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Abstract

According to the Skitovich–Darmois theorem, the independence of two linear forms of n independent
random variables implies that the random variables are Gaussian. We consider the case where independent
random variables take values in a second countable locally compact abelian group X , and coefficients of
the forms are topological automorphisms of X . We describe a wide class of groups X for which a group-
theoretic analogue of the Skitovich–Darmois theorem holds true when n = 2.

2000 Mathematics subject classification: primary 60B15; secondary 62E10, 43A25.

Keywords and phrases: locally compact abelian group, Skitovich–Darmois theorem.

1. Introduction

By the classical Kac–Bernstein theorem, a Gaussian measure is characterized by the
independence of the sum ξ1 + ξ2 and the difference ξ1 − ξ2 of independent random
variables ξ j . Let ξ j be independent random variables and α j and β j be nonzero
real numbers, where j = 1, 2, . . . , n and n ≥ 2. Consider two linear forms given
by L1 = α1ξ1 + · · · + αnξn and L2 = β1ξ1 + · · · + βnξn instead of the sum and the
difference. The Skitovich–Darmois theorem asserts that, if the linear forms L1 and
L2 are independent, then the random variables ξ j are Gaussian [2, 19]. This theorem
was generalized by Ghurye and Olkin [11] to the case where the ξ j are independent
vectors in the space Rm and the coefficients α j and β j are nonsingular matrices (see
also [14, Ch. 3]). They proved that the independence of L1 and L2 implies that the
random vectors ξ j are Gaussian. In recent years, much attention has been devoted
to generalizing the Skitovich–Darmois theorem to various algebraic structures such
as locally compact abelian groups, Lie groups, and quantum groups (see [6], where
one can find further references). The research stimulated by the Skitovich–Darmois
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theorem has been also continued in the classical case [1, 15]. We also note that group
analogues of the Skitovich–Darmois theorem are closely connected with the ‘positive
definite functions of product type’ introduced by Schmidt (see [8, 18]). This article
is devoted to a generalization of the Skitovich–Darmois theorem on locally compact
abelian groups.

Let X be a second countable locally compact abelian group, Y be its character
group X∗, and (x, y) be the value of a character y ∈ Y on an element x ∈ X . Denote
by M1(X) the convolution semigroup of probability distributions on X . Denote by µ̂
the characteristic function on Y of a distribution µ ∈ M1(X):

µ̂(y)=
∫

X
(x, y) dµ(x) ∀y ∈ Y.

A probability measure µ ∈ M1(X) on the group X is called Gaussian (in the sense
of Parthasarathy [16, Ch. 4.6]) if its characteristic function can be represented in the
form

µ̂(y)= (x, y) exp{−ϕ(y)} ∀y ∈ Y,

for some fixed x ∈ X , where ϕ is a continuous nonnegative function satisfying the
equation

ϕ(u + v)+ ϕ(u − v)= 2[ϕ(u)+ ϕ(v)] ∀u, v ∈ Y.

Taking into account that we will deal here only with Gaussian measures in the sense
of Parthasarathy, we will just call them Gaussian. Denote by 0(X) the set of Gaussian
measures on X . We note that the support of a Gaussian measure is a shift of a
connected subgroup of the group X . For this reason the class of Gaussian measures
on a totally disconnected group coincides with the class of degenerate distributions.
Denote by mK the normalized Haar measure of a compact subgroup K of the group X ,
and by I (X) the set of shifts of such measures. Let Aut(X) be the set of topological
automorphisms of X . Suppose that L1 = α1ξ1 + α2ξ2 and L2 = β1ξ1 + β2ξ2, where
α j , β j ∈ Aut(X) and ξ j are independent random variables taking values in X and with
distributions µ j (here j = 1, 2). We formulate the following general problem.

PROBLEM 1.1. Describe second countable locally compact abelian groups X with the
property that, for any linear forms L1 and L2, the independence of L1 and L2 implies
that each distribution µ j is a convolution of a Gaussian measure and the normalized
Haar measure of a compact subgroup of X , written µ j ∈ 0(X) ∗ I (X). Equivalently,
describe second countable locally compact abelian groups X for which the Skitovich–
Darmois theorem holds true for two independent random variables.

Shifts by normalized Haar measures appear in a natural way in characterization
problems on abelian groups; see, for instance [7, 13, 17]. It should be noted that if
µ ∈ M1(X) and µ= γ ∗ mK , where γ ∈ 0(X), then µ is K -invariant and µ induces
a Gaussian measure on the factor group X/K under the natural homomorphism
X→ X/K . Problem 1.1 was first solved in the class of finite abelian groups [5],
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then in the class of second countable compact totally disconnected abelian groups [9]
and discrete countable abelian groups [10].

For any natural number n, denote by fn : X→ X the homomorphism fn(x)= nx ,
and write X (n) for its image Im fn and X(n) for its kernel Ker fn . The following
theorems hold.

THEOREM 1.2 [9]. Let ξ1 and ξ2 be independent random variables taking values in
a second countable compact totally disconnected abelian group X, with distributions
µ1 and µ2. Let α j , β j ∈ Aut(X). Then the independence of the two linear forms
L1 = α1ξ1 + α2ξ2 and L2 = β1ξ1 + β2ξ2 implies that µ1, µ2 ∈ I (X) if and only if for
each prime p the factor group X/X (p) is finite.

THEOREM 1.3 [10]. Let ξ1 and ξ2 be independent random variables taking values
in a discrete countable abelian group X, with distributions µ1 and µ2, and let α j ,
β j ∈ Aut(X). Then the independence of the two linear forms L1 = α1ξ1 + α2ξ2 and
L2 = β1ξ1 + β2ξ2 implies that µ1, µ2 ∈ I (X).

The main result of this article is the following theorem.

THEOREM 1.4. Assume that a locally compact abelian group X is of the form

X = Rm
× K × D, (1.1)

where m ≥ 0; the group K is compact, totally disconnected and abelian, and the
factor group K/K (p) is finite for each prime p; and D is a countable discrete
abelian group. Let ξ1 and ξ2 be independent random variables taking values in X
and with distributions µ1 and µ2. Let α1, α2, β1, β2 ∈ Aut(X), and define the linear
forms L1 = α1ξ1 + α2ξ2 and L2 = β1ξ1 + β2ξ2. Then the independence of L1 and L2
implies that µ1, µ2 ∈ 0(X) ∗ I (X).

The proof of Theorem 1.4 is given in Section 2. In Section 3 we construct an
example of a locally compact abelian group X that is not topologically isomorphic to
a group of the form (1.1) and for which the Skitovich–Darmois theorem holds true for
two independent random variables.

2. Proof of Theorem 1.4

To prove Theorem 1.4, we will use some structure and duality theory for locally
compact abelian groups [12]. Let X be an arbitrary second countable locally compact
abelian group. If H is a subgroup of its dual group Y , then we denote its annihilator
{x ∈ X : (x, y)= 1 for all y ∈ H} by A(X, H). We recall that a torsion abelian
group G is called p-prime if the order of every element of G is a power of p.
For any α ∈ Aut(X) define the conjugate automorphism α̃ ∈ Aut(Y ) by the formula
(x, α̃y)= (αx, y) for all x ∈ X and y ∈ Y . Denote by I the identity automorphism of
a group. If A and B are subsets of X , then denote by A + B their arithmetic sum:

A + B = {x ∈ X : x = x1 + x2, x1 ∈ A, x2 ∈ B}.

Denote by P the set of prime numbers.
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Let µ ∈ M1(X). Denote by σ(µ) the support of µ. It is useful to remark that if H is
a closed subgroup of Y and µ̂(y)= 1 for all y ∈ H , then the characteristic function µ̂
is H -invariant, that is, µ̂(y + h)= µ̂(y) for all y ∈ Y , h ∈ H , and σ(µ)⊆ A(X, H).
Let K be a compact subgroup of X . It should be noted that the characteristic function
of the normalized Haar measure mK is of the form

m̂K (y)=

{
1 if y ∈ A(Y, K )

0 if y /∈ A(Y, K ).
(2.1)

We formulate as a lemma the following simple and well-known statement.

LEMMA 2.1. Let X be a second countable locally compact abelian group. If f is a
characteristic function such that | f (y)| = 1 for all y ∈ Y , then f (y)= (x, y) for some
x ∈ X.

For µ ∈ M1(X), define the distribution µ̄ ∈ M1(X) by the formula µ̄(E)= µ(−E)
for all Borel subsets E of X . Observe that ̂̄µ= µ̂.

We need some lemmas to prove Theorem 1.4. Let ξ be a random variable taking
values in X and with distribution µ. Taking into account that the characteristic
function of the distributionµ is an expectation, that is, µ̂(y)= E[(ξ, y)], the following
statement may be proved exactly as in the classical case.

LEMMA 2.2. Let X be a second countable locally compact abelian group. Let ξ1 and
ξ2 be independent random variables taking values in X and with distributions µ1 and
µ2. Let α1, α2, β1, β2 ∈ Aut(X), and define the linear forms L1 = α1ξ1 + α2ξ2
and L2 = β1ξ1 + β2ξ2. Then the independence of L1 and L2 is equivalent to the
characteristic functions µ̂ j satisfying the equation

µ̂1(̃α1u + β̃1v)µ̂2(̃α2u + β̃2v)= µ̂1(̃α1u)µ̂2(̃α2u)µ̂1(β̃1v)µ̂2(β̃2v)

for all u, v ∈ Y .

LEMMA 2.3 [3]. Let Y be a second countable compact connected abelian group, and
a ∈ Aut(Y ). Then all solutions of the equation

µ̂1(u + v)µ̂2(u + av)= µ̂1(u)µ̂2(u)µ̂1(v)µ̂2(av) ∀u, v ∈ Y, (2.2)

in the class of nonnegative characteristic functions of probability distributions, are
identically equal to 1.

LEMMA 2.4. Assume that a locally compact abelian group H is of the form F × S,
where S is a second countable compact abelian group and F is a discrete countable
torsion abelian group that satisfies condition (i): for all primes p the subgroup
{d ∈ F : pd = 0} is finite. Then for any element h0 ∈ H and any automorphism
a ∈ Aut(H) there exists a compact subgroup Q of H, such that h0 ∈ Q and a(Q)= Q.
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PROOF. Consider a decomposition of the group F into the weak direct product of its
p-prime subgroups: ∏

∗

p∈P
Fp.

Note that each element d ∈ F can be represented in the form

d =
n∑

j=1

d j ,

where d j ∈ Fp j . Hence p
k j
j d j = 0 for some natural number k j , when j = 1, 2, . . . , n.

We assume that k j are minimal here. Put

B j = {c ∈ Fp j : p
k j
j c = 0}.

Then
d ∈ B1 × · · · × Bn = B, (2.3)

and it follows from (i) that the subgroup B is finite. It is obvious that, for any finite
subset M of F , there exists a subgroup B of the form (2.3) containing M .

Denote elements of H by h or (d, k), where d ∈ F and k ∈ S, and define the homo-
morphism π : H → F by π(h)= π(d, k)= d . Fix an automorphism a ∈ Aut(H),
and consider the subgroup Sa = π(a(S)). Since the homomorphisms π and a are
continuous and S is compact, Sa is also a compact subgroup. Taking into account the
fact that F is a discrete group, we conclude that Sa is a finite group. Then

a(S)⊆ Sa × S. (2.4)

Let h0 = (d0, k0) ∈ H . Denote by B the subgroup of the form (2.3) containing the
element d0 and the subgroups Sa and Sa−1 . Then h0 ∈ B × S. We will verify that
a(B × S)= B × S. Let c ∈ B j . It is obvious that the elements c and a(c) have equal
orders, and these orders are pl

j , where l ≤ k j . All elements of the group H of order pl
j ,

where l ≤ k j , are contained in B j × S, and so a(c) ∈ B j × S. Hence a(B j )⊆ B j × S.
This implies that

a(B)⊆ B × S. (2.5)

Taking into account that Sa ⊆ B, it follows from (2.4) and (2.5) that

a(B × S)⊆ a(B)+ a(S)⊆ (B × S)+ (Sa × S)= B × S. (2.6)

Reasoning similarly, we find that

a−1(B × S)⊆ B × S. (2.7)

It follows from (2.6) and (2.7) that a(B × S)= B × S. Set Q = B × S. Then Q is the
required subgroup. 2

REMARK. The statement of Lemma 2.4 is not true if we omit condition (i). Indeed,
let G be an arbitrary finite abelian group and let 8i = G, where i = 0,±1,±2, . . . .
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Let F be the weak direct product

F =
−1∏
∗

i=−∞

8i .

Consider F with the discrete topology. Then F is a discrete countable torsion abelian
group, and condition (i) fails for F . Let S be the direct product

S =
∞∏

i=0

8i .

Consider S with the product topology. Obviously, S is a second countable compact
abelian group. Put H = F × S and denote elements of the group H by h = {xi }

∞

i=−∞,
where xi ∈8i . Note that xi = 0 if i < n(h). Set a{xi }

∞

i=−∞ = {xi+1}
∞

i=−∞. Then
a ∈ Aut(H). It is clear that the orbit {anh}∞n=0 of each nonzero element h ∈ H is
noncompact. Hence there does not exist a compact subgroup Q of H which is invariant
with respect to a.

LEMMA 2.5 [10]. Let Y be a second countable compact abelian group, and suppose
that a ∈ Aut(Y ). Then all solutions of Equation (2.2) in the class of nonnegative
characteristic functions of probability distributions are of the form

µ̂1(y)= µ̂2(y)=

{
1 if y ∈ E

0 if y /∈ E,
(2.8)

where E is a subgroup of Y , and a(E)= E.

PROOF OF THEOREM 1.4. Let δ ∈ Aut(X), and µ ∈ M1(X). It is apparent that
µ ∈ 0(X) ∗ I (X) if and only if δµ ∈ 0(X) ∗ I (X). Hence we can consider new
independent random variables ξ ′1 = α1ξ1 and ξ ′2 = α2ξ2, and assume without loss of
generality that L1 = ξ1 + ξ2 and L2 = δ1ξ1 + δ2ξ2, where δ j ∈ Aut(X). Moreover,
since for each δ ∈ Aut(X) the independence of the linear forms L1 and L2 is equivalent
to the independence of the linear forms L1 and δL2, we may in addition assume that
L2 = ξ1 + αξ2, where α ∈ Aut(X). Put a = α̃.

By Lemma 2.2 the linear forms L1 = ξ1 + ξ2 and L2 = ξ1 + αξ2 are independent
precisely when the characteristic functions µ̂ j satisfy (2.2). Put ν j = µ j ∗ µ̄ j . Then
ν̂ j = |µ̂ j |

2
≥ 0, and the characteristic functions ν̂ j also satisfy Equation (2.2).

Let bX be the subgroup of X consisting of all compact elements of X , and CY be
the connected component of zero of the group Y = X∗. By the structure theorem
for locally compact connected abelian groups, CY = A × B, where A ∼= Rm and
B is a compact connected abelian group. It is easy to see that the restriction of
any automorphism d ∈ Aut(Y ) to the subgroup B is a topological automorphism of
the subgroup B. Hence we can consider the restriction of Equation (2.2) for the
characteristic functions ν̂ j to the subgroup B. Since B is a second countable compact
connected abelian group, by Lemma 2.3 all characteristic functions ν̂ j are equal
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to 1 on B. Therefore σ(ν j )⊆ A(X, B)= Rm
× bX . Since µ j is a divisor of ν j ,

the distributions µ j can be replaced by their shifts µ′j in such a way that all the
supports σ(µ′j )⊆ Rm

× bX . Since the restriction of any automorphism d ∈ Aut(Y )
to the subgroup B is an automorphism of the subgroup B, and A(X, B)= Rm

× bX ,
the restriction of any automorphism δ ∈ Aut(X) to the subgroup Rm

× bX is an auto-
morphism of the subgroup Rm

× bX . From what has been said, it follows that we can
prove Theorem 1.4 assuming that D in (1.1) is a torsion group.

Put G = K × D and H = G∗. Then Y ∼= Rm
× H . To avoid introducing new

notation, we will assume that Y = Rm
× H . Denote elements of Y by y or (s, h),

where s ∈ Rm and h ∈ H . Consider the character groups F = K ∗ and S = D∗. Since
K is a compact totally disconnected group, F is a discrete torsion group. Since D
is a discrete torsion group, S is a compact totally disconnected group. Hence the
group H ∼= F × S is totally disconnected and consists of compact elements. Since
H is a totally disconnected group, Rm is the connected component of zero of the
group Y . Hence the restriction of any automorphism d ∈ Aut(Y ) to the subgroup Rm is
a topological automorphism of the subgroup Rm . Denote this restriction by dRm . Since
H consists of all compact elements of the group Y , the restriction of any automorphism
d ∈ Aut(Y ) to the subgroup H is also a topological automorphism of the subgroup H .
Denote this restriction by dH . Hence each automorphism d ∈ Aut(Y ) can be written
in the form d(s, h)= (dRm s, dH h).

By Lemma 2.2, the independence of the linear forms L1 and L2 is equivalent to the
fact that the characteristic functions µ̂ j satisfy Equation (2.2), which in our notation
may be written in the form

µ̂1(s + s′, h + h′)µ̂2(s + aRm s′, h + aH h′)
= µ̂1(s, h)µ̂2(s, h)µ̂1(s′, h′)µ̂2(aRm s′, aH h′)

(2.9)

for all (s, h), (s′, h′) ∈ Y . Putting s = s′ = 0 in (2.9), we get the equation

µ̂1(0, h + h′)µ̂2(0, h + aH h′)= µ̂1(0, h)µ̂2(0, h)µ̂1(0, h′)µ̂2(0, aH h′) (2.10)

for all h, h′ ∈ H . We solve Equation (2.10). For this purpose we consider the distri-
butions ν j = µ j ∗ µ̄ j and note that the restriction to H of the characteristic functions
ν̂ j also satisfy Equation (2.10).

It is easy to see that a compact totally disconnected abelian group K has the property
that for each prime p the factor group K/K (p) is finite if and only if its character group
F = K ∗ satisfies condition (i) of Lemma 2.4. It follows from (1.1) that the conditions
of Lemma 2.4 are fulfilled for the group H . Let h0 ∈ H . By Lemma 2.4, there exists
a compact subgroup Q of H such that h0 ∈ Q and a(Q)= Q.

Consider the restriction of Equation (2.10) for the functions ν̂ j to Q. We may do so
because aH (Q)= Q. It follows from Lemma 2.5 that

ν̂1(0, h)= ν̂2(0, h) ∀h ∈ Q,
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and the characteristic functions ν̂ j (0, ·) take only values 1 and 0 on Q. This implies
that

ν̂1(0, h)= ν̂2(0, h) ∀h ∈ H,

and the characteristic functions ν̂ j (0, ·) take only values 1 and 0 on H . Put

E = {h ∈ H : ν̂1(0, h)= ν̂2(0, h)= 1}.

We have

ν̂1(0, h)= ν̂2(0, h)=

{
1 if h ∈ E

0 if h /∈ E .
(2.11)

Note that the set where a characteristic function is equal to 1 is a subgroup, hence E is
an open subgroup of H . Put M = A(G, E). Then M is a compact subgroup of G. It
follows from the uniqueness theorem for characteristic functions, (2.1) and (2.11) that

ν̂1(0, h)= ν̂2(0, h)= m̂M (h) ∀h ∈ H. (2.12)

Taking (2.1) and Lemma 2.1 into account, we can easily conclude from (2.12) that the
characteristic functions µ̂1(0, ·) and µ̂2(0, ·) have the form

µ̂1(0, h)= m̂M (h)(g1, h), µ̂2(0, h)= m̂M (h)(g2, h) ∀h ∈ H, (2.13)

where g1, g2 ∈ G. Note that M∗ ∼= H/E . Replacing the distributions µ j with their
shifts, we will assume that g1 = g2 = 0 in (2.13). Then

µ̂1(0, h)= µ̂2(0, h)=

{
1 if h ∈ E

0 if h /∈ E .
(2.14)

From (2.14), the characteristic functions µ̂1(·, ·) and µ̂2(·, ·) are E-invariant.
Lemmas 2.4 and 2.5 imply that aH (E)= E , and we can pass from Equation (2.9)
on the group Y to the induced equation on the factor group Y/E ∼= Rm

× (H/E),
putting f ([y])= µ̂1(y), g([y])= µ̂2(y) and â [y] = [ay], for all y ∈ Y . Note that
the homomorphism â on the factor group Y/E induced by the automorphism a is a
topological automorphism of the factor group Y/E . Put L = H/E . Obviously, the
restriction of the automorphism â ∈ Aut(Y/E) to L is a topological automorphism of
L . Denote this restriction by âL , and denote elements of the group Y/E ∼= Rm

× L by
(s, l), where s ∈ Rm , and l ∈ L . In this notation, â(s, l)= (aRm s, âL l). The equation
induced by Equation (2.9) is of the form

f (s + s′, l + l ′)g(s + aRm s′, l + âL l ′)= f (s, l)g(s, l) f (s′, l ′)g(aRm s′, âL l ′) (2.15)

for all (s, l), (s′, l ′) ∈ Rm
× L . It is easy to see that, for solutions of Equation (2.15),

we have
{l ∈ L : f (0, l)= 1} = {l ∈ L : g(0, l)= 1} = {0}. (2.16)

https://doi.org/10.1017/S1446788710000224 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788710000224


[9] The Skitovich–Darmois theorem 347

Consider the subgroup
V = {l ∈ L : âl = l}.

It follows from (2.10) that the restrictions of the characteristic functions f̂ (0, ·) and
ĝ(0, ·) to V satisfy the equation

f (0, l + l ′)g(0, l + l ′)= f (0, l)g(0, l) f (0, l ′)g(0, l ′) ∀l, l ′ ∈ V . (2.17)

Putting l ′ =−l in (2.17) and considering (2.14), we deduce that f (0, l)= g(0, l)= 1
for all l ∈ V . Then (2.16) implies that V = {0}, that is,

Ker(I − âL)= {0}. (2.18)

Since M is a compact subgroup of G, and G is totally disconnected, M is also a
compact totally disconnected group. Hence L is a discrete torsion group. It is easy
to see that M , as a compact subgroup of G, also satisfies the condition that for each
prime p the factor group M/M (p) is finite. Hence the group L satisfies condition (i) of
Lemma 2.4. It is not difficult to verify that each monomorphism of a discrete countable
torsion abelian group satisfying condition (i) of Lemma 2.4 is an automorphism. So,
it follows from (2.18) that I − â ∈ Aut(L).

Thus, for solutions of Equation (2.15), we have

f (0, l)= g(0, l)=

{
1 if l = 0

0 if l 6= 0
(2.19)

and
I − âL ∈ Aut(L). (2.20)

Put l = l ′ = 0 in (2.15). Then by the Ghurye–Olkin theorem [11],

f (s, 0) = exp{−〈A1s, s〉 + i〈t1, s〉} ∀s ∈ Rm,

g(s, 0) = exp{−〈A2s, s〉 + i〈t2, s〉} ∀s ∈ Rm,
(2.21)

where the A j are symmetric positive semidefinite matrices, t j ∈ Rm , and 〈·, ·〉 is the
scalar product in Rm .

Putting s = 0 and l ′ = 0 in (2.15), we see that

f (s′, l)g(aRm s′, l)= f (0, l)g(0, l) f (s′, 0)g(aRm s′, 0) (2.22)

for all s′ ∈ Rm and all l ∈ L . It follows from (2.19) that the right-hand side of
Equation (2.22) vanishes when l 6= 0, so that, if l 6= 0, then

f (s′, l)g(aRm s′, l)≡ 0 ∀s′ ∈ Rm .

Since f (s, 0) and g(s, 0) are entire functions of s, for any fixed h ∈ H the functions
f (s, h) and g(s, h) are also entire functions of s [4, Ch. 2]. Hence, when l 6= 0, either
f (s, l)≡ 0 or g(s, l)≡ 0 for all s ∈ Rm .
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Take an arbitrary nonzero element l0 ∈ L , and find l and l ′ solving the system of
equations {

l + l ′ = 0

l + âL l ′ = l0.

It follows from (2.20) that this system has a unique solution. Substituting these l and
l ′ into Equation (2.15) and taking (2.21) into account, we infer that g(s, l0)≡ 0 for all
s ∈ Rm . So we have obtained the representation

g(s, l)=

{
exp{−〈A2s, s〉 + i〈t2, s〉} if s ∈ Rm and l = 0

0 if s ∈ Rm and l 6= 0.
(2.23)

Reasoning similarly, we obtain

f (s, l)=

{
exp{−〈A1s, s〉 + i〈t1, s〉} if s ∈ Rm and l = 0

0 if s ∈ Rm and l 6= 0.
(2.24)

Returning from the functions f and g to the characteristic functions µ̂ j , we
conclude from (2.23) and (2.24) that µ j ∈ 0(X) ∗ I (X). 2

REMARK. It is interesting to note that our proof of Theorem 1.4 uses the Ghurye–
Olkin theorem [11] and Theorem 1.3 (Lemma 2.5), but does not use Theorem 1.2.

REMARK. Let 1p be the group of p-adic integers. The group 1p is compact and
totally disconnected. It is not difficult to prove that a compact totally disconnected
abelian group is such that the factor group X/X (p) is finite for each prime p if and
only if X is topologically isomorphic to the direct product∏

p∈P
(1

n p
p × G p), (2.25)

where each n p is a nonnegative integer and G p is a finite p-prime group, and possibly
G p = {0}.

According to Theorem 1.2, in the class of compact totally disconnected abelian
groups X , the condition that the factor group X/X (p) is finite for each prime p is not
only sufficient but also necessary for the Skitovich–Darmois theorem to be valid for
two independent random variables.

It is interesting to remark in this connection that the groups of the form (1.1)
are not the only groups for which the Skitovich–Darmois theorem is valid for two
independent random variables. We will construct in Section 3 an example of a locally
compact abelian group X which is not topologically isomorphic to a group of the
form (1.1) and such that the independence of the linear forms L1 = α1ξ1 + α2ξ2 and
L2 = β1ξ1 + β2ξ2, where α j , β j ∈ Aut(X), implies that µ1, µ2 ∈ 0(X) ∗ I (X).

https://doi.org/10.1017/S1446788710000224 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788710000224


[11] The Skitovich–Darmois theorem 349

3. An example

In this section, we give an example of a locally compact abelian group X which
is not topologically isomorphic to a group of the form (1.1) and for which the
Skitovich–Darmois theorem holds for two independent random variables. We need
some additional notation. Denote by N the set of natural numbers, and by pn the nth
prime number. Let p be a prime number, and define

Z(p∞)= {k/pn
: k = 0, 1, . . . , pn

− 1, n = 0, 1, . . .}.

We define the operation in Z(p∞) as addition modulo 1, then Z(p∞) is an abelian
group, which we endow with the discrete topology. Obviously, this group is
isomorphic to the multiplicative group of pnth roots of unity, where n goes through
the nonnegative integers, considered with the discrete topology. Denote by Z(p)
the subgroup {k/p : k = 0, 1, . . . , p − 1} of Z(p∞). Obviously, the group Z(p) is
isomorphic to the multiplicative group of pth roots of unity. We note that the groups
Z(p∞) and 1p are the character groups of one another.

Consider the group
∏
∞

n=1Z(p∞n ) and let Y = {y = (y1, y2, . . . , yn, . . .)} be a
subgroup of

∏
∞

n=1Z(p∞n ) such that yn ∈ Z(pn) for all but finitely many numbers n.
Put

L =
∞∏

n=1

Z(pn).

Then L is a subgroup of Y . Consider the group L with the product topology.
Obviously, L is a second countable compact abelian group. The subgroup L can be
regarded as an open subgroup of Y . Then Y is transformed into a topological group.
Note that Y is a second countable locally compact abelian group, which is nondiscrete,
noncompact and totally disconnected. It is easy to see that

Y/L ∼=
∞∏
∗

n=1

Z(p∞n ).

Put X = Y ∗ and verify that the group X is not topologically isomorphic to a group
of the form (1.1). To this end, we note that Y (n) = Y for any n ∈ N. This implies that
X(n) = {0} for any n ∈ N, that is, X is a torsion-free group.

Assume that the group X is topologically isomorphic to a group of the form (1.1).
Then, obviously, m = 0. Moreover, because the group Y is nondiscrete and
noncompact, the group X is also nondiscrete and noncompact. Hence K 6= {0} and
D 6= {0} in (1.1). This implies that the group Y has a compact subgroup M as a
direct factor, which is isomorphic to D∗. Since the group Y is totally disconnected,
the subgroup M is also totally disconnected. It follows from this that D is a torsion
group, in contrast to the fact that X is a torsion-free group. Hence the group X is not
topologically isomorphic to a group of the form (1.1).

Let ξ1 and ξ2 be independent random variables taking values in X and with
distributions µ1 and µ2. Let α j , β j ∈ Aut(X). We verify that the independence of
L1 = α1ξ1 + α2ξ2 and L2 = β1ξ1 + β2ξ2 implies that µ1, µ2 ∈ I (X).
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Reasoning as in the proof of Theorem 1.4, we can assume that L1 = ξ1 + ξ2 and
L2 = ξ1 + αξ2, where α ∈ Aut(X) and µ̂ j ≥ 0 when j = 1, 2. Put f = µ̂1, g = µ̂2,
and a = α̃. By Lemma 2.2, the independence of the linear forms L1 and L2 is
equivalent to the characteristic functions µ̂ j satisfying (2.2), which in our notation
takes the form

f (u + v)g(u + av)= f (u)g(u) f (v)g(av) ∀u, v ∈ Y. (3.1)

Let d ∈ Aut(Y ) and y = (y1, y2, . . . , yn, . . .) ∈ L .
Put y(n) = (y1, y2, . . . , yn, 0, 0, . . .). Then y(n) ∈ L and y(n)→ y. It follows from

this that dy(n)→ dy. Since, obviously, dy(n) ∈ L , we conclude that dy ∈ L . Hence
d(L)⊆ L . This implies that the restriction of any automorphism d ∈ Aut(Y ) to L is a
topological automorphism of the subgroup L . In particular, the restriction of a to L is
a topological automorphism of the subgroup L , and we can consider the restriction of
Equation (3.1) to L . Put G = L∗. It is obvious that

G ∼=
∞∏
∗

n=1

Z(pn).

Taking (2.1) into account, it follows from Lemma 2.3 that

f (y)= g(y)= mK (y) ∀y ∈ L ,

where K is a finite subgroup of the group G. It is easy to see that K is of the form

K ∼=
l∏

j=1

Z(pn j ).

Set S = {n1, n2, . . . , nl}, and E = A(L , K ). It is obvious that

E =
∏

n∈N/S

Z(pn).

Since f (y)= g(y)= 1 for all y ∈ E , the functions f and g are E-invariant. Moreover,
a(E)= E by Lemma 2.5. Therefore we can pass from Equation (3.1) on the group Y to
the induced equation on the factor group Y/E , putting f̂ ([y])= f (y), ĝ([y])= g(y)
and â[y] = ay, for all y ∈ Y . Since a(E)= E , we have â ∈ Aut(Y/E). Thus, the
functions f̂ ([·]) and ĝ([·]) satisfy the equation

f̂ ([u] + [v])ĝ([u] + â [v])= f̂ ([u])ĝ([u]) f̂ ([v])ĝ( â [v]) (3.2)

for all [u], [v] ∈ Y/E . It is not difficult to check that

Y/E ∼=
∞∏
∗

n=1

Z(p∞n ).

https://doi.org/10.1017/S1446788710000224 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788710000224


[13] The Skitovich–Darmois theorem 351

This implies that Y/E ∼= F∗, where

F =
∞∏

n=1

1pn .

Since F is a compact totally disconnected abelian group such that for each prime p the
factor group F/F (p) is finite, the required statement follows from (3.2), Lemma 2.2,
and Theorem 1.2.

4. Comments

Let X1 and X2 be second countable locally compact abelian groups for which
the Skitovich–Darmois theorem holds for two independent random variables (see
Problem 1.1). A natural question arises: does the Skitovich–Darmois theorem hold
for two independent random variables for the group X = X1 × X2? Unfortunately, we
do not know the answer to this question, but note that a positive answer would imply
Theorem 1.4. In connection with this question, consider the Kac–Bernstein theorem
instead of the Skitovich–Darmois theorem.

Assume that ξ1 and ξ2 are independent random variables taking values in a second
countable locally compact abelian group X and with distributions µ1 and µ2. We will
say that the Kac–Bernstein theorem holds on X if the independence of ξ1 + ξ2 and
ξ1 − ξ2 implies that µ1, µ2 ∈ 0(X) ∗ I (X). It is known (see [7, Theorem 7.10]) that
the Kac–Bernstein theorem holds on a group X if and only if the connected component
of zero of X contains no elements of order two. Therefore, if the Kac–Bernstein
theorem holds on groups X j when j = 1, 2, then it holds on the group X = X1 × X2.

But if we assume in the Kac–Bernstein theorem that independent random variables
ξ1 and ξ2 are identically distributed, then the Kac–Bernstein theorem holds on X if
and only if the connected component of zero of X contains no more that one element
of order two [7, Theorem 9.9]. In particular, the Kac–Bernstein theorem holds for
identically distributed random variables on the circle group T, but it fails on the two-
dimensional torus T2.
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