CONDENSOR PRINCIPLE AND THE UNIT
CONTRACTION
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To Professor Kiyoshi Noshiro on the occasion of his 60th birthday.

Introduction

Deny introduced in [4] the notion of functional spaces by generalizing
Dirichlet spaces. In this paper, we shall give the following necessary and
sufficient conditions for a functional space to be a real Dirichlet space.

Let 2 be a regular functional space with respect to a locally compact Haus-
dorff space X and a positive measure £ in X. The following four conditions
are equivalent.

(1) The unit contraction operates on 2°.

(2) & satisfies the condensor principle.

(8) 2 satisfies the strong complete maximum principles.
(4) £ is a real Dirichlet space.

Furthermore for an invariant functional space :2” on a locally compact abelian
group X, we shall show the following equivalence without assuming the regu-
larity.

& is special Dirichlet space if and only if 27 satisfies the condensor
principle.

1. Preliminaries on regular functional spaces

Let X be a locally compact Hausdorff space and & be a positive measure in
X which is everywhere dense in X (i.e., £(w)> 0 for any non-empty open set
o in X). According to Deny [4], we give the definition of a functional space.

DerintTioN 1. A functional space 2°=.27(X, &) with respect to X and &
is a Hilbert space of real valued functions #(z) which is locally summable for
&, the following condition being satisfied: (i) For any compact subset X in X,
there existes a positive number 4(K) such that
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| lu()1ag) = AElul

for any u in 2°.

Two functions which are equal locally almost everywhere for £ represent the
same element in 2°. The norm in 2 is denoted by ||u||, the associated scalar
product by (u,v). Let Cx be the space of finite continuous functions with
compact support provided with the topology of uniform convergence.

DeriniTioN 2. A functional space 2°=.27(X, &) is said to be regular if
Z NCxk is dense both in 27 and in Ck.

By the condition (i), for any bounded measurable function f with compact
support, there exists an element #, in a functional space .2° such that

(1 w)= fu ae
for any # in 2”. Such an element #, is said to be the potential generated by
f- More generally we define potentials as follows.

DerinrTION 3.0 Let 2 be a regular functional space. The element u is
called a potential if there exists a real Radon measure g such that

(w, N=\rdp

for any f in 2°NCxk. Such an element « is denoted by u,. Especially if  is
positive, u, is said to be a pure potential.

According to Beurling and Deny [2], we define the capacity of an open set
is defined as follows:

Cap(o)=inf{||ulP; ue 2", u(®)=1 p.p. in v}
If there are no such functions, Cap (0)=+co.

LemMa 1. Let 22 be a regular functional space and f be a function in 27 NCx.
Then jfor each positive number e,

lZ

Cap{{xeX; fla) > =< ”le

&€

By the definition of the capacity, this is evident.

LemMA 2. For a relatively compact open set o in X, put
E,={u,e7°;S,Co,p=0}.2

1 Cf. [2], p. 209.
2) Su is the support of g.
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Then there exists a unique element u, which minimizes
T, )=l w22 dp
in Eu and for which
Cap () =|u, 2= dr.

Progf. Obviously E, is a closed convex cone in 2°. Since o is a relatively
compact set, there exists a function fin 27N Cyx such that f(z)=1 in . Then

I) =, *=2( 5 dp=llu,— F112=I1 £

Hence I(u,) is bounded from below in E,. Therefore there exists a unique
pure potential #, such that

I(u,) =< I(u,)
for any #, in E,. Then

de = (u,, 4,) (1)
and

Jar=tia, e (2)

By (1), u,(x)=1 p.p. in . Hence
l|a,||? = Cap (o).

On the other hand it is known that there exists a sequence (u,) of pure
potentials such that #, —u, strongly in 2”2, where f, is a positive bounded
measurable function with support in . For any « in 2” such that u(x)=1

p.p. In o,
(uy, u)= anu dé .égfn dé.
Since the measure f, converges vaguely to y and o is relatively compact,
tim | 2= {dr

3 Cf. [4], p. 3 and [6].
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Hence
(0, )= [y =ll e, %,
ie., ||lul|=]lu,ll. Consequently
Cap (@)= 2= dr.

Lemma 3. Let 27 be a regular functional space on X and o be an open set in X.
For any increasing net (w,)aer 0f relatively compact open sets exhausting o,

linIl Cap (w,)=Cap (v).

Proof. Obviously Cap(w,) increases with a«. First we suppose that
Cap(0)< +co. Then Cap(w,) is bounded. Let u;, be the pure potential
such that Cap(w,)=||#+.|. Suppose that « <<p. Then

oy, —uy | 2=H“r“1|2*2(“r¢’ ”rg)’}’H“rBW

él!urﬁllz—llurallz.

Hence (uTB) is a fundamental net in .2°. There exists an element # in .22 such
that u, —u strongly in 2”. For any positive bounded measurable function f
with compact support such that S,ce, there exists «, in I such that

(uy, 7firm)=§1¢7’<x fdé ZSf d§
for any a =a,. Therefore
(us, u)ng dg,

e, u(z)=1 p.p. in 0. Hence
Cap (o) <l|ull*
Consequently

lir:rz Cap (w,)=Cap (v).

In the case that Cap(w)=4oo, it is evident that

li@ Cap (0,)=+o0

by the above proof.
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Lemma 4. Let 0, be an open set in X (n=1,2, ...... ).
Put
o= U o,
n=1
Then

awmysélwwmg.

By Lemmas 2 and 3, we can prove in the same manner as Deny [5]. %
RPOPOSITION 15  Let 27 be a regular functional space on X. For any u in
&, there exists a function u* with the following properties.
(L.1)  w(x)=u*(x) p.p. in X and u*(x)=0 outside some s—compact set.

(1.2)  There exists a decreasing sequence (w,) of open sets such that

lim Cap (0,)=0

N—>00

and u*(x) 1s continuous on & w, for each n.

(1.3) For any pure potential u in 27, u* is p—measurable and
(u,n,) =Su* dp.

By Lemmas 1, 2, 3, and 4, we can prove in the same manner as Deny [5].
We say that u* is the refinement of u. Furthermore we have

LemmA 5. For any u in 22, wu* is p—measurable for any u, in 2 such that
S,* is compact and

S,* NS, =¢.
Proof. S,* being compact, we can take an open set o in X such that 2S,*
and
S, No=4¢.
Put

&, ={ueCxN 25 S,Cow}.

Then 27, is a regular functional space on w. We take another open set o®

9 Cf. [5], p. 136.
5 Cf. [2], p. 209.

https://doi.org/10.1017/50027763000012319 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000012319

14 MASAYUKI ITO

such that
S, CoPcoVCo.
Let (0,) be the sequence in Proposition 1. Put
0. =0V N,

Let Cap'(w,’) be the capacity of w,” relative to the functional space 23.
Obviously

.

lim Cap/ (0,')=0.

n—oo

Let u;, be the pure potential in 27, such that
Cap/(0n')=luy,|P.
Then
o it = (i) =Nl 17,110

as n— +o. Therefore u* is p*-measurable. Similarly #* is x~—measurable.

2. The unit contraction and Condensor principle
First we define the unit contraction on 1-dimensional Euclidean space R.

DeriniTION 5. We call the projection T of R to the closed interval [0, 1]
the unit contraction on R.

Let &2” be a regular functional space with respect to X and &.

DEeriniTION 6. We say that the unit contraction 7" operates on .2 if for
any # in 22, Tu is in 2 and ||Tul|| < ||«]|.

DeriniTION 7. We say that 2° satisfies the condensor principle if for
any couple of open sets o, and o, with disjoint closures, », being relatively
compact, there exists a potential #, such that
(C.1) 0=uylx)=<1 p.p.in X,

(C.2) uyx)=1 p.p. in o, and u,(x)=0 p.p. in o,

(C.3) wu,E,—E,, where E, and E, are the sets which we defined in
Lemma 2.

We shall call the above potential #, the condensor potential with respect to
»; and o,.
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LEMMA 6. Suppose that 27 satisfies the condensor principle. For any couple of
open sets o, and o, with disjoint closures, o, being relatively compact, put
Ay ={ueZ; u(z)=1 p.p. in 0, and u(z) <0 p.p. in. w,}.

Then there exists a unique element in 27 whose norm is minimum in A, , and 1t is equal

to the condensor potential with respect to o, and w,.

Proof. Obviously A, is non-empty closed convex set in 2°. Hence there
exists a unique element u,, in A,, such that ||u,,||=|l«|| for any « in A,,.
Let u, be the condensor potential with respect to o, and w,. Since u, is in
As ll#,]|=]l21,0]l. On ther other hand there exists a sequence (% uy,,—% g,,,)

such that #,,,, and %y, , are pure potentials,
S 41, C 01, S o, . S0

and #u,,,— 4, converges strongly to #, in .2° as n - +co. For any # in A4,,,,
(=0, ) = % s =% e = 0 1.0,
because u*(x)=1 p.p.p. in 0, and u*(x) <0 p.p.p. in 0,.© Hence
ol oy | = (u, u,) =], ]|%,
ie., |[u||=]lu,!l. Consequently u, ,=u,.

Lemma 7. Let 27 be a regular functional space. Each element in E, —E,, is a
potential in Z°.

Proof. For any u in E,—E,,, there exists a sequence (uu,—uy,) of E, —FEu,
tending strongly to # in 2°. Since
oNo;=¢
and Cx N2 is dense in Ck, (z,) and (v,) are vaguely bounded. Hence we may

assume that there exist positive measures g and » such that p, > ¢ and v, > v
vaguely as n— 4. Therefore

(, )= d(p—)

for any f in CxN2°. Consequently

U=y,

6) Cf. [6], Lemma 2. A property is said to hold p.p.p. on a subset E in X if the property
holds p—p.p. for any pure potential #x in E such that SuCE.
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By Lemma 7, we obtain the following lemma.

Lemma 8. Let 27 be a regular functional space. Let A, , be the same as in Lemma

6. The element u' whose norm 1s minimum A, , is contained in E, —E,,.
Proof. By Lemma 7, we can consider the following valuation:

I,(u,ul—uﬂo)Zl(ulll_u,uoHZ_QSdﬂ,

for any u,,—u,, in E, —E,. Similarly asin Lemma 2, I'(x,,—u,,) is bounded
from below on E, —E,,. Since E, —E,, is a non-empty closed convex set in

&, there exists a unique element #,,—u,, in E,,—E,, such that
Ity =) = I (U, —p,)
for any u, —u,, in E, —F,. Similarly is as the proof of Lemma 2,
W=ty —r,.

Now we remark that the regular functional space 2° satisfies the equilibrium
principle if 2 satisfies the condensor principle. That is, for any relatively
compact open set o, there exists a pure potential #, such that

(E. 1) O<u,(z)<1 p.p. in X,
(E. 2) u,(2)=1pp. ino,
(E. 3) u, is contained in K.

Such element #, is called an equilibrium potential of .

Lemma 9. Let 22 be the regular functional space which satisfies the condensor
principle.  For any couple of open sets o, and o, with disjoing closures, o, being relatively
compact, let u, be the condensor potential with respect to o, and w,. Then

fan=0.

Proof. We take a relatively compact open set o such that w Dw;. Let s,
be the equilibrium potential of . Since by Lemma 5,

u a)=1 p.p.p. in o,
0<u*(2)<1 ppp. inX,

we have
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(105 ) = ¥ =, - <[apr —Sgy-.
On the other hand since we have
u,*(x) =0 p.pp. in X,
(s, ) =§u,‘*dv =0.
Hence
Jaur =[dur.
o being arbitrary, we obtain that the total mass of x is non-negative,

Lemma 10. Let 27 be the same as above. Let F, be a compact and F, be a closed
set such that

F.nF,=¢.
Then there exists a potential u, in Z° such that
(.1 0<lu*(x)<1 pp. X,
(C'2) u 2)=1 pp.p.in Fy, u,*Xx)=0 p.p.p. in F,,
(C"3) S,+c Fi, S,—c Fy,
(C" 4) fan=o0.

Proof. We take two decreasing nets (w;,q)scr and (wy,q)s.1 Of open sets
converging to F;, F, such that ,,, is relatively compact for any acl,

wl', ] Fl) (Do'u D Fo

and for any, o« <8,

@1,q C 1,5y Wo,q C ®@q, B

Let u 4, be the condensor potential with respect to w;,, and @,,,. Since u},(x)
is bounded in X, by Lemma 5,

(0 ) =\t s, =

for any e < 8. Hence [Iuﬂullzlluﬁﬁll for any a <, i.e., {l|u,,|} is convergent.

Furthermore we have
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2

.

I[u;za_u#BIF=Hu#“|]2—2(uﬂ¢9 u/zﬁ)+Hu/;BHZ=”u,ua“2_”uuB

Therefore there exists an element u in 27 such that u, — u strongly in 2°.

Obviously the sets (gi)ser and (z;)..: are vaguely bounded, and hence we
may assume that there exist two positive measures », and g, such that (g;)..s
and (z;) converge vaguely to g, and, p,, respectively. By the definition of a
potential in 27,

U=y~ pro-
We shall show that this element # is the required element. Evidently
Suy < F, Sy, © Fy.
Since we have

u/tu:l p'p‘p' in wl,a and ut;“:O p.p.p. in wo,a:
u*=1 p.p.p. in F; and «*=0 p.p.p. in F,.

It is evident that u satisfies the condition (C’. 1). Finally we prove that u
satisfies the condition (C'. 4). Su: being in a fixed compact set,

ln = .
On the other hand

lim {dpz=[dm.
By Lemma 9, we obtain the inequality

Sd{ll = Sd‘uo.

We call such a potential #, the condensor potential with respect to F, and
F,. Now we consider the strong complete maximum principle.

DerFiniTION 7.8 We say that a regular functional space 2° satisfies the
strong complete maximum principle if the following condition is fulfiled.
For a potential u,, f being locally summable for &, and a pure potential #, in
& and a non-negative constant ¢, suppose that

up(x) < uk(x)+c

p.p.p. on Ky. Then
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up(z) <u,(x)+c
p.p. in X.

In this definition, Ks+ is a set whose complement is of f*-measure zero.
By the above lemmas, we obtain the following theorem.

THEOREM 1. If a regular funtiocnal space 27 satisfies the condensor principles,
then 27 satisfies the strong complete maximum principle.

Proof. Let uys, u, and ¢ be the same as in Definition 7. Suppose that there
exists a compact set K; in & K+ such that ¢(K;) > 0 and

up(2) > u,(x)+c
on K,. Since
uf(z)=us(x) p.p. in X and u}(x)=u,(x) p.p. in X, u}(x) > ul(z)+c
p.p. on K,. Therefore there exists a compact set K, in K, such that £(K,) > 0 and
uf(ax) > uk(x)+c

on K,. By Proposition 1, there exists a decreasing sequence (w,) of open sets
such that

lim Cap(w") :O’

n~—c0

uf(x) and «}(x) are continuous on Zw,. Since &(w,) \ 0 as n - + oo, there
exists a number # such that

§(K,NFw,) > 0.
We take a compact set K such that
KcK,N& w, and ¢(K) > 0.

Then u}(x) and «}(z) are continuous and #}(x) > u}(x)+c on K, and hence

there exists a positive number a such that
uf(z)—ul(x)—c>a

on K. Since f is locally summable for &, there exists an open set G such that
GoK and

[, £*(@)de(a) <—ya-Cap(E),
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where
Cap(K) =klél£ Cap (o),
because we have
SK fH(x)dé(x)=0 and Cap(K) > 0.
Put
Kpr=Krn&G.

By the measurablity of f, there exists an increasing sequence (F,) of compact
sets such that F,cK’s+ and

imé(F,NF)=&K'rNF)

for any compact set . Let u,, be the condensor potential with respect to K
and F,. Similarly as the proof of Lemma 10, there exists a potential «, such
that #,, = u, strongly in 2 and S,+cK. By Lemmas 9 and 10,

() = {3 (@)~ (@) dpp = (at-0) dp e[~ = a{dp*=al\u,|F = aCap(K).

Let (G,)acr be an increasing net of relatively compact open sets such that G,oG
and G, / X. Similarly as the above, we can take the condensor potential #,,
with respect to K and K'r+U&G,. Since u ., is a bounded measurable function
with compact supiaort, U u, is f-integrable and

(s 5= 10,) = s () £ () d (2)
~([wna(@) £~ (@) de(2) +uk, (w)dr(e))
<[ wna(@)f(@)ds@) = | r(2)de(a) s%—a-Ca[J(K).

Now since (#u4)scz converges strongly to #, in 22,

(tyy ug—u,) < é a-Cap(K).

This is a contradiction and the proof is completed.

3. Main theorems
First we consider the resolvent operator on a regular functional space .27
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or L*=L%¢).
Lemma 11.0 Let f be in L2 or in 2°. For each positive number 2, there exists a
unique element R; f in 27 which minimizes the following quadratic form:
F(u) =l|u|t +{1u(2)— () 12d¢ (=)
in the set
Ar={ueZ”; u—felL?}.

R;f is also the only element « in 2° such that u— f is in L? and
A(u, v)+S(u~f)v de=0

for any v in L?2n 2°.

This is obtained by Beurling and Deny [2] for the case when 27 is a
Dirichlet space. For the case when 2 is a regular functional space, this is
proved in the same way. We call such an operator R, the resolvent operator.
Before we prove the main theorem, we prepare the following lemma.

LemmMa 12. Let 27 be a regular functional space on X.  Suppose that Z°
satisfies the strong complete maximum principle. Then for any positive bounded function
f with compact support,

O<=R;flz) =M
p.p. in X, where
M=esg£.§§t[) f(z).
Proof. First we shall prove that

p-p. in X. By the second part of Lemma 11, R;f is the potential generated
by f—R;f in 2°. Since the potential «, generated by f is in 2, there exists
a potential #r,, generated by R;f in 2°. Then

u,—lR,lf:ule .
Hence
u(x)—A(Rf)*(x) =ug, ()

) Cf. [2], p. 211.
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p.p.p.in X. Since
Rif(2)=(Raif)*(x)
p.p. in X, we have
URyy=UCr ) xe
Since
uf(x) =u*r, ()
p.p.p. on K, px+, by Theorem 1,
U g (%) = um, ¥()

p.p.in X. Therefore R;f=0 p.p.in X.
Next we shall show that

p.p.in X. There exists a function g in Cx such that g(x) = f(x) p.p. in X and
g(x)<M. Since by the above arguement, R; is a positive operator,

R, f(x) = Ra9()
p.p.in X. Similarly as above,
(R19)*(%) =u3-(r, 0+(%)
p.p-p.in X. Similarly as in the first part of this lemma,
M=g(z) = (Ri9)*(x)
p-b-p. in K-rzon+. Hence
M=uG-z o)
p-p-p. in K-z om+. By the strong complete maximum principle,
M=uy-(r,p*()
p.p.in X. Consequently
RifESRyg=M

p.p. in X. This completes the proof.
Now we shall show the following main theorem.

THEOREM 2. Let 27 be a regular functional space with respect to X and €.
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Then the following four conditions are equivalent.

(1) The unit contraction operates on Z°.

(2) 27 satisfies the condensor principle.

(8) 2 satisfies the strong complete maximum principle.

(4) &7 is a real Dirichlet space with respect to X and &9

Proof.  First we shall prove the implication (1) > (2). For any couple of
open sets »; and o, with disjoint closures, o, being relatively compact, let A, ,,
Eo, and E., be the same as defined before. Let #,, be a unique element in
& whose norm is minimum in A, ,. Since the unit contraction 7" operates on
&, Tuy,isin A,, and

[1Twy,oll = [l01,0ll

Therefore Tu, y=u,, By Lemma 8, u, , belongs to E,,—E,, and hence it is
the condensor potential with respect to o; and ;.

The implication (2) c> (3) was proved in Theorem 1.

Next we shall show the implication (3) > (4). For a positive number 2, let
R; be a resolvent operator. For any f, g in CxN 2,

(Rif, Rig) =/~ Rif) Rigde=1-{(g—Rig)R.f e,
Hence

(Rif, 9)=(Rag, 1)

and
SRAf!] dg =SRAgf de.

Hence by Lemma 12, there exists a positive symmetric measure ¢; on X x X
such that

[Rif(2)g(2) de() = ([ F(2)0(0) dos(a, )

for any f,g in Cx and ¢, is sub-markovian, i. e., the projection of ¢; on X is
less than or equal to & Let m,; be the density of the projection of ¢; on X.
By the second part of Lemma 11, for any f,¢ in CxN 27,

8) A real Dirichlet space with respect to X and ¢ is a Dirichlet space with respect to X
and ¢ which consists of real functions. For Dirichlet spaces, see [2], p. 209.
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(Rif, 9)=—-{(F—Rif)g as

AJmaseae+ U@ —ran ow—ow) dos v))

I

1
2

1
2

Now by the first part of Lemma 11, for any positive number 2,

RS £l
And by the second part of Lemma 11,

(Rif, Rif—f)=—(|Rif—f|de.

Therefore R;f— f strongly in L%, and hence R;f— f weakly in 27 as 2—0.
Since

Im|[R flI = A I= R Al

for any 2>0, R,f— f strongly in 2° as 2—0. Next we shall prove the
following assertion: for a function f in Cg, suppose that

Hy f1=—{[1=ma) 712 de L )= 1 @) 1 doata, )]

is bounded with respect to 2. Then f is in 2 and H;(f)—>|If[|* as 2—0.
In fact,

1

Hf)=—

[1=Rup) £ de= T {(/—RiN Rif de=IIRiS |1

Hence (R, f) is bounded with respect to 2, and we may assume that there exists
an element # in 2° such that R,f —u weakly in 2° as 2—0. On the other
hand by the second part of Lemma 11, R;f— f(z) p.p. in X. Consequently
u(x)=f(x) p.p. in X,i,e., f is in 22 and H;(f)—>||fl|> as 2—0. Thus we
obtain:

For any f in CxN.2” and any normal contraction 7% on R, Tf isin 27
and ||Tf||<||f]]. Because Tf is in Cx and

H)(Tf)= H\(f)

for any a.

Furthermore for any # in 2”, there exists a sequence (f,) in €xN2”
converging to #. By the results that 7, is in 27, [|Tf.|l<I[|fall and Tf,.(%)
converges to Tu(x) p.p. in X, Tu is in 2 and [|[T«||<|l«|. Consequently 2°
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is a real Dirichlet space.

The implication (4) > (1) is evident. This completes the proof.

By the above main theorem, we obtain the following another characterization
of a real Dirichlet space.

TueoreM 3. A regular functional space 27 is a real Dirichlet space if and only
if there exists number M=c0 such that uy is in 2 and ||\uy||<||u|| for any u in 27,

where

uy(z)=1inf (u(x), M)
if M>0,

ux(@)=sup («(x), M)
if M<O0.

Proof. Suppose that there exists a number M=:0 such that «, is in 2° and
[lnl|=<]'n|l. Itis sufficient to prove the thoerem for the case M> 0. Put
u(x)=1nf (u(x). 1)
for any # in 2°. Then
u(x)=M"1inf (Mu(x), M),

and hence #, is in 2 and ||u,|[<||#|l. On the other hand for a sequence (a,)
of negative numbers tending to 0.,

tha, (%) =sup (u(z), an)z—»ﬁz—inf<~%u(x), M).

Hence #e, is in 2° and ||ue,||<|/#|. We may assume that there exists an
element #’ such that #s, - u’ weakly in 2°. Since u#q,(x) converges to u'(x)
p.p.in X, u* isin 2 and

llu||=lm |[ua,|| =]|u*|]

N—>»00

Let T be the unit contraction on R. Then Tu=u,*. Consequently T operates
on 2. By Theorem 2, 2 is a real Dirichlet space.
The converse is evident. This completes the proof.

DeriniTION 8. We say that the positive contraction on R operates on a
regular functional space 2° if for any # in 27, «* is in 2 and ||u*|[<||u]l.

9 A normal contraction 7T is a transformation of R into itself such that | 7Ta;— Ta,|<<
|a;—a,| for any couple a; and a, in R and 7T(0)=0. Cf. [2], p. 209.
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Remark. There exists a regular functional space on which the positive contraction
operates and which is not a real Dirichlet space. We can construct such an example when
X is a finite space. (Cf. [1].)

Similarly as Theorem 2, we obtain the following theorem. First we give a
definition.

DerinrTioN 9.1 We say that a regular functional space satisfies the
balayage principle if the following condition is satisfied: for any pure potential
us and any open set o in X, there exists a pure potential #. such that

(B. 1) wu(z)=uw(z) p.p. in X,
(B. 2)  uu(z)=uw(z) p.p. in, o,
(B. 3) uu’EEw.

THEOREM 4. A regular functional space 77 satisfies the balayage principle if and only
if the positive contraction operates on Z°.
We can prove in the same way as the proof of Theorem 2.

4. Special Dirichlet spaces

Let X be a locally compact abelian group and ¢ be the Haar measure on
X which we denote by dz.

DeriniTION 10.1) A functional space 2 with respact to X and ¢ is called
an invariant functional space if for any # in X and any # in 27,

Uue 2 and [|U ul|=ul),
where U,u is a function obtained from # by the translation z (i.e.,
U u(y)=u(y—x)).

DEeriniTION 112 An invariant functional space 2° is called a special
Dirichlet space if 27 is a real Dirichlet space.

Lemma 13. For any w in an invariant functional space 2° and any bounded
measurable function f with compact support, uxf is in 2 and

(s, 0)= (U, v) fdo
for any v in Z°.
10) Cf. [2], p. 210.
1) After Deny’s terminology, this is the functional space which is invariant by the trans-

tion.

12) Cf. [2], p. 215.
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CONDENSOR PRINCIPLE AND THE UNIT CONTRACTION 27

For the proof, see [3] and [4].
Using Theorem 2, we obtain the following theorem.

THEOREM 5. An invariant functional space 27 is a special Dirichlet space if and
only if 27 satisfies the condensor principle.'®

Proof. It is well-known that a special Dirichlet space satisfies the condensor
principle. It is sufficient to prove the “if” part. By Lemma 13 and the
condensor principle, CxN 2 is total in Cx.1 We shall show that C,N 27 is
dense in 2°. Put

Z'=CxNZ,

Then by Theorem 2, 2°/ is a special Dirichlet space on X. First we shall
prove that for each # in 2° with compact support, # is in 2”/. We take a
net (f,)eer of Cx such that

falz) =0, Sf.,(x)dx=1

and (fa)«er converges vaguely to the unit measure ¢ at 0 and (Sy,) converges
to {0}. Since the mapping: & - U,u is strongly continuous for any # in 27,
there.exists e, in I such that

U u—ull <4
for any xe—Syr,, a =a,, for a given positive number 4. Therefore
o fo—u||*=[luxfo | *—2(ux fo, u)+ u[|* < 4[|0]]6+0%

uxf, is in CxN 27, and hence « is in 2°/. Let (F.).ey be a net of compact
sets such that F, —> X. Put

Ezr,= [u ;EZ°; f is a bounded measurable function with compact support].
S,CEF,

Then Exr, is a closed subspace of 2. For any # in 27, let u, be the
projection of # to Ezr,. Then u(x)=u,(x) p.p. in & F,. Hence by the above
result, #—u, is in 2”/. On the other hand obviously (#,) converges strongly

13) Let w be an open set in X and the notation E, be the same as in Lemma 2. Without
the condition of regularity, we can only consider potentials generated by bounded measurable
functions with compact support. Then E,={u,€ 27; S,Cw}.

1) Cf. [6].
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to 0 in 22, hence (#—u,) converges strongly to #. That is, » is in 2.
Consequently 2 is a special Dirichlet space.
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