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Summary. An integral equation of the first kind, with kernel involving a
hypergeometric function, is discussed. Conditions sufficient for uniqueness of
solutions are given, then conditions necessary for existence of solutions.
Conditions sufficient for existence of solutions, only a little stricter than the
necessary conditions, are given; and with them two distinct forms of explicit
solution. These two forms are associated at first with different ranges of the
parameters, but their validity in the complementary ranges is also discussed.
Before giving the existence theory a digression is made on a subsidiary integral
equation.

Corresponding theorems for another integral equation resembling the main
one are deduced from some of the previous theorems. Two more equations of
similar form, less closely related, will be considered in another paper. Special
cases of some of these four integral equations have been considered recently by
Erdelyi, Higgins, Wimp and others.

1. Introduction

Since 1960 Ta Li (1), Buschman (2) and Higgins (3) have solved integral
equations which are special cases of

I ' (t2-x2)-*"P;f 1 jf(t)dt = g(x) for a ^ x ^ 1, (1.1)

where a>0; the values of n and v being quite specialised. Srivastava (4)
considered this equation with somewhat less specialised values of \i and v.

More generally, Erdelyi (5) solved the similar equation

f
J a

(x2 - f2)-*"/3? \^\f(t)dt = g(x) for a g x ^ (i (1.2)

with a>0, /i and v being unrestricted except for Re fi< 1.
Higgins (6) and Wimp (7) solved some integral equations involving the

hypergeometric function F(a, b, c, z). One of these is

F(°> b'C'l~ - V ° * = 9(X) fOf a = X = ! : <L3>r(c)
E.M.S—M
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the other differs only in having x/t in place of t/x. Equation (1.3) includes (1.1),
reducing to it by simple transformations when c—a—b = \.

I discuss here the integral equation

Jo
a, b,c,l- -)f(t)dt =°g(x) for 0<x<d, (1.4)

t)

where 0<d ^ oo and =° means " equals almost everywhere ". This equation
reduces to (1.2) when the parameters a, b, c are specially related and when g
vanishes in a neighbourhood of 0 (see Theorem 4, Corollary 2). But with 0 in
the supports of/and g, (1.4) has some extra complications associated with the
singular points 1 and oo of the hypergeometric function.

The functions / and g are representatives of classes of equivalent functions,
and Lebesgue integrals only are used; this makes the hypothesis Rec>0
requisite throughout. Professor Erd61yi tells me that he has considered the
Legendre case (1.2) with finite part integrals and Re/ i> l , corresponding to
Re c<0. I take this opportunity of thanking Professor Erddlyi for his interest
in this work, and for several stimulating questions which have led to substantial
improvements. His paper (5) and Srivastava's (8) first interested me in the
subject.

In § 10, the last section of the paper, I discuss the similar equation

Jo r(c)
0<X<d>

deducing theorems on uniqueness and existence of solutions, and explicit
solutions, from some of the theorems already obtained for (1.4). In another
paper f I hope to consider two more hypergeometric equations of the same form
as (1.4) and (1.5), with range of integration (x, oo) instead of (0, x).

In § 5 a digression is made to obtain existence theorems for solutions of

Cx(x-t)
b~1 Cx

Jo r (» ) Jo

~1

(1.6)

supposing either/or g to be unknown. These theorems play an essential part
in the treatment of (1.4); and convenient explicit solutions of (1.6), in terms of
hypergeometric functions, are obtained incidentally.

Apart from the sections mentioned in the two preceding paragraphs the
paper is concerned entirely with (1.4). The contents of the remaining sections
are outlined below.

Preliminary theorems on convergence of the left side of (1.4) and on fractional
integration of it occupy § 2 and § 3. Theorem 1 in particular supplies the
justification for the inversions of order of integration. Remarks on its hypothesis
show that a little relaxation is possible, but a counter-example limiting this
possibility is also given.

t To appear in Proc. Camb. Phil. Soc.
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SOME INTEGRAL EQUATIONS 171

Theorem 4 on uniqueness of solutions of (1.4) occupies §4. A corollary
shows that the present theory is applicable, under suitable conditions, to a
truncated form of (1.4) with lower terminal positive, and in particular to (1.2).

The uniqueness theorem is relevant in another respect as well. At least six
different formulae express solutions of (1.4) under various sets of conditions,
and these sets are not disjoint. Three of these solution formulae are

fix) = x-°rbxalh-cg(x), (1.7)

/(*) = x-»J*-exe-"J- bxa+"-cg(x), (1.8)

f(x) = x-°?-\x°\ ^LJL—-F[-a,m-b,m-e,\--)g{t)dt\, (1.9)
dxm { Jo T(m-c) V xj J

where Ix is the fractional integration operator used throughout (see § 3) and
m is any integer exceeding max(ReZ>, Re c, Re(c—b)). The other three
solution formulae mentioned are obtained from these by interchanging a and b.

Necessary conditions for existence of solutions of (1.4) are given) in § 6.
Here, and throughout, "solution" means "solution in Qq"; Qq being a
class of functions which are locally integrable in (0, d) and have special behaviour
at 0. The definition of Qq is given in § 5, just before Theorem 5.

Sufficient conditions for existence of solutions of (1.4) are given in § 7, and
also explicit solutions. The sufficient conditions are only slightly different from
the necessary conditions of § 6, as can be seen by a comparison of Theorems
7 and 10. The explicit solutions are (1.7) and (1.8), associated with specified
domains of the parameters.

The theorems in §8 show that (1.7) and (1.8) remain solutions of (1.4)
outside the domain of b with which they were associated in § 7, provided that
an extra restriction is placed on the right-hand side g. The extra restriction is a
higher degree of differentiability, and then / is correspondingly more highly
differentiable.

In § 9 several variants of Theorems 7, 8, 9 and 10 are given. These all
refer to the degree of differentiability of g that is necessary (in the versions of
Theorem 7) and sufficient (in the others) for existence of solutions. They
depend on corollaries of Theorems 5 and 6.

2. Existence of the integrals
The following theorem resembles the standard theorem on existence and

integrability of a fractional integral (see (3.1)), that if Re k> 0 and/is integrable
on (0, /), then /*/is integrable on (0, /); where

=
Jo r(fc)

Our theorem is almost, but not quite, a generalisation of this. The relationship
between them will be made clearer in the remarks after the proof.
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Theorem 1. If Re k>0, q ̂  Re (h+k), q<min (Re a, Re b), c <£ 0, - 1 ,
— 2, ... and x*f(x) is integrable on a finite interval (0, /),

(2.1)- - )f(t)dt

exists almost everywhere in (0, /) and is integrable on it. The same is true of the
function obtained by replacing the integrand by its modulus.

The integrand in (2.1) is a measurable function of / since t~9. t9f(t) is
measurable; and it is also a measurable function of (JC, i), so that

r(fc)
F[a,b,c,l-j)f(t) dt (2.2)

is a measurable function of x on (0, /), finite or infinite, by Fubini's theorem.
We prove that (2.2) is integrable on (0, /), and from this the other statements
made are immediate corollaries.

It is thus enough to prove the finiteness of

i.x-tf-lF[a,b,c,\--)f{t)

x\x-t)k-lF[ a, b,c,l--\\ dx

f' | xh | dx f *
Jo Jo

= f I A0| dt P
Jo Jt

= f' |/(0'*+* I dt !"' ' 1(1 +s)V- lF(a, fc, c, -s)\d
Jo Jo

^ f \f(t)th+k

J

\x =

- s ) | ds

ri/4 nit-1

|/W<*+* | dt \{\ + s)hsk-lF(a, b, c, -s)\ ds.

s)]

(2.3)

(2.4)

We prove that (2.3) and (2.4) are finite. We write a, /?, y, 6, K respectively
for Re a, Re b, Re c, Re h, Re &, and suppose a ^ /? as we may because of the
symmetry of the hypergeometric function.

The two integrals into which (2.3) is factorised are finite. For

\f(t)th+k | = | / (0 | te+K = f | / (0| te+K-q ^ | t"f(t)\ /e+K"« (2.5)

since q ^ 9+K; thus the /-integral is finite since tqf{i) is integrable. And all
factors in the ^-integrand are continuous in 0 S s ̂  3, and so bounded, except
J j * " 1 | = s*'1 which is integrable since /c>0.

It remains to prove (2.4) finite. Choose /i such that
q<H«x. and n # 6 + K. (2.6)

Since a and b are the exponents at oo of the hypergeometric equation satisfied
by F(a, b, c, — s), and this function is continuous in s ^ 3,

| F(a, b, c, -s)\ ̂  As-"+Bs-fi logs g Cs'" (2.7)

https://doi.org/10.1017/S0013091500011706 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500011706


SOME INTEGRAL EQUATIONS 173

in s ^ 3, where A, B, C are independent of s. So (2.4) is at most
ri/4 nit-1

\f(t)\te+Kdt\ (l + s)esK-1Cs-»ds. (2.8)

To estimate the inner integral in (2.8) we have, if K—\I— 1 g 0,

in the range of integration, since s>$s+i if s> 1. The same inequality without
the power of 2 holds if K - / I - 1 >0. So if we write C for C max (2-K +"+ 1, 1),
the inner integral in (2.8) is at most

f'/'-i
' \ ds

0 + K-li
remembering that 6 + K—y. ^ 0, by (2.6).

If 0 + J C - H > O , (2.8) is at most

U) 4e+K-"k (2.9)

and this is convergent since \i>q by (2.6) and so f" g i}\$f~qtq.
If 0 + K - ^ < O , (2.8) is at most

1-6-K Jo

and this is convergent since 6 + K ^ q and (2.5) applies.
These two estimates show that (2.8), and therefore (2.4), is always finite as

required.

Remark 1. Theorem 1 remains true if the two inequalities restricting q are
replaced by: q<Re(h + k),q ^ min (Re a, Re b), and a ^ b.

The preceding proof fails only if q = min (Re a, Re b), and in that case it is
still applicable until (2.6) is reached. Supposing this case, that is, q = a ^ /?, p
cannot be chosen to satisfy (2.6). But (2.7) holds with fi = a: obviously if
a</?, but also if a = /?. For the logarithm can be omitted if b — a is not an
integer, and this is necessarily so as a = /? and a ^ b. Thus (2.8) stands with
H = a.

With our present data, then, /i = a = q<Q + K. So 0 + JC — fi>0, whence
(2.9) and (2.10) also stand. The final integral in (2.10) is convergent since n = q,
and this completes the proof since the case 6 + K — /t<0 cannot now occur.

Remark 2. Theorem 1 becomes false if the two inequalities restricting q are
replaced by

q g min (Re {h+k), Re a, Re b);
and it makes no difference whether a and b are equal or not. This is shown by
the case
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For ff(t) is now integrable on (0, /), but (2.1) is not, being equal to

JoW (2.H)
xlog(3//x)

Remark 3. The alternative version of Theorem 1 given in Remark 1 includes
the standard theorem on integrability of a fractional integral mentioned at the
beginning of § 2, but the original version does not. This is apparent by putting
h = 0, q = 0, a = 0, b = c = 1.

Remark 4. The original version of Theorem 1 includes the following
theorem on integrability of fractional integrals. If Refc>0, <7<Rea and

is integrable on (0, /) then so is

i t°f(t)dt. (2.12)

This is the special case h = q — k, b = c = a+\Rea\ + l of Theorem 1. The
particular case q = 0 of this is also a particular case of a theorem of Kober (9).

3. Other preliminaries
Integrability. We consider complex-valued functions on a real interval

[0, d), where d ^ oo. Often they are locally integrable on [0, d), that is, L-
integrable on (0, /) for each l<d. Functions whose values agree almost every-
where in (0, d) are called equivalent and regarded as indistinguishable; and
functions need only be defined almost everywhere in (0, d).

Fractional integrals. For complex numbers c with Re c>0, and functions/
locally integrable on [0, d), Icf is the function whose values are

~^-Kt)dt- (3.1)

It is a standard theorem that this defines Icf(x) for almost all x and that Icf is
locally integrable on [0, d); this is the theorem mentioned in § 2, at the
beginning and again in Remark 3.

It is also well known that if Re a>0, Re b >0 and / i s locally integrable then

IbI"f=I"*bf. (3.2)

Fractional derivatives. If Re c>0, I~cf is defined as a locally integrable
function (j> such that Ic(j> = f. Evidently/must be locally integrable; but this
does not ensure existence of I~cf, as the case c = 1 shows.

Uniqueness of I~cf is ensured by the following well-known theorem: If
Re c>0 and <j> is locally integrable on [0, d), then

Ic<f>(x)=°O implies that 0(x)=°O. (3.3)

It foil ows from (3.2) that if Re a > 0, Re b > 0 and / ~ " ~ bf exists, then / ~ "/ " */
exists and

rar»f= I-"~bf. (3.4)
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It should perhaps be added that (3.4), like (3.2), means that the functions
equated are defined almost everywhere and are equivalent.

Hvpergeometric integrals. For complex numbers a, b, c with Re c>0, and
suitable functions /, we define H(a, b, c)f to be the function whose values are

H(a, b, c)f(x) = f * ( * " / ^ ~ l F ( a , b,c,l- -)f(t)dt. (3.5)
Jo He) \ tj

Theorem 1 shows that H{a, b, c)f is locally integrable on [0, d) if x*/(x) is,
where q g Re c and q < min (Re a, Re b).

Lemma 1. If Re A > 0, Re c> 0 and z is in the complex plane cut along z ^ 1,
then we have " Bateman's integral"

( 1 r n ) r i TF\ F^ b' c> zu^du = FTTT^a' b'
o r(A) r(c) r(+A)

In particular, if Re A>0, Re c>0 and 0<t<x, then

\ds

(x-i

I —-^ —F[ a, b, c, I--\

J, r(A) r(c) V t)

r F[ a, b, c, 1— - I ds
x

F a, b, c+A, 1 - 1 . (3.8)
r(c+A) V *.

What I have called Bateman's integral (3.6) is, after change of notation,
[(10), 2.4(2)]. Formulae (3.7) and (3.8) are obtained from it quite directly by
changes of scale; in fact, by the substitutions

z = and w = for (3.7),
( x-t

z = and u = for (3.8).
x x — t

It would be incorrect to say that (3.8) is got from (3.7) by interchanging x
and t, because both formulae presuppose that 0 < t < x; this restriction becomes
significant when index laws are used with the principal value powers occurring.

Theorem 2. / / Re A> 0, Re c>0, q g Re c, q <min (Re a, Re b), and x*/(x)
is locally integrable on [0, d), then H(a, b, c)f is also locally integrable and

IxH(a, b, c)f =H(a,b,c+X)f; (3.9)
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that is to say, for almost all x in [0, d),

Jo HA) Jo r(c)

Fixing / such that 0<l<d, we have only to prove this equation for almost
all x in (0, /), and integrability of H(a, b, c)f on (0, /). The integrability follows
from Theorem 1 with h = 0 and k = c. And the double integral is absolutely
convergent for almost all x in (0, /), because

I"
Jois a convolution of integrable functions, xReX 1/| F(A)| and the function (2.2)

with A = 0 and k = c, which is also integrable by Theorem 1. The con-
volution is finite almost everywhere, so the double integral is absolutely
convergent almost everywhere.

Inverting the order of integration, then, the left side of (3.9) becomes

J, FL b, c,!_ (] dso J, r(A) r(c)
for almost all x, and this is equal to the right side by Lemma 1 (3.7), as required.

Theorem 3. / / Re A>0, Re c > 0 , ^ Re (c+A), q<min (Re a, Re (b+Z)),
and x*/(x) is locally integrable on [0, d), then

H(a, b, c)X-"Ixxaf(x) =°H(a, b+X, c+X)f(x); (3.10)

that is to say, for almost all x in [0, d),

Fixing / such that 0<l<d, we have only to prove this equation for almost
all x in (0, /). To prove the double integral absolutely convergent for almost all
x in (0, /) we write

dt,
r(A)

nx)
Now s9*'^) is integrable on (0, /), by Theorem 1 with h = q—X and k = X.
Hence s*'$(.y) is also, where q' = q-reX. So by another application of
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Theorem 1, with h = 0, k = c, f and q replaced by 4> ar>d q',

Cx (x-sf-1 J , . x\' F[a,b,c, 1 - -
Jo r(c) \ s)

ds

exists almost everywhere in (0, /). So the double integral in (3.10) is absolutely
convergent for almost all x in (0, /), and we may invert the order of integration.

The double integral is thus, for almost all x, equal to

Jo
(3.11)

Applying Rummer's relation [(10), 2.9(3)] to the hypergeometric function, the
inner integral of (3.11) is equal to

J,
_ s \ t t d s

jr(c) r(A)
(x-tY+i-~l ( t\

U " (3-12)r(c+A)

• L - - i r
r(c+A)

where we have evaluated the integral by Lemma 1 (3.8), giving (3.12), and then
used Kummer's relation again. Substituting the resulting expression for the
inner integral in (3.11), the proof is complete.

Remark. There is a formal similarity between Theorems 2 and 3, although
not between the proofs given. Noticing that the restrictions on q used in
Theorem 3 are exactly those which Theorem 1 would prescribe as sufficient, and
nearly necessary, for existence of the integral on the right of (3.10), one might
ask whether it should be likewise in Theorem 2; that is, whether q g Re c in
Theorem 2 ought to be replaced by q ^ Re(c+2). The following example
shows that q ^ Re c in Theorem 2 cannot be improved on.

Suppose that a, b, c are real, 0<c«7<min(a , b), and b = c + l. Let
§ = 4r(9-c)>0 and/(x) = x~c~8'1. Then x"/(x) = xs~l is locally integrable
on [0, d), and all hypotheses of Theorem 2 are fulfilled except q g Re c. We
show that the left side of (3.9) is divergent.

Since

Jo r(c)
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these integrals being convergent since a—c~b>q—c—b = 8>0. This is

! a
c) Y{a-b) c T(a-b + l

b T(a-c-b) _ ,_!

a-b T{a-b)

The double integral on the left of (3.9) is consequently divergent.

4. Uniqueness of solutions of (1.4)

Theorem 4.f If Re c>0, q ̂  min (Re c, Re (a+6)), #<min (Re a, Re 6),
x*/(x) is locally integrable on [0, d) and

/o He)
then f(x) =°0 .

(i) Suppose first that Re b>0. By two applications of Theorem 2, in which
A and c are replaced by 6 and c respectively in the first, and by c and b respectively
in the second,

IbH(a, b, c)f = H(a, b, b + c)f= IcH(a, b, b)f.

The left member is zero by (4.1); hence H{a, b, b)f(x) =° 0 by (3.3), H(a, b, b)f
being locally integrable by Theorem 1 with h = 0, k = b and c = b. Now the
hypergeometric function in H(a, b, b)f simplifies, in fact

=°0. (4.2)

Thus /V/ (x) = ° 0 ; and so x°f(x) =°0 by (3.3) again, provided that xff(x) is
locally integrable. This is the case because, for each l<d,

ifO<x<l and a = Re a > q. This proves the theorem if Re b > 0.

(ii) Suppose now that Re b< Re c. Using Kummer's relation [(10), 2.9(2)],
we rewrite (4.1) as

l'^''/'1 ffc-a, c-b, c, 1- -)
Jo r(c) V tj

/ ffc-a, c-b, c, 1- -) t°+b-cf(t)dt =°0; (4.3)
r(c) V tj

and also write
c — a = a', c-b = b', c = c', |

j (4>4)

where/' is given an unconventional meaning, and a, /?, y denote Re a, Re b, Re c
respectively. The hypotheses of Theorem 4 now apply to a', b', c', q',f, and in

t Also called Theorem 4A.
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addition Re b'>0. Consequently by case (i) of this theorem/'(*) =°0, and so
f(x) =° 0 as required.

In verifying that the hypotheses apply to a', V, c', q',f as defined by (4.4),
the least straightforward step is to show that q' ^ Re (a' + b1). To do this we
have, since q <p and Re V = Re (c—b)>0,

= y - a = Re a '<Re (a' + b').

The local integrability requirement is fulfilled because x9' \f'(x)\ = xq \f(x)\.

Remark. In case (i) the hypothesis q g Re (a+b) is redundant; it is a
consequence of the assumptions q< Re a and Re b>0, and is naturally not used
in the proof. In case (ii) the hypothesis q g Re c is similarly redundant. In
the case 0<ReZ><Rec, which is common to (i) and (ii), it follows that the
hypothesis q g min (Re c, Re (a + b)) is redundant.

Corollary 1. / / Re c>0, q g min (Re c, Re (a + b)), q<min (Re a, Re b),
then

f*(*-0c l
 FLf bi c> !_ *)f(t)dt=°g(x) in 0<x<d

Jo He) \ tj
(4.5)

has at most one solution f (or rather one class of equivalent solutions) such that
xff(x) is locally integrable on [0, d).

Corollary 2. If Re c>0 and 0<<x.<d, then the solutions f of

, b, c, 1 - ^]f(t)dt =°g(x) in a<x<d (4.6)
tj

Z!)\ p(a, b, c, 1
r(c) \ t

which are locally integrable on [a, d) are the truncations, omitting [0, a), of the
solutions f of (4.5) for which x^f(x) is locally integrable on [0, d), provided that
we define g(x) = o 0 m 0 < x < a andq satisfies the hypotheses of Corollary 1.

Clearly solutions/of (4.6) give, when assigned the value 0 on (0, a), solutions
/ of (4.5), with g defined as stated; and xff(x) is integrable on (0, /) for each
l<d since it is obtainable from integrable f(x) by multiplication by a bounded
function.

Conversely, solutions/of (4.5) having the stated integrability satisfy

P ( X ~ ° ' l F(C, b,c,\- - )
Jo He) \ t)

f(t)dt =°0 in 0 < x « x ,

and x*/(x) is locally integrable on [0, a). So by Theorem 4 they vanish almost
everywhere in (0, a), and therefore satisfy (4.6) when truncated. Also they are
integrable on (a, /), for each / such that a.<l<d, because they are obtainable
from the integrable x?f(x) by multiplication by a bounded function.

5. Digression on Ibx"f(x) = x"Ibg(x)

This section can be read independently of the rest of the paper, except for
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Theorem 1. Its subject is the integral equation abbreviated in the title, namely

K ' taf(t)dt =°xa VLJ1—g(t)dt, (5.1)
Jo T(b) Jo r(fr)

with either/or g regarded as unknown function. Formal solution by fractional
differentiation is easily done; and uniqueness of solutions is immediate from
(3.3). The interest is not in these things, but in conditions for existence of
solutions.

Only Lemma 2 of this section is needed in § 6, where we consider necessary
conditions for existence of solutions of (1.4). Theorem 5 is used in establishing
sufficient conditions in § 7 and § 8, and Theorem 6 in making some of the
refinements given in § 9.

We begin with Lemma 2, which may be regarded as a limiting case c = 0 of
Lemma 1 on Bateman's integral; however an independent proof is simpler.

Lemma 2. If Re c>0 and z is in the complex plane cut along z ^ 1, then

— {F(a, b, c , z ) - l } = afcz ^ — ^ — F(a + l, b+l, 2, zu)du. (5.2)

r(c) Jo r(c)
In particular, ifKeoO and 0<t<x, then
(x-ty-

(5.3)
= _ab [

First suppose that | z | < 1. Then the hypergeometric series with variable zu
is boundedly convergent on 0 ^ u ^ 1, and so the right side of (5.2) is equal to

abz i
r(c)

r(c)n = 0 (c)n + 1

as required. Further, both sides of (5.2) are regular functions of z in the cut
plane, by the usual arguments; so they are equal throughout it.

The particular case (5.3) is obtained by the substitutions

t—x , s—tz = and u = •.
t x-t

Remark. A similar integral can be obtained for the difference between the
hypergeometric function and the with partial sum of the hypergeometric series.

Definition. Qq is the class of all functions / such that xqf(x) is locally
integrable on [0, d). (5.4)
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Theorem 5. Ifq<0<Reb andq<Rea, then the equation (5.1), that is

Ibxaf(x)=°xalbg(x) inO<x<d, (5.5)

has, for each f in Qq a solution g in Qq, and for each g in Qq a solution f in Qq.

(i) Suppose fe Qq is given. By Lemma 2 (5.3) with c = b,

i: - -. /(OA

T(b)

/ A f(t\
(5.6),, ab [

X^tl ds [ F(a + 1, b + l, 2, 1-SV« dt,
Jo T(b) Jo V t) t '

the inversion of order of integration being justified if the last double integral
is absolutely convergent, and the existence of the single integral on the left
being also ensured thereby. This absolute convergence is ensured, for almost
all x in (0, d), by the integrability onO<s<xof

J: tj t
dt; (5.7)

and this integrability follows from Theorem 1 with h = 0, k = \,q replaced by
q + l and/(x) by x~lf(x); for x«+1 .x~7(;c) is locally integrable on [0, d),
? + l<min(Re(a+l) , Re(Z> + l)), and^+1 ^ 1.

Since also f(x) = x~q . xqf(x) and x~q is locally bounded on [0, d), f is
locally integrable; thus Ibf(x) exists for almost all x and we can write (5.6) as
the difference of two integrals. This gives

Jo r(b)

and so

x-aIbxaf(x)=°IbU(x)-ab I F( fl + 1, b+l, 2, 1 - -
)o \ t)

This shows that (5.5) is satisfied by

g{x)=f{x)-ab [ F(a + l, b + l, 2, 1- *)f®dt. (5.8j
Jo V ty t

We have shown that the two terms on the right of (5.8) are locally integrable,
and it remains to show that g e Qq. For this,

1,6 + 1,2, 1 - -Y—
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is locally integrable on [0, d) by Theorem 1 with h = q,k = \,q replaced by
q+\ and/(x) by x~if(x); the treatment required is almost the same as that used
for (5.7). Also xqf(x) is locally integrable on [0, d); hence, using (5.8), xqg(x)
is locally integrable on [0, d), as required.

(ii) For the converse, suppose g e Qq is given. Put q — Re a = q', —a = a',
b = b' and xag(x) = / ' (* ) (not the derivative of / ) . Then

q'<0<Reb', q'<Kea', and f'eQq.. (5.9)

So by (i) there is g' e Qq., satisfying Ib'x°'fXx) =°xa'lb'g'(x); that is, satisfying

x-"Ibg\x) =°Ibg(x).

Defining/(x) = x~ag\x) we see that x" |/(x)| = x"' | g'(x)\, so tha t / e Qq; and

Pxffix) =" x"Ibg(x).

Remark 1. The solution / i n (ii) can be made explicit with the help of (5.8).

f(x) = x-'g\x)

'(x)-a'b' {XF(a'+l,b' + l,2,l-?\£!pdt

p Fl\-a, l + b, 2, 1-

= g(x)+ — T FU-O, 1-b, 2, 1- -W)<ft. (5.10)
xJo \ V

The last step is made using [(10), 2.9(3)].

Remark 2. Both parts of the theorem are false if q>0, as the following
examples show.

(i) If b = 1 and/(x) = x~iq~l, clearly/e Qq. And since Re a>q>\q,

a-\q

this is not expressible as lhg(x) because it is unbounded near 0.

(ii) If ft = 1 and g(x) = x~iq~l, clearly g e Qq but Ibg does not exist.

Remark 3. Part (i) of the theorem remains true if q = 0, the proof being
unchanged; but part (ii) becomes false. The proof fails because q' = Re a'
occurs in (5.9); and the following example shows that part (ii) itself is false.

Let ft = 1 and g{x) = l/x{log (3/x)}2 if 0 < x < 1, g(x) = 0 if x ^ 1. Since
Re a>0 we have, if 0 < x < l ,

xalbg(x) =
log (3/x) Mog(3/x) {log (3/x)}2/

-°rbxalbg(x) = , " x +
x log (3/x) x{log (3/x)}I*
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This is the only possibility for a solution/, and it is not in Qo because it is not
locally integrable on [0, d).

Theorem 6 below is a replacement for Theorem 5 when q = 0. To shorten
the proof it is convenient to prove first the following lemma.

Lemma 3. If Re a > 0, Re b > 0 and h is integrable on (0, /), then

dt (5.11)

is also integrable on (0, /).
First suppose that Re (a+b)> 1. Then there is M, independent of u, such

that
| F(2-a, 2-b, 3, M)| ^ M for 0 ̂  u ̂  1, (5.12)

since this hypergeometric function is continuous at u = 1, by Abel's continuity
theorem and [(10), 2.1(14)]. So

F[2-a,2-b,3, 1- - )th(t)dt

/»• / • /»• /» . rti

^ M ^ 11 h(t)\ dt = M\ r | fc(O| A ^ ^ M
Jo x Jo Jo Jt x Jo

and the finiteness of the last integral gives the result.
Now suppose that Re {a+b) 5S 1. Writing a and ft for Re a and Re b, we

have 0 < a < l and O<0<1 as well as oc+j3 g 1. Since 3>2—jg>0, Euler's
integral [(10), 2.1(10)] gives, if u < l ,

1X3)F(2-a,2-b,3,u)\ =

f1

- M J o
where M' depends only on b. Now (l-suf~2 g (l-sy1(l-u)x~1 when
0<w<l and 0<5<l , because a < l ; so we have

F(2 -a, 2-b, 3, u)| ̂  M' P S1

Jo

when0<w<l. Thus

| 1 ( l -
Jo

F\2-a,2-b,3, 1-- )th(t) dt

and the finiteness of the last integral again gives the result.
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Definitions. Qo is the class of functions which are locally integrable on
[0, d); and, for g e Qo, g is the function whose values are given by

g(x)=±j'g(t)dt. (5.13)

The example in remark 3 above shows that g e Qo does not ensure that g eQ0.
We shall see in Lemma 6, however, that g e Qq implies that g e Qq if q<0.

Theorem 6. If Re a>0 and Re b>0, then the equation (5.1), that is

Ibxaf(x)=°xalbg(x) in 0<x<d, (5.14)

has, for each f in Qo, a solution g such that g and g are in Qo; and conversely
for each g such that g andg are in Qo, a solution f in Qo.

(i) Suppose fe Qo is given. Proof (i) of Theorem 5, with q = 0, still
establishes a solution g e Qo expressed by (5.8). We show that g e Qo.

Since fe Qo we have, for 0<x<d,

g ( x ) = - \ f ( s ) d s - — \ d s \ F ( a + l , b + l , 2 , l - - ) f — d t
X

I V I I \ t i t

Jo x J o J o \ v *

= ° i f(s)ds- — *Q.dt\ F[ a + l,b + l, 2,1-s-)ds
•"•JO A J O t J f \ ' /

by the same argument as was used about (5.7). By Lemma 2 with c = 1,

a,b,U l - f ) - l -

Thus ^ is locally integrable on [0, d) as required, by Theorem 1 with h = -1,
k = 1,9 = 0, c = 1.

(ii) Suppose # is given, such that g e Qo and g e Qo. We prove that

/(*) = 0to+ - ['F( 1 - a , 1 - 6 , 2, 1 - - ) 0(0*. (5.15)
* Jo V xj

suggested by (5.10), defines a function/which is locally integrable and satisfies
(5.14).

Since Re {2 —(1 —a) —(1 —6)} = Re (a + b)>0, F{\-a, \-b, 2, u) is
continuous in 0 ^ u ^ 1, using Abel's continuity theorem and [(10), 2.1(14)].
Since also g e Qo, the integral in (5.15) exists for 0<x<d. So (5.15) does define
a function/.

Integrating by parts in (5.15), as we may since the hypergeometric factor has
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continuous derivative with respect to t in 0<t g x; and using (5.13),

f(.x) = g(x)+a—\xg(x)- tg(t) - F[ 1 -a , 1 -6 , 2, 1 - I) dt\tx I Jo dt \ x) )

= tHx) + aWx)+ "W-'Xl-fr) f" mF(2-a, 2-6, 3, 1- i) dt.
2.x J o \ x/

All three terms of this expression are locally integrable; the first two by data,
and the integral term by Lemma 3 with h replaced by g. S o / e Qo.

Finally, it remains to prove that (5.15) satisfies (5.14). Since Rea>0,
x°f(x) and x°g(x) are locally integrable; so /bjca/(x) and Ibx°g{x) exist almost
everywhere and, by (5.15),

/V/(x)-/Vg(x)=° [X{X~S)i l abs°-lds [' FU-Q, l-b, 2, l-*\g{t)dt
Jo T(b) Jo \ sj

= ab\Xg(t)dt\X{^^sa-1F(l-a, l-b, 2,1- A A;
Jo Jt T(b) V s/t

this double integral being absolutely convergent because the hypergeometric
function is bounded for 0 < t ^ s, as above, and because

T | g(i)\ dt \ |(x-s)"-V-1 |<fcgf*| g{i)\ dt \ (x-sy-V-1*
Jo Jt Jo Jo

which is finite for Q<x<d; a. and j? denoting Re a and Re b as usual. Thus,
using [(10), 2.9(3)], and then Lemma 2 with a and c replaced by —a and b,

Ibxaf(x)-Ibxag(x)

= °ab\ t'-lg(t)dt\ K?—t—F( 1-a , 1 + 6, 2, 1 - _ ) ds
Jo Jr T(b) V V

"I"
Jo

(-^^^^(-]-n^

This proves that (5.15) satisfies (5.14), and the whole theorem is proved.

6. Necessary conditions for existence of solutions of (1.4)
Theorem 7. / / Re c>0, q g 0, q<min (Re a, Re b), f is in Qq and

a, 6,c, l - - ) / (0^=°3W, (6.1)
o

/ cg exists and is in Qq.
E.M.S.—N
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Our proof is very like that of Theorem 5 (i). By Lemma 2 (5.3),

H—-*)
_ -at . 2, 1- .')ffl (6.2,

the inversion of order of integration being justified if the last double integral is
absolutely convergent. This is ensured, for almost all x in (0, d), by the
integrability of (5.7) established in proof (i) of Theorem 5; this is valid for
q = 0 as well as for q<0.

Again/(x) = x~q . x^fix) is locally integrable; thus/c/(x) exists for almost
all x, by (3.1). So (6.2) can be written as the difference of two integrals existing
almost everywhere, and we obtain

Jo r(c) (. Jo V
1 2 1 — r w

Taking account of (6.1), this equation is g(x) =°Ic<j>(x), where

l,i + l,2, l - . y ^ A , (6.3)

and the two terms on the right have already been proved locally integrable.
So <f> is locally integrable, and thus I~cg exists.

Further x^fipc) is locally integrable by data; and

[' F(a + 1, b+1, 2,1--\^dt
Jo V t) t

is locally integrable, by Theorem 1 with h = q, k = 1, c = 2, and q, a, b,f(x)
replaced by q+1, a+1,6 + 1, x-1/(x) respectively. So, noticing (6.3), X*^(JC) is
locally integrable, that is, I~cg e Qq as required.

Remark 1. The hypothesis q ^ 0 is necessary; it cannot be replaced by
q g Re c, as might be suggested by a glance at Theorem 4. For if

0<q<a<\ = b = c and f(x) = x'^'1,
all hypotheses of Theorem 7 except q ^ 0 are satified, but

g(x)=° PY-l "t'iq-ldt=x-a ("f~*-1dt=m?l.
J o W Jo a-\n

This is unbounded in every neighbourhood of 0, and hence is not expressible
as Ic<f>(x) for any locally integrable <j>{x).
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Remark 2. Under the conditions of Theorem 7, equation (6.1) is equivalent
to the integral equation of the second kind

f(x)-ab [' ff a + 1, b + 1, 2, 1- -)f-® dt = °rcg(x). (6.4)
Jo \ ' / '

This clearly invites generalisation.

7. Sufficient conditions for existence of solutions of (1.4)

In Theorem 4 on uniqueness, the proof was given in two parts, (i) for the case
Refc>0 and (ii) for the case Refe<Rec. In considering existence it seems
preferable to separate these two cases into different theorems; for not only are
different conditions appropriate in the two cases, but also different explicit
solution formulae. Theorems 8 and 9 are these two theorems. Since the
distinction between them is unsymmetrical in a and b, it is not surprising that
their hypotheses are unsymmetrical also. Theorem 10 is a composite version
of them which is symmetrical in a and b. It gives sufficient conditions very little
more restrictive than the necessary conditions given in Theorem 7.

These theorems involve a few simple results on fractional integrals of purely
imaginary order. Some of these are proved as they arise in the course of other
proofs, for lack of a suitable reference. Others are collected in Lemma 5.

Lemma 4. If Re b>0, Re c>0, q g Re c, q<min (Re a, Re b), and f is
in Qq, then (see definitions at (5.4), (3.5) and (3.1))

H(a, b, c)/(x) =° r-bx-°IbxaKx). (7.1)

// Re b = Re c the meaning of Ic~b is / -1 /1 + c- | >
) where 7"1 denotes ordinary

differentiation.

By two applications of Theorem 2, in which A and c are replaced by b and c
in the first application, and by c and b in the second,

IbH(a, b, c)/= H(a, b, b+c) /= IcH(a, b, b)f. (7.2)
But

H(a, b, b)f(x) = f * ( X ~ £ ~ 1

as in (4.2); so
IbH(a, b, c)f(x) =°lcx-"lhx'Kx). (7.4)

If Re c>Re b we have Ic = IbIc~b as in (3.2), and so

Ib{H(a, b, c)f(x) - l^x-'l^fix)} = ° 0. (7.5)
From this (7.1) follows by (3.3). For H(a, b, c)/and H(a, b, 6)/are locally
integrable by the above applications of Theorem 2, and consequently

r-"H(a, b, b)f

is locally integrable. Noticing (7.3), this shows that the two terms bracketed in
(7.5) are locally integrable, which justifies the application of (3.3).

H(a, b, b)f(x) = f * ( X ~ £ 1 (*Yf(t)dt = x-"/V/(x), (7.3)
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If Re c< Re b we have /* = IeIb~c as in (3.2), and so (7.4) gives

r{l"-£H(a, b, c)f(x)-x-°lbxaf(x)} =°0.

From this (7.1) again follows by (3.3), the bracketed terms having the requisite
local integrability as in the preceding paragraph.

If Re c = Re b, choose an integer m>Re b. Then, by (3.2), Im-blb = lm

and r~br = Im-b+c, so (7.4) gives

ImH(a, b, c)f(x)=°Im-b+cx-aIbxaf(x).

This equation actually holds throughout (0, d) because both sides are continuous,
the integer m being necessarily positive. Similarly at each of m — 1 differentia-
tions, which lead to

llH(a, b, c)f(x) = I1+c-bx-Ibxaf(x).

The left side is locally absolutely continuous, hence so are both sides. Thus a
final differentiation gives (7.1) almost everywhere, with / - 1 / 1 + c ~ i ' in place of

tiQg d/dx.

Theorem 8. / / Re c>0, Re b>0, q<min (0, Re a) and I~cg exists in Qq

(defined at (5.4)), then the equation

\ X ( i ^ r P F(a> b'c-1~ ~)fW =°^x) (76)

Jo r(c) \ tj
has a solution f in Qq, expressible by

fix) = x-arbxalb-cg{x). (7.7)

If Re b = Re c the meaning of Ib~c is i-1j1+b-c-} equivalent expressions are
IbI~c and I~cIb, and others obtainable from Lemma 5 (below).

Let I~cg = h; by definition h is locally integrable, so Ibh is also. We first
prove that

I"-Cg = Ibh. (7.8)

If Re b> Re c then, by (3.2), Vh = lb~crh = Ib~cg, giving (7.8).
If Re b < Re c then, by (3.2), g = Ich = Ic-bIbh; this gives (7.8) by inverting

the operator Ic~b.
If Re b — Re c then, using (3.2) twice,

ll+»-cg = Ii+"-cIch = Il+bh = lH"h;

since Ibh is locally integrable, differentiation almost everywhere gives

rHl+b-'g = ibh,

which is (7.8) with the stated meaning of Ib~cg.
Since h = I~°g e Qq, Theorem 5 (ii) shows that the equation

Ibxaf(x) =° x"Ibh(x) (7.9)

Jias a solution/e Qq. This solution is (7.7); for xff(x) = *""**«/(*) is locally
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integrable and so, using (7.9) and (7.8),

/(x) = x-arbx"Ibh(x) = x-°rbx"Ib-cg{x).

Again, (7.9) and (7.8) give

x-"Ibxttf(x)=olbh{x)= lb~cg(x).
whence

Ic-"x-Ibx°f(x)=°g{x), (7.10)

at least if Re b # Re c. And if Re b = Re c we have, using (3.2) twice,

g = rxV-g = rllHch = / - 1 / 1 + < 7 J = j - i / i+ ' -»j»/ , = lc-bIbh;

this inverts (7.8), and from it (7.10) follows using (7.9).
The hypotheses of Lemma 4 are fulfilled, with feQq given by (7.7). So,

putting (7.1) of Lemma 4 and (7.10) together, / satisfies (7.6) as required.

Theorem 9. / / R e o O , Rcb<Rec, q<min (Re (a+b-c), Re b) and
x~"I~cxag(x) exists in Qq, then

C*(x-ty 1 J 6j Cj l_Af(t)dt =°g(x) (7 n )

Jo r(c) V */
Acs a solution fin Qq, expressible by

If Reb = 0 the meaning of I~b is I'1!1'11; equivalent expressions are
jc-bj-c and I~cIc~b, and others obtainable from Lemma 5.

Using [(10), 2.9(2)], equation (7.11) is equivalent to

[ * " ° ' ' fta', b', c, 1- -)f'(t)dt =°g'(x), (7.13)
o He) V tj

where /'(*) = x'*"-ef(x), ff'W = *B+6"effW, 1
> (7.14)

a' = c — a, b' = c —6, <?' = q+y — cn—p,)
and we have written a, /?, 7 for Re a, Re 6, Re c respectively. We now verify
that Theorem 8 with accented symbols applies to (7.13).

The only items in this verification which are not immediate are that I~cg'
exists and is in Qq,. Putting h(x) = I~cxag(x), we have by data that x~"h(x)
exists in Qq, and so h e Qq-a. Now the equation

Icxb-C<j>(x) ="xb-eIeh(x) (7.15)

is satisfied by some <j>e Qq-X; because q—x<fi—y<0<y, which justifies the
application of Theorem 5 (ii) to (7.15). Thus

/cxft~c4>(x) =°xb~cxag(x) = g'{x).

Further x*"c0(x) e Qq-a-fi + y = Qq<=Q0 since q' = q-a.-fl+y<Q. Thus.
I~cg'(x) both exists and is in Qq..

So Theorem 8 with accented symbols is applicable to (7.13), which therefore
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has a solution/' in Qq. expressible by

/'(*) = x-"'rb'xa'lb'-cg'(x),
with Ib'~c meaning r1il+b'-c if Re (b'-c) = 0. Translating this by means of
(7.14) we obtain the stated conclusions.

Theorem 10. IfReoO, #<min(0, Re(a+b-c)), ^<min(Rea, Re b),
and I~cg exists in Qq, then the equation

r
Jo

o r(c)
has a unique solution f in Q q, given by (7.7) if Re b>0 and by (7.12) if Re b<Rec.

The uniqueness follows from Theorem 4. If Re b > 0 the rest follows from
Theorem 8. It remains to show that the hypotheses of Theorem 9 are fulfilled
if Re b < Re c, and then the rest will follow from Theorem 9.

Let \j/ = I~cg e Qq. Since q<0<Re c and q<Rea, Theorem 5 (ii) shows
that there is <j> e Qq such that

rxa<t>{x) =°xalc\l/(x), =°x°g{x).

Since x"(j)(x) e Qq-a where a = Re a, and q—a<0, x°<̂ (x) e Qo. So

xa<j>(x) =°rcxag(x), whence x-"rcx"g(x) =°<j>{x)e Qq.

Thus Theorem 9 is applicable if Re b < Re c, and this completes the proof.

Lemma 5. If 16 is purely imaginary, 0<Re fc<Re c and I~cf exists, then
1% defined as rll1 + l9f, is locally integrable on [0, d) and

Ie+tercf= / i 8 /= /-c/c+i9/,
jk + iBj-kJ- __ jiBf _ j-kjk + ier

By definition of 7"c/there is locally integrable </> such that/ = 7C<£. By (3.2),

[l + wf = 71 + >(7C0 = I1 + W+C(j) = I l I c + a 4 > ,
that is,

/1+'7(x)=°/1f+iV(x).
The left side is, by (3.1), the convolution of the locally integrable function/(*)
with the bounded function xi6jY{\ + id), and it is therefore continuous in [0, d).
The right side of (7.16) is an indefinite integral of the locally integrable function
Ic+W(p; it is therefore locally absolutely continuous, and in particular con-
tinuous. Thus in (7.16) equality holds for all x in [0, d), not merely almost all.

Since the right side of (7.16) is locally absolutely continuous, so is the left,
and differentiation gives

I-1I1 + ief(x)=°r+w<t>(x).

Thus our definition of I'9f defines almost everywhere a locally integrable
function, and also we obtain the first equation to be proved, namely

rBf=r+wrcf.
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By (3.2),
Iclc+ia^ = /2c+ifl^ = j«+w7c0 = lc+ief,

and Ic+ie<l> is locally integrable, whence

Iief=Ic+iB((, = rcIc+tBf
which is the second equation.

The other two equations will follow in the same way, with c replaced by k,
from existence of /"*/. Using (3.2), / = Ic(j> = IkIc~k4> and r~k<i> is locally
integrable; consequently /""/exists as required.

8. Wider validity of the explicit solutions
The next two theorems show that (7.7), which satisfies our integral equation

under the conditions of Theorem 8, including Re b>0, also satisfies it under
suitable conditions including Re 6<0; and similarly (7.12).

Theorem 11. / / Re b<0, Re c>0, q<0, q<Rt a, and Ib-Cg exists in Qq,
then

f(x) = x-arbx"Ib-cg(x) (8.1)

is still in Qq and still satisfies (7.6) (compare Theorem 8). Further, its fractional
derivative Ibf exists and is in Qq.

By Theorem 5 (i) with b replaced by — b, there is <f> e Qq such that

rbxa{l"-cg(x)} =°xarb(l>(x).

So (8.1) does define a function /, and / = I~b<f> where (j> e Qq. Thus /*/ exists
and is in Qq, which proves the conclusion stated last.

Since tf<0<Re (-b) and (f> e Qq, (2.12) with a = 0 and k = -b gives that
I~b<t> e Qq+b. And since x~b is locally bounded, it follows that

x*f(x) = x-" . xq+brb<Kx)
is locally integrable, whence/e Qq.

Substituting (8.1) in (7.6), the left side becomes

H(a, b, c)x-
arbxalb-cg(x).

Replacing X by — b and/by Ib~cg in Theorem 3, this expression is equal almost
everywhere to H(a, 0, c-b)Ib~cg = r~bIb-cg = g. So (7.6) is satisfied and the
theorem is proved.

Theorem 12. / /Re 6>Re c, Re c>0, q<0, q<Re (a+b-c) andI~bg exists
in Qq, then

,(x) = x-bIb-cxc-°rbxa+b-cg(x), (8.2)

is still in Qq and still satisfies (7.11) (compare Theorem 9). Further, its fractional
derivative Ic~bf exists and is in Qq.

This theorem can be proved using Theorem 11 in much the same way as
Theorem 9 is proved above using Theorem 8. However a detour is needed to
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obtain the last conclusion by this method. A proof independent of Theorem 8
is given instead, since it gives greater reliability with little extra length.

By data there is ft e Qq such that lbh = g.
By Theorem 5(ii) with a replaced by a+b—c, there is <j) e Qq such that

Ibxa+b-c<j>(x) =°xa+b-clbh{x). (8.3)

By Theorem 5(i) with a and b replaced by b and b—c respectively, there is
\j/ e Qq such that

I"-Cxb<t>(x) =°x"lb-c\li(x).

Thus Ib-C4i(x) =oje-*J*-'*ty(jt) = x-bIb-cxc-arbxa+"-cg(x); so (8.2) does
define a function/, a n d / = Ib~c^i where \j/ e Qq. Hence Ic~bf exists and is in
Qv as stated.

Since q<0 we have, writing Re 6 = 0 and Re c = y as usual,

* r i ̂ S r i * i *"01 * * r
As xq | 4i{x)\ is locally integrable this shows that xffipc) is also, that is , /e Qr

Finally, we substitute (8.2) in (7.11). Using [(10), 2.9(2)] and the notation
(7.14), the left side of (7.11) becomes

= xc-"-bH(a', b', c)x-aTb'xarbg'(x)

= °xc-"-bH(a', 0,c- b')rbg'(x). (8.4)

Here we have used Theorem 3 with X = -b' = b — c, with the letters q, a, b
accented, and with/replaced by I~bg'. The correctness of this is easily enough
verified; in particular, since the right side of (8.3) is g'(x),

xq'rbg'(x) =ox9'xa+b-c(f>(x) = xq+ie(/>(x)

and this is locally integrable since (j> e Qq and id = a+b — c+y — a—p is purely
imaginary. Now (8.4) is simply

xc-"-bIbrbgXx) = x"—V(x) = g(x)
so that (8.2) does indeed satisfy (7.11).

9. Alternative necessary conditions and sufficient conditions
Although Theorem 8 is approximately converse to Theorem 7, its companion

Theorem 9 lacks this character because the differentiability required of g refers
to I~cx"g(x) rather than to I~cg(x). However in Theorem 10 we were able to
switch from one of these hypotheses to the other by means of Theorem 5, thus
making Theorem 10 approximately converse to Theorem 7.

It is possible to write Theorem 9 also in terms of I~cg, at the cost of an extra
assumption q<0 (see Theorem 9, Extension (iii) below). But this is only one
of several alternative versions of that theorem. In this section we use Theorems
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5 and 6 to obtain similarly a variety of different versions of Theorems 7, 8 and 9.
In some cases the different " versions " are corollaries, or actually equivalent
statements; in others they are extensions, particularly those with q = 0.

Theorem 5 Corollary. Suppose q<0<Reb and q<Re a. If x~"I~bxag(x)
exists in Qq then I~bg exists in Qq, and conversely.

(i) Suppose <f>(x) = x-°rbxag{x) e Qq. Then /V<K*) =° x°g(x). By
Theorem 5(i) there is i]/ e Qq such that /V<K*) = ° xalb^/(x). So g{x) = ° /fy(x);
and $ is locally integrable since Qq<=- Qo. Thus I~bg exists and is in Qq.

(ii) Suppose xji = I~bg e Qq. By Theorem 5(ii) there is <j>e Qt such that
Ibxa4>(x) =°x"Ib\li(x), =°xag(x). Since x"<t>(x) e Qq.x where a = R e a , and
since q-a.<0 implies that Qq-a<=-Qo, x"cj>(x) is locally integrable. Thus
xa<j>(x) =° I~bx"g(x), giving the conclusion.

The above proofs can be turned round to show that Theorem 5 is a con-
sequence of Theorem 5 Corollary, so that the latter is equivalent to the former.
Similarly Theorem 6 is equivalent to Theorem 6 Corollary below. Before
introducing this corollary we consider a lemma.

Lemma 6. If q<0 and g e Qq then g e Qq. Here g is the function whose
values are given by

S(x)=-["g(t)dt. (9.1)

Supposing 0<l<d, so that xqg(x) is integrable on (0, /),

P x«'| g(x)\ dx £ P x'-'dx !X | g(t)\ dt = f' | g(t)\ dt f'
Jo Jo Jo Jo Jt

Jo ~i

*~ldx

The last integral is finite, and this proves the lemma.
Lemma 6 becomes false if q = 0, as we have already noted at (5.13).

Theorem 6 Corollary. Suppose Re a>0and Re b>0. Ifx~arbx"g(x) exists
in Qo then I~bg and I~bg exist in Qo, and conversely.

Proof of this statement proceeds almost word for word the same as the proof
of Theorem 5 Corollary, so it is omitted. The two corollaries can be combined,
using Lemma 6, in the form: Suppose q ^ 0<Re b and q<Re a. If

x-ttrbx°g{x)

exists in Qq then / g and / g exist in Qq, and conversely.
The extensions of Theorems 7, 8 and 9, with the original statements, now

follow.j
t It will be appropriate in subsequent reference to regard Theorem 4 also as one of this

series and to refer to it as Theorem 4A.
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Theorem 7A. IfRec>0,q ^ 0, q<min (Re a, Re b), f is in Qq and

Jo
- -)f(t)dt =°g(x), (9.2)

tj
\ f(a, b,c,l

o T(c) \ t

then I~cg exists in Qq.
Further l~cg, x~aI~cxag(x) and x'T'^gipc) also exist in Qq.

If q<0 it is immediate from Lemma 6 that I~cg e Qq. And Theorem 5
Corollary with b replaced by c shows that x~"I~cxag{x) exists in Qq. From this
it follows that x~bI~cxbg(x) exists in Qq, since the hypothesis is symmetrical in
a and b.

If q = 0 we have from (6.4) that

=/(*)- ̂  T * ['
* Jo Jo

( + 1, b+l, 2, 1- f V ^

The argument used in Theorem 6(i), second paragraph, applies to / cg, and
proves that this function is in Qo. That the other two functions exist and are
in Qo then follows as in the case q<0, but using Theorem 6 Corollary.

Remark. Theorem 7A thus establishes three more necessary conditions
for existence of a solution of (9.2). Theorem 9 has already shown the partial
sufficiency of one of these; and other corollaries below provide similar results
relating to the others.

Theorem 8A. If Re c>0, Re b>0, q<Rea, q <0 and l~cg exists in Qq,
then equation (9.2) has a solution f in Qq, given by (7.7).

This conclusion still holds if the hypothesis " q<0 and I~cg exists in Qq " is
replaced by any of the following three:

(i) q ^ 0 and x~arcx"g(x) exists in Qq;

(ii) 9 ^ 0 and x~brcxbg(x) exists in Qq;

(iii) q = 0 and I~cg exists in Qo.

Supposing q<0, (i) follows from Theorem 5 Corollary with b replaced by c,
and (ii) from Theorem 5 Corollary with a and b replaced by b and c.

If q = 0, (iii) is obtained by the same proof as Theorem 8 itself, but using
Theorem 6(ii) at (7.9) instead of Theorem 5(ii). This use of Theorem 6(ii)
requires that I~cg should exist in Qo, a datum which appears now to have been
dropped; but by definition (9.1) it is implicit in (iii) that I~cg(x) should exist
almost everywhere and be locally integrable on [0, d), that is, that I~cg should
exist in Qo.

If q = 0, (i) implies (iii) by Theorem 6 Corollary with b replaced by c, and
(ii) implies (iii) by Theorem 6 Corollary with a and b replaced by b and c. This
proves (i) and (ii) in the case q = 0.

Theorem 9A. If Re c>0, Re6<Rec , #<min (Re (a+6-c ) , Re b) and
x~"I~cxag(x) exists in Qq, then equation (9.2) has a solution f in Qq, given by
(7.12).
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This conclusion still holds if the hypothesis " x~"I~cxag(x) exists in Qq " is
replaced by any of the following four:

(i) xc-a-bI-cxa+b-cg(x) exists in Qq;

(ii) g g O and x'T'xfglx) exists in Qq;

(iii) q<0 and I~cg exists in Qq;

(iv) g = 0 and I~cg exists in Qo.

Hypothesis (i) says, using (7.14), that l~cg' exists in Qq-. Substituting this
statement for the second paragraph of the proof of Theorem 9 we obtain a
proof when (i) holds.

Since Re (b - c) < 0 the data imply that q < Re a. Theorem 5 Corollary with b
replaced by c shows that (iii) implies the original hypothesis. Again, Theorem 5
Corollary with a and b replaced by b and c shows that (ii) implies (iii) provided
q<0. Thus (iii), and (ii) with q<0, each imply the original hypothesis and so
the conclusion.

If (iv) holds then so does the original hypothesis, by Theorem 6 Corollary
with b replaced by c. And if (ii) holds with q = 0 then so does (iv), by Theorem
6 Corollary with a and b replaced by b and c. Thus (iv), and (ii) with q = 0,
each imply the original hypothesis and so the conclusion.

10. Another hypergeometric integral equation
We now deduce theorems on solutions of the integral equation (1.5), namely

r
Jo

o T(c)

where 0<d _ oo. This equation differs from that discussed in most of the rest
of this paper only in the fourth variable of the hypergeometric function, which
is now 1 — tjx instead of 1 — x/t. We convert (10.1) into the form of (1.4) (that
is, (9.2)) by substitutions, and then apply Theorems 4, 7A and 8A to obtain
corresponding theorems about (10.1).

This conversion may be achieved using either of Kummer's relations
[(10), 2.9(3) and (4)]. Using the former, (10.1) is equivalent to

Jo
a, V, c, 1 - -)f'(t)dt = V(*) for 0<x<d, (10.2)

tj

where b' = c-b, f'(t) = raf(t), g'{x) = X-"g{x),

and also q' = q+Re a.

Theorem 4B. If q ^ min (Re (c - a), Re (c - b)), q < min (0, Re (c - a - b)),
Re c>0,fis in Qq am/(10.1) holds withg(x) =°0, thenf{x) =°0.

Equation (10.2) holds with g'(x) =°0, by (10.3), and we propose to apply
Theorem 4 to this equation. Using (10.3) our data give

q' g min (Re c, Re (a+b')), q' <min (Re a, Re b');
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and *•'/'(*) is locally integrable because | xf>'f\x)\ = \ x*+a . x~'f(x)\ = Wf(x)\.
Thus Theorem 4 shows that/'(x) =°0, and so/(x) =°0 as required.

Theorem 7B. If Re c>0, q g -Re a, q<mm (0, Re (c-a-b)),f is in Qq

and (10.1) holds, then I~cg exists in Qq.

Further xarcx~"g(x), xa+b-crcxc-"-bg(x) and xT'x-'gix) exist in Qq.

Using (10.3) our data give

Re c>0, q' ^ 0, tf'<min (Re a, Re b')\

also/' e Qq- as in the preceding proof. So Theorem 7 A applies to (10.2), giving
that I~cg' and its average, x'T'x'gXx) and x~*7~cx*0'(x) all exist in Qq..
These conclusions give, in order, that

x°rcx-°g(x), xarcx-°g{x), rcg(x), xa+b-crcxc-°
all exist in Qq, as required.

Theorem 8B. / / Re c>0, Re b<Re c, q<0, q g - R e a and l'cg exists in
Qq, then (10.1) has a solution fin Qq, expressible by

f(x) = Ib-exarbx-'g(x). (10.4)

The assumption that I~cg exists in Qq may be replaced by either of:

(i) xa+b-crcxc-"-bg(x) exists in Q •

(ii) x"I cx~"g(x) exists in Qq, supplemented by x"I cx ag(x) also
existing in Qqifq = -Rea.

Using (10.3) our data show that R e o O , Re6'>0, # '<Rea and q' ^ 0.
Also we are supposing that x~"I~cxag'(x) exists in Qq.; or alternatively that
x~

b'l~cxb'g'(x) exists in Qq,; or again that I~cg' exists in Qq., supplemented if
q' = 0 by its average being also in Qo. Under these conditions Theorem 8A
applies to (10.2), showing that it has a solution/' in Qq., expressible by

f'{x) = x-"/-*'x"/*'-eflf'(*).

Thus (10.1) has a solution/(x) = xaf'(x) expressible by (10.4) after using (10.3);
a n d / e Qq.

Theorem 9B. / / R e o O , Re6>0, q<Re(c-a-b), q^ - R e b and
I~cg exists in Qq, then (10.1) has a solution f in Qq, expressible by

f(x) = xa+b-crbxc-aIb-cx-bg(x). (10.5)

The assumption that I~cg exists in Qq may be replaced by either of:

(i) xa+b-crcxc-"-bg(x) exists in Qq;

(ii) x*/-6*"^*) exists in Qq, supplemented by x*/~cx"VW
existing in Qq if q = — Re b.

Instead of [(10), 2.9(3)] and Theorem 9A, we use [(10), 2.9(4)] and Theorem
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8A to establish this theorem. By [(10), 2.9(4)], equation (10.1) is equivalent to

F(a'> b' c< J- - V ' W * =°0' ( x ) ( 1 0 6 )
\ tj

Jo r(c) F{
where a' = c-a, f\t)=Cbf{i), g'{x) =.. „

and also

Using (10.7) our data show that R e o O , Re ft>0, q'<Re a' and q' ^ 0.
Also we are supposing that x~bI~cxbg'{x) exists in £),,; or alternatively that
x~°'I~cxf'g'(x) exists in Qq.; or again that /~cg' exists in Qq., supplemented if
q' = 0 by its average being also in Qo. Thus Theorem 8A applies to (10.6),
showing that it has a solution/' in Qq,, expressible by

/'(x) = x-"'rbxa'lb-cg'{x).

Thus (10.1) has a solution/(x) = x*/'(*) expressible by (10.5) after using (10.7);
and feQq.

Remark. Comparing the explicit solutions (10.4) and (10.5) with (7.7) and
(7.12), we see that formal reversal of the order of operations in the solution
formulae for (1.4) gives the solution formulae for (1.5).

Theorem 10B. 7/g<min(0, Re (c-a-ft)) , g ^ m i n ( - R e a , —Reft)
Re c>0, and I~cg exists in Qq, then the equation

xJ)T F(a>b'c' l~ -o r(c) V *
has a unique solution f in Qq, given by (10.4) // ReZxRec and by (10.5) //

The uniqueness follows from Theorem 4B; the rest from Theorem 8B
when Re ft < Re c and from Theorem 9B when Re ft>0.

Remark. Theorem 10 is slightly less complete than Theorem 10B, in that
equality is not permitted in either inequality restricting q. It can be shown
that q = min(0, Re(a + ft —c)) cannot be permitted in Theorem 10, by the
example

q = 0, ft = c = 1, Rea>0,

0(x) = I/log (3/x) if 0 < J C < 1 , flf(x) = I/log 3 if x £ 1.

Elementary calculations show that the only solution of the integral equation
of Theorem 10 is then not in Qo, because for 0<x< 1 it is

f( \_ a , 1
l g ( 3 / ) 2"x log (3/x) x{log (3/x)}

It remains to be seen whether q = min (Re a, Re ft) can be permitted in
Theorem 10.
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