an H-space and <f>, V > : X x X - > R U {-oo, 00}
be such that

(a) </>(x,y) ^ rj)(x,y) for each {x,y) £ X x X and i/>(x,x) ^ 0 for each

x£X;

(b) for each fixed x £ X, <j){x,y) is a lower semicontinuous function of y on

X;
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(c) for each A £ !F(X) and for each y £ FA, minip(x,y) ^ 0;

(d) there exist a non-empty closed and compact subset K of X and xo £ X
such that ip(xo,y) > 0 for all y £ X \K'.

Then there exists y £ X such that </>(x,y) < 0 for all x £ X.

Theorem 2 generalises Theorem 1 of Shih-Tan [26] to l?-spaces.

COROLLARY 1 . Let X be a non-empty convex subset of a topological vector

space and <j>, ij>: X X X —>RU {—oo, oo} be such that

(a) <f>(x,y) ^ tj}{x,y) for each (x,y) £ X x X and tj>(x,x) < 0 for each

xeX;
(b) for each'fixed x £ X, <j>(x,y) is a lower semicontihuous function of y on

X>
(c) for each A £ ^(X) and for each y £ co(.A), miMJ)(x,y) Sj 0;

(d) there exist a non-empty closed and compact subset K of X and xo £ X
such that ij){xo,y) > 0 f o r a l / i / G X ^ .

Then there exists y £ X such that <f>(x,y) < 0 for all x £ X.'

PROOF: For each A £ T(X), let FA = co(A); then (X,{FA}) forms an .ff-space
so that the conclusion follows from Theorem 2. D

We emphasise here that, in Theorem 1 (also Theorem 2), the coercive condition (d)
is imposed on if) while in other non-compact generalisations of Fan's minimax inequality,
the coercive condition is imposed on <j>, for example see Allen [1], Tan [27], Bae-Kim-
Tan [2] and Ding-Tan [7]. For the purpose of comparision, we shall state the minimax
inequality of Ding-Tan [7, Theorem 2] as follows:

THEOREM A . Let X be a non-empty convex set in a topological vector space and
<j>,ip:XxX^>RU {-oo, oo} be such that

(a) <f>(x,y) < V(a;)2/) for all (x,y) £X xX and i>{x,x) < 0 for all x £ X;

(b) for each fixed x £ X, (f>(x,y) is a lower semicontinuous function of y on

C for each non-empty compact subset C.of X;

(c) for each y £ X, the set {x £ X : ip(x,y) > 0} is convex;

(d) there exist a non-empty compact convex subset XQ of X and a non-

empty compact subset K of X such that for each y £ X\K, there exists

x £ co(X0 U {y}) with <j>{x,y) > 0.

Tien tiere exists yeK such that <f>(x,y) < 0 for all x £ X.

For generalisations of Theorem A to jj-spaces, we refer to Ding-Tan [8, 9].

The following examples show that the coercive conditions (d) of Theorem 1 and

(d) of Theorem A are independent of each other:
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EXAMPLE 1. Let X = [0,oo) and <l>, i/> : X x X -* R be defined by <

( 1 i f (8 ,y )e{(« ) » )6RxR: i<y<8 + T l j f a t 0 < 8 < l } 1

nxiy) = < _ ., .

^ 0 otherwise;

f 0 ify<x,
v(*,y) = < .

[ 1 otherwise.
Then all the conditions (a), (b), (c) and (d) in Theorem 1 are satisfied with K = {0} =
{xQ} SO that there exists y = 0 £ X such that <j>(x, y) < 0 for all z £ X. However, there
does not exist a non-empty compact convex subset Xo of X and a non-empty compact
subset K of X such that for each y £ X \ K, there exists a point z £ co (Xo U {y})
with <f>(x,y) > 0. Thus Theorem A is not applicable.
EXAMPLE 2. Let X = [0,oo) and <f>, V> : X x X —> R be defined by

- ( 1 otherwise.

Then all the conditions (a), (b), (c) and (d) in Theorem A are satisfied with
Xo = K — {0} so that there exists y = 0 £ X such that (f>(x,y) ^ 0 for all z £ X".
However, there does not exist a non-empty compact subset K of X and x0 £ 'X such
that ij)(xo,y) > 0 for all y £ X \K. Therefore Theorem 1 is not applicable.

3. EQUIVALENT FORMULATIONS OF.THE MINIMAX INEQUALITY

The following Theorems 3, 4, 5, 6 and 7 are all equivalent to our minimax inequality
Theorem 2 (and hence also Theorem 1):

THEOREM 3 . (First Geometric Form) Let (X, {FA}) be an H-space and B,
C C X x X be such that

(a) BCC;
(b) for each x £ X, the set {y £ X : (x,y) £ B} is open in X;
(c) for each A £ T(X) and for each y £ FA, there exists x £ A such that

(*,y) i c;
(d) there exist a non-empty closed and compact subset K of X and Xo £ X

such that (so,!/) € C for all y £ X \ K.
Then either there exists x £ X such that (z, x) £ C or there exists y £ X such that
{x<EX:{x,y)eB}=<D.

THEOREM 4 . (Second Geometric Form) Let (X, {FA}) be an H-space and M,
N C X x X be such that .

(a) NCM;
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(b) for each x G X, the set {y G X : (x,y) G M} is closed in X;
(c) for each A G F(X) and for each y G FA, there exists x G A such that

(x,y) G N;

(d) there exist a non-empty closed and compact subset K of X and xo G X
such that (xo,y) £ N for all y G X\K.

Then either there exists x G X such that (x,x) £ N or there exists y £ X such that

Xx{y}C M.

THEOREM 5 . (Fixed Point Version) Let (X, {FA}) be an H-space and F, G :

X -> 2X U {0} be such that

(a) for each x G X, F(x) C G(x);

(b) for each x G X, F{x) is open in X;

(c) for each A G F(X) and for each y G FA , there exists x G A such that

V I G(x);
(d) there exist a non-empty closed and compact subset K of X and xo G X

such that X \ K C G(x0);

(e) for each y t X, F-\y)±<b.

Then there exists x G X such that x G G(x).

THEOREM 6 . (Fixed Point Version) Let (X, {FA}) be an H-space and S,

T: X -> 2X be such that

(a) for each x£X, S{x) C T(x);

(b) for each y G X, S'1^) is open in X;

(c) for each A G F(X) and for each y G FA , there exists x G A such that

* € T(y);
(d) there exist a non-empty closed and compact subset K of X and xo G X

such that X \ K C T~1{x{>).

Then there exists x£X such that x G T(x).

THEOREM 7 . (Maximal Element Version) Let (X, {FA}) be an H-space and P,

Q: X -» 2X U {0} be such that

(a) for each x G X, P(x) C Q{x) and x £ Q(x);

(b) for each y G X, P~1(y) is open in X;

(c) for each A G F(X) and for each y G FA , there exists x G A such that

x t Q(y);
(d) there exist a non-empty closed and compact subset K of X and XQ G X

such that XXKcQ-^xo).

Then there exists x£X such that P(x) = 0.

PROOF OF "THEOREM 2 => THEOREM 3":
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Suppose that for each x G X, (x,x) $ C. Let </> and ij> be the characteristic
functions of B and C respectively, then

(i) <t>(x,y) < V>(z,y) for each (x,y) G X x X by (a) and ^ (x ,* ) < 0 by
assumption;

(ii) for each i G l and for each A € R,

{ X, if A < 0,

{yeX:(x,y)eB}, i f O < A < l ,

0, i f A ^ l ,

is open in X by (b) so that 4>(x,y) is a lower semicontinuous function of
y on X)

(iii) by (c) and (d), the conditions (c) and (d) of Theorem 2 hold.
By Theorem 2, there exists y £ X such that <f>(x,y) ^ 0 for all x G X. It follows that
(x,y) <£ B for all x G X; that is, {x G X : (x,y) GB} = 0. D

PROOF OF "THEOREM 3 =>• THEOREM 2":

Let B, C C X x X be denned by

2? = {(s,y) G X x X :«£(*,y)>0},

C = {(*,y)€.X-xJr :*(*,») >0} .
Then the conditions (a), (b), (c) and (d) of Theorem 3 are all satisfied and (x, x) ^ C for
all x G X. Hence by Theorem 3, there exists y G X such that {x £ X : (x, y) G 5 } = 0;
that is (0(x, y) < 0 for all x G X. D

PROOF OF "THEOREM 3 => THEOREM 4":

Let B = X x X\M and C = X x X\N; apply Theorem 3, the conclusion
follows. D

PROOF OF "THEOREM 4 =• THEOREM 3":

Let M = X x X \B and N = X x X \ C; apply Theorem 4, the conclusion
follows. D

PROOF OF "THEOREM 3 => THEOREM 5":

Let B, C C X x X be denned by

B = {(x,y)eXxX:yeF(x)},

C = {(x,y)<EXxX:yeG(x)}.

Then the conditions (a), (b), (c) and (d) in Theorem 3 are all satisfied and by (e),
for each y G X, there exists x G X such that (x,y) G B so that the set {x G X :
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(s>,y) € B} £ 0. Hence by Theorem 3, there exists x &X such that (x,x) £ C; that
is, x € G(x). . . . . . . , D

PROOF OF "THEOREM 5 =>• THEOREM 3":

Define F, G: X -> 2X U {0} by

F(x) = {y £ X :'(*,,,) £ B},

<?(*) = {y £ X : (x,y) £ C}

for each x £ X . Then the conditions (a), (b), (c) and (d) in Theorem 5 are all
satisfied. Hence by Theorem 5, either there exists y £ X such that F~1(y) = 0 or
there exists x £ X such that x £ G(x); that is, either there exists y £ X such that
{x £ X :(x,y) £ B} = <b or there exists x £ X such that (x,x) £ C. . D

PROOF OF "THEOREM 5 => THEOREM 6":

Define F, G: X -> 2* U {0} by F = S"1 and G-= I1"1 ,nhen by (a), (b), (c) and
(d), the conditions (a), (b),'(c) and (d) of Theorem 5 are all satisfied. Since S(x) ^ 0
for all x € X, the condition (e) of Theorem 5 is also satisfied. Hence by Theorem 5,
there exists x G X such that x £ G(x); that is, x 6 T{x). D

PROOF OF "THEOREM 6 => THEOREM 5":

Define S, T: X - • 2X U {0} by S'= F'1 and T = G"1; then by (a), (b), (c) (d),

the conditions (a), (b), (c) and (d) of Theorem 6 are all satisfied. By (e), S(x) ^ 0 for

each x € X so that S, T: X —* 2X. By Theorem 6, there exists x € X such that

x£ T(x); that is, z€(?(x) . ' ' ' ' D

The proof of "Theorem 6 •» Theorem 7" is obvious.

As an immediate consequence of Theorem 3, we have the following result which

generalises Theorem 3 of Shih-Tan [24] in several aspects:

: COROLLARY 2 . Let X be a non-empty convex subset of a topological vector

space and B, C C X x X be such that

(a) BcC;

(b) for each x 6 X, the set {y £ X : (x,y) 6 B} is open in X;

(c) for each A € F(X) and for each y £ co(A), there exists x £ A such that

(d) there exist a non-empty closed and compact subset K of X and xo £ X

such that (xo,y) £ C for all y £ X \ K.

Then either there exists x £ X such that (x, x) £ C or there exists y £ X such that
{x€X:(x,y) € B} = 0.

Similarly, Theorem 4 generalises Theorem 4 of Shih-Tan [24] to If-spaces in non-
compact setting. . _ • . . . . . .
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COROLLARY 3 . Let (X, {FA}) be an H-space and F, G: X - • 2X U {0} be
such that

(a) for each x 6 X, F(z) C G{x);
(b) for each x G X, F(x) is open in X;
(c) for each yeX, F~1(y) ^ 0 and G-1(y) is JJ-convex;
(d) there exist a non-empty closed and compact subset K of X and x0 G X

such that X\K C G(x0).

Then there exists x £ X such that x G G(x).

PROOF: Suppose there exist A G F(X) and y G FA such that y G G(a:) for all
x G A, then ^ C G~1{y) so that by (c), FA C G"x(y) and h e n c e J 6 ^ C G-1^/);
thus j / € G(y). Suppose for each A € "̂( X) and for each y € FA, there exists x € i
such that y ^ G(x), then the condition (c) of Theorem 5 is also satisfied. By Theorem
5, there exists x G X such that x G G(x). D

Corollary 3 generalises Theorem 5 of Shih-Tan [24] and its non-compact generali-
sation by Shih-Tan [26, Theorem 2] to non-comvex setting.

We remark here that Theorem 7, the maximal element version of minimax inequal-
ity, has applications to mathematical economics, for example see Ding-Tan [10].

The following result is an easy consequence of Theorem 6:

COROLLARY 4 . Let (X, {FA}) be an H-space and S,T: X -*2X be such that

(a) for each x G X, S(x) C T(x);
(b) for each y £ X, S~1(y) is open in X;
(c) for each x £ X, T(x) is H-convex;
(d) there exist a non-empty closed and compact subset K of X and XQ G X

such that X\K CT-^XQ).

Then there exists x G X such that x G T{x).

PROOF: Suppose there exist A G F(X) and y G FA such that x G T{y) for all
x G A, then A C T(y) so that by (c), FA C T(y) and hence y G T(y) as y G FA. If
for each A G F(X) and for each y G FA, there exists x G A such that x £ T(y), then
the condition (c) of Theorem 6 is also satisfied. By Theorem 6, there exists x G X such
that x G T(x). D

Corollary 4 generalises Theorem 1 of Browder in [5] (which is equivalent to Lemma
4 of Fan in [13]) and its non-compact generalisation by Browder [6, Theorem 2] in
several aspects. Clearly Corollary 4 is equivalent to Corollary 3. We shall now give
another equivalent formulation of Corollary 4 as follows:

COROLLARY 5 . Let (X, {Ju}) be an H-space and T: X - • 2X U {0} be such
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that

(i) for each x G X, T{x) is H-convex;
(ii) for each y G X, T~1(y) contains an open subset Oy (which may be

empty) of X such that [) Oy = X;

(iii) there exist a non-empty closed and compact subset K of X and xo G X
such that X\KCT-I(xo).

Then there exists x G X such that x G T{x).

PROOF OF "COROLLARY 4 =>• COROLLARY 5":

Define 5: X -> 2X by S(x) = {y e X : x G Oy} for each x &X. Then we have

(1) for each x G X, S{x) ^ 0 and S(x) C T(x) by (ii);
(2) for each y G X, S~1(y) = Oy is open in X by (ii).

Thus all the hypotheses of Corollary 4 are satisfied and hence the conclusion follows
from Corollary 4. D

PROOF OF "COROLLARY 5 => COROLLARY 4":

For each y e X, let Oy = 5 - 1 (y) ; then

(1) for each y G X, Oy is open in X by (b) and Oy = 5-2(y) C T'^y) by

to;
(2) by the assumption, for each x G X, S(x) ^ 0, we have (J Os =

U 5-1(y) = x .
yex

By Corollary 5, the conclusion of Corollary 4 holds. U

Corollary 5 generalises Theorem 2 of Ding-Tan [10] which in turn generalises The-
orem 1 of Tarafdar in [28] (also Theorem 1 of Mehta-Tarafdar in [22]) to non-compact
.ff-spaces.

4. SYSTEMS OF INEQUALITIES

According to Pietsch [23, p.40], a collection T of real-valued functions / denned on
a set X is called concave if, given any finite subset {/i,..., /„} of T and a\,..., an ^ 0

n n

with X) «• = 1. t h e r e exists / G T such that f(x) ^ £ aifi(x) for all z G A".
i=l i=l

Given any two collections J- and Q of real-valued functions on a set X, we shall
write T ^ £ if for any / G ^", there exists g £ & such that /(a;) < g(x) for all z G X.

THEOREM 8 . Let (X, {FA}) be a normal H-space. Let 7, Q and K be three
collections of real-valued functions on X such that

0) r^g^H;
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(ii) for each / £ T, f is lower semicontinuous on X;

(iii) for any Unite subset {gi,..., gn} of Q and tor any 0lt...,0n: X —> [0,1]
n

with ^2 (3i(x) — 1 for each x £ X, the following property holds: for each
«=i

A £ F(X) and for each y £ FA, there exists x £ A such that

(iv) there exist a non-empty closed and compact subset K of X and XQ £ X

such that for any finite subset {gi,.. .,gn} of Q and for any

0lt... ,/3n: X - [0,1] with £ 0i{x) = 1 for each x£X,

all y € X \ K;

(v) the collection Ti is concave.

Then given any p £ R, one of the following properties holds:

(1) there exists an h E H such that inf h(x) > p;

(2) there exists a point y 6 X such that f(y) < p for all f 6 T•

PROOF: Without loss of generality, we may assume that p = 0. For each f £ F,

let <?(/) - {x e K : f(x) < 0}; then Q(f) is closed in K by (ii). If the family
{Q(f) '• f G T} has the finite intersection property, then by the compactness of K

we obtain the alternative (2). Suppose {<?(/) : / £ J7} does not have the finite
n

intersection property. Then there are / i , . . . , / „ € T such that f] Q{fi) = 0. For each
i=l

i = l , . . . , n , let Vi = X \ Q(/ i ) ; then each V; is open in X and {Vi , . . . ,V n } is an
open covering of the normal space X. Let {Pi,.. -,/?„} be a continuous partition of
unity, subordinate to this open covering. Thus for each i = l,...,n, j3im. X —» [0,1]

n

is continuous and Supp pi C Vi such that ]>Z @i{x) — 1 for each x £ X. Choose
»=i

9if->9n £ G &n& hi,...,hn£7i such that /< < gi < /i< on X for each i = 1 , . . . ,n.
Define ^, ip: X x X —> R as follows:
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Then we have

(1) <t>(x,y) < rj){x,y) for each (x,y)e XxX and i{>(x,x) = 0 for all x £ X;
(2) for each fixed x € X, <f>(x,y) is a lower semicontinuous function of y on

X by (ii);

(3) by (iii), for each A € ^F(X) and for each y € FA, there exists x € A such
that ij)(x,y) < 0; thus min^(x,y) < 0;

(4) by (iv), there exist a non-empty closed and compact subset K oi X and

x0 eX such that rjf(xo,y) > 0 for all 3/ £ Jf \ Jif.

Thus all hypotheses of Theorem 2 are satisfied so that there exist y G X such that

<f>(x,y) ^ 0 for all x G X; that is,

for all * G X.

By (v), there is an h G H satisfying h(x) ^ £) /3i(y)hi(x) for all x e X. Therefore for

all x € X,

i=l t=l t=l

This proves the alternative (1) D

Theorem 8 generalises Fan's Lemma [23, p.40] (see also Theorem 6 in [25] which

is equivalent to Theorem 1 of Fan in [12]) to .ff-spaces.

Let h be a real-valued function denned on the product set X x Y of two arbitrary

non-empty sets X and Y. According to Fan [11], h is said to be concave on X if for

any two elements 2:1,2:2 £ X and two numbers ot\, 02 ^ 0 with a\ + 02 = 1, there

exists xo & X such that

Kxo,y) > ot1h(x1,y) + a2h(x2,y) for all y € Y.

THEOREM 9 . Let X be an arbitrary non-empty set and (Y, {FA}) be a normal
H-space. Let f, g, h: X x Y -> R be such that

(i) f^g<honXxY;
(ii) for each fixed x € X, f(x,y) is a lower semicontinuous function of y on

Y;
(iii) for any finite subset {x j , . . . , xn} 0/ X and for any 0i,..., 0n: Y —> [0,1]

n
£ /?t(y) = 1 for each y G Y, tie following property holds: for each
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A £ T{Y) and for each y £ FA, there exists z £ A such that

t=l i=l

(iv) fiere exist a non-empty closed and compact subset K of Y and z0 £ 7

such that for any finite subset { i i , . . . , z B } of X and for any

ft,... ,/?„: Y -+ [0,1] with £) ft(y) = 1 for each y&Y,

n n

£ ft(y)</(*;, y) > $^A(yM*<,*o) for aii y e y \ K;
i - l t=l

(v) A is concave on X.

Then there exists y G Y such that

sup f(x,y) ^ sup inf h(x,y).
x xver

PROOF: Let p = sup inf h(x,y). Applying Theorem 8 with X being the index
xEXV£Y

set, there exists y £ Y such that / ( x , y) < p for all x 6 X. Hence the conclusion
f(x, y) < p follows. D

Theorem 9 generalises the corresponding result due to Granas-Liu [16] to non-

convex and non-compact setting.

When / = g = h in Theorem 9, we obtain the following new minimax theorem:

THEOREM 10 . Let X be an arbitrary non-empty set and (Y, {FA}) be a normal

E-space. Let j : X x F - » R be such that

(i) for each fixed x £ X, g(x, y) is a lower semicontinuous function of y on

Y;
(ii) for any finite subset {xly..., xn} of X and for any Pi,..., f)n: Y —» [0,1]

n

with ^2 Pi(y) = 1 f°T e a c * ! / 6 y , the following property holds: for each
«=i

A £ T(Y) and for each y G FA, there exists z £ A such that

(iii) tiiere exist a non-empty closed and compact subset K of Y and ZQ €

Y such that, for any finite subset { z i , . . . , z n } of X and for any

fa,... ,0n: Y -» [0,1] with £ Pi(y) = 1 for each yeY,

,*b) for all y € Y \ K;
t=i t=i

(iv) g is concave on X.
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Then

inf supg(x,y) = sup inf g(x,y).

PROOF: By Theorem 9, we have inf sup g(x,y) ^ sup inf g(x,y). The reverse
v6V xex xexv£Y

inequality always holds. D

In Theorem 10, if Y is also compact, by taking K = Y the condition (iii) is
satisfied trivially. Hence we have the following immediate consequence of Theorem 10:

THEOREM 1 1 . Let X be an arbitrary non-empty set and (Y, {-̂ U}) be a compact

H-space. Let g: X x Y —* R be such that

(i) for each Axed x £ X, g(x,y) is a lower semicontinuous function of y on

Y;
(ii) for any finite subset {xi,..., xn} of X and for any /?! , . . . , j3n: Y —> [0,1]

n

with 53 Pi{y) — 1 f°T e a c ^ y £Y) tne following property holds: for each
i=l

A £ F(Y) and for each y £ FA , there exists z 6 A such that

(iii) g is concave on X.

Then

min sup g(x,y) = sup inf g(x,y).
v£Y x x»er

Theorem 11 (and hence Theorem 10) generalises a well-known minimax theorem

of Kneser [21].

Note that min sup g(x,y) is attained at some point in Y since y —• sup g(x,y) is
v£Y xex xex

also lower semicontinuous and Y is compact.

REMARK. The condition (ii) of Theorem 10 (respectively Theorem 11) can be replaced

by the following condition (ii)' without affecting the conclusion:

(ii)' for any finite subset {xi, . . . , zn} of X and for any <*i,..., a n ^ 0 with
n

52 Q-i = 1, f-he following property holds: for any A € R and for any

A € F(Y), if AC {ye Y: £ a^x^y) < A}, tien

n

FA C {y G y : V ttiff(x,-,») < A}.
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PROOF: It suffices to show that (ii)' =>• (ii). If (ii) were not true, then there exist

{x!,.. . ,xn} c X, ft,... ,/?„: Y -* [0,1] with £) ft(y) = 1 for each y G Y, A G

and y G FA such that

X > , * ) for all z G 4 .

n

Let A = max £) ^.(j/J^x^z), then

By (ii) ' , FA C {y e Y : £ Pi(y)g(xi,y) < A}; as y G ^ , we must have
»=i

n

Z) A(l/)5(a;«>i/) < A which contradicts (*). U

t=i

Similarly, the condition (iii) of Theorem 8 (respectively, Theorem 9) can be replaced

by the following condition (iii)' without affecting the conclusion:

(iii) ' for each Unite subset {g-y,..., gn} of G and tor any a i , . . . , a n ^ 0 with
n

52 a,- = 1, the following property holds: for any A 6 R and for any
i=l

A G ?(X), if Ad{x£X:Y. «ifli(y) ^ *}

t = l
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