P. Feit Nagoya Math. J. Vol. 133 (1994), 177–187

EXPLICIT FORMULAS FOR LOCAL FACTORS: ADDENDA AND ERRATA

PAUL FEIT

Introduction

In [3], the author studied certain local integrals derived from Fourier coefficient computations on Eisenstein series. Members of a family of Dirichlet series were characterized as a product of an explicit term with a mysterious polynomial factor. In a recent letter to the author, Professor Shoyu Nagaoka asked specific questions concerning the polynomial factor. Several of these questions can be answered by the techniques in [3]. In Part I of that paper, the relevant term is described precisely; however, in Part II, the term is described as a mysterious, albeit finite, sum. The present paper complete [3] by recording what little is known of that sum.

We illustrate our tables by settling one of the questions raised in Professor Nagaoka's letter. Let F is a totally real number field and let K/F be a purely imaginary quadratic extension. Let \mathcal{D} be the discriminant of K/F, and let $h \in \mathcal{D}^{-1}$. For a finite prime \mathcal{P} of F,

(1)
$$\bar{\alpha}_{\mathscr{P}}^{(2)}\left(S, \begin{bmatrix} h & 0\\ 0 & 0 \end{bmatrix}\right) = (1 - q^{-s})(1 - \psi(\mathscr{P})q^{1-s})(1 - \psi(\mathscr{P})q^{2-s})^{-1}\left(\sum_{j=0}^{b} q^{j(3-s)}\right),$$

where the α -series derives from Eisenstein series for the hermitian modular group of genus 2, ϕ is the ideal character of K/F (normalized to be 0 if \mathcal{P} ramifies), $q = N\mathcal{P}$, and \mathcal{P}^{b} devides the ideal (h) \mathcal{D} while \mathcal{P}^{b+1} does not.

1. The α -series

Let F be a local of any characteristic except 2 and let R be (a choice of) the ring of integers of F. Let \mathcal{P} be the prime of R, and put

(2) $q = N\mathcal{P}.$

Received January 19, 1993.

PAUL FEIT

Let A be a semi-simple finite dimensional F-algebra, and let B be the corresponding maximal order of A. For $k \in \mathbb{N}$, let B^k be the right B-module of $k \times 1$ column vectors. For $k, r \in \mathbb{N}$ such that $k \ge r$, an $r \times k$ matrix M with entries in B is called *primitive* if there is a $(k - r) \times k$ matrix N such that

$$\binom{N}{M} \in GL_k(B).$$

If L is a B-module and $K \subseteq L$ is a submodule, let [L:K] be the cardinality of |L/K|. If L and K are B-submodules of A^k for some $k \in \mathbb{N}$, then define $[L:K] = [L:L \cap K]/[K:L \cap K]$ if each index on the right is finite. For $k \in \mathbb{N}$, define $v: GL_k(A) \to \mathbb{Q}$ by

(3)
$$q^{v(T)} = [B^k: T \cdot B^k].$$

In practice, the function $q^{v(T)}$ is $|dt(T)|_{\mathscr{P}}^{-d}$, where dt is some sort of reduced norm function $GL_k(A) \to F$, $\|_{\mathscr{P}}$ is a normalized valuation at \mathscr{P} and d is a positive constant. In [3] and in what follows, we work with the function v instead of determinants and valuations. For this reason, our α -series differ by a constant exponent from the usual ones, as used in [1] or [4]. We will comment on this later.

Let $k \in \mathbf{N}$. For $T \in M_k(A)$, define j(T) by

(4)
$$q^{j(T)} = [TB^k + B^k : B^k].$$

Another interpretation for j(T) is as follows. Express $T = D^{-1}C$ where (CD) is a primitive $k \times (2k)$ matrix. Then j(T) = v(D). Again, in other treatments, the *j*-factor is typically replaced by $|dt(D)|_{\mathcal{P}}^{-1}$.

Fix a non-trivial group character χ from the additive group of F to the unit circle of **C**. For our present purposes, any character will do. When we refer to Professor Nagaoka's question, we adopt the standard choice. Extend χ to $M_k(A)$ for each $k \in \mathbb{N}$ by composing the original character with the reduced trace, as described in [3].

Let ρ be an involution for A/F. Let $U(\rho)$ be the set of *B*-units ε such that $\varepsilon \varepsilon^{\rho} = 1$. For $\varepsilon \in U$, a (ρ, ε) -hermitian lattice is a free *B*-module *M* of finite rank paired with an *R*-bilinear form (,) : $M \times M \to A$ such that for $x, y \in M$ and $b, c \in B$.

(5.a)
$$(bx, cy) = b \cdot (x, y) \cdot c^{\rho},$$

(5.b)
$$(x, y) = \varepsilon(y, x)^{\rho}.$$

Let $k \in \mathbf{N}$. For each $\varepsilon \in U$, put

FORMULAS FOR LOCAL FACTORS

(6)
$$\sum(k, \varepsilon) = \{T \in M_k(A) : T = \varepsilon(^t T^{\rho})\},\\ \sum(k, \varepsilon, B) = \sum(k, \varepsilon) \cap M_k(B),$$

and also

(7)
$$\sum(k, \varepsilon, B) \# = \{T \in \sum(k, \varepsilon^{\rho}) : \chi(T \cdot \sum(k, \varepsilon, B)) = \{1\}\}.$$

The lattice $\sum(k, \varepsilon)$ obviously corresponds to all (ρ, ε) -hermitian forms on B^k . We refer to its members as being (ρ, ε) -hermitian. The function which takes $T \in \sum(k, \varepsilon, B) \#$ to the function $X \to \chi(TX)$ identifies the additive group of $\sum(k, \varepsilon, B) \#$ with the character group of $\sum(k, \varepsilon, B)$; for that reason, we refer to the former as the *dual lattice*.

Because most of the work in [3] deals with dual lattices, we set the problem in a manner in which the members of the dual lattice are (ρ, ε) -hermitian. For this reason, we set up the α -series as a sum over $\sum (k, \varepsilon^{\rho})$ instead of $\sum (k, \varepsilon)$.

Let ρ be an involution of A, let $\varepsilon \in U(\rho)$, let $m \in \mathbb{N}$ and let $N \in \sum (m, \varepsilon^{\rho}, B) \#$. Define the α -series for this data by

(8)
$$\alpha(N, t) = \sum_{x \in \Sigma(m, \varepsilon^{\rho}) / \Sigma(m, \varepsilon^{\rho}, B)} \chi(Nx) \cdot t^{j(x)},$$

where t is a formal variable. This is the correct form of [3; (5.10)], with B playing the role of S. The Dirichlet α -series used by Nagaoka [1] or Shimura [4] have the form

(9)
$$\alpha(N, s) = \alpha(N, q^{-s/d}),$$

where the constant d is the exponent factor characterized by $q^{v(T)} = |dt(T)|_{\mathscr{P}}^{-d}$ Tautologically, for any $u \in GL_k(B)$, $\alpha(uN \cdot {}^t u^{\rho}, t) = \alpha(N, t)$

Analysis of the α -series divides into two cases. First, suppose $A = \Delta \oplus \Delta^{\circ}$, where Δ is a simple *F*-algebra and Δ° is its opposite, and ρ is defined by $(b, c) \rightarrow (c, b)$. In this case, the involution ρ and the choice of ε is irrelevant. The α -series (8) can be rephrased as an infinite sum over $M_k(\Delta)$. The reformulation is analyzed in [3; Part I]. The analysis is complete, and we will make no additions to it here.

2. Hermitian lattices

With the split case settled, all other situations reduce to the hypothesis

(10)
$$A$$
 is a division F -algebra,

F is the fixed field of ρ on the center of A.

PAUL FEIT

Under assumption (10), we hereafter denote A by Δ and the ring B by S. Fix $\varepsilon \in U(\rho)$. From now on, for T a square matrix, put

(11)
$$T^* = {}^t T^{\rho}, \qquad \text{and} \\ T^{-*} = (T^*)^{-1} \text{ if } T \text{ is invertible.}$$

For $k \in \mathbf{N}$, $N \in M_k(\Delta)$ and $C \in GL_k(\Delta)$, put $N[C] = C^{-1} N C^{-*}$.

Let **m** be the maximal ideal of *S*, and let π be a generator of **m**. Define a logarithmic valuation (on $\Delta^* = \Delta - \{0\}$ by

(12)
$$\forall x \in \Delta^*, \ \pi^{-l(x)} x \in S - \mathbf{m}.$$

We adopt the convention that $\mathfrak{l}(0) = \infty$. For $X \subseteq \Delta$ a non-empty set, put

$$\iota(X) = \inf\{\iota(x) : x \in X\}.$$

For M a hermitian lattice, define

(13) $s(M) = \iota(\{(x, y) : x, y \in M\}).$

For $n \in \mathbf{Z}$, put

(14)
$$\Delta_n = \{ d \in \Delta : \iota(d) \ge n \}, A_n = \{ b + \varepsilon b^{\rho} : b \in \Delta_n \}.$$

Put

(15)
$$\mathcal{D} = \{ d \in \Delta : \forall b \in S, \chi(bd + b^{\rho}d^{\rho}) = 1 \}, \\ \delta = \iota(\mathcal{D}).$$

For $n \in \mathbb{Z}$, let $Cat(\rho, \varepsilon, n)$ be the class of all (ρ, ε) -hermitian lattices M such that

(16)
$$s(M) \ge n,$$

 $\forall v \in M, \quad (v, v) \in A_n.$

In [3; Section 8], we define a notion of morphism between members of $Cat(\rho, \varepsilon, n)$, and turn the class into a category. That structure is technical, and is omitted here. Certain lattices in this category have a special property, and are called *n*-modular; again, the precise definition is omitted, and we refer the reader to [3] for proof of the properties of *n*-modular lattices which we need. The hyperbolic lattices of denominator -n are *n*-modular.

Parameters σ , σ_1 , σ_2 , σ_3 , σ_4 and σ_5 are defined in [3; (5.8) and (5.9)]. Except for σ_2 , these are usually trivial to calculate. To get σ_2 , use the fact [3; Lemma 5.1]

180

FORMULAS FOR LOCAL FACTORS

(17)
$$\sigma_1 + \sigma_2 + \sigma_3 = \sigma_4 + \sigma_4$$

Depending on these parameters and on *n*, the category $Cat(\rho, \varepsilon, n)$ is classified as one of four *types*, in [3; (8.19)]. The category relevant to our calculation is $Cat(\rho, \varepsilon, \delta)$. It is also a consequence of [3; Lemma 5.1] that, for $k \in \mathbb{N}$, $\sum (k, \varepsilon^{\rho}, S) \#$ is the set of all matrices which correspond to member of $Cat(\rho, \varepsilon, \delta)$ of rank k.

The function v_1 , on square, invertible matrices, is introduced in [3; Definition 7.1]. The only comments that we make here are (a) v_1 depends on ρ and ε , and (b) like v, $v_1(T)$ has the form $| dt(T) |_{\mathscr{P}}^{-d_1}$ where d_1 is some constant dependent on the raw data.

3. Definite exponents

For the next part of the argument, fix $m \in \mathbb{N}$. Fix $N \in \sum (m, \varepsilon^{\rho}, S) \# \cap GL_m(\Delta)$. Express

(18)
$$m = 2g_0 + \lambda_0, \text{ where } g_0 \in \mathbf{Z} \text{ and } \lambda_0 \in \{0,1\}.$$

We now add a parameter not in [3]. Depending on the type of $Cat(\rho, \varepsilon, \delta)$, define λ_1 as

(19)
$$\lambda_1 = \begin{cases} \lambda_0 & \text{ for Type I,} \\ 0 & \text{ for Type II or IV,} \\ 1 & \text{ for Type III.} \end{cases}$$

Let

(20)
$$Y(N) = \{ C \in GL_m(\Delta) \cap M_m(S) : N[C] \in \sum (m, \varepsilon^{\rho}, S) \# \}.$$

Note that $GL_m(S)$ acts on Y on the right, and the quotient $Y(N)/GL_m(S)$ is finite. Following Siegel, our first major result is that $\alpha(N, t)$ is a sum of terms, one for each $C \in Y/GL_m(S)$. The term for C has to do with the structure of N[C] in $Cat(\rho, \varepsilon, \delta)$.

For

(21)
$$g, h \in \mathbb{N} \cup \{0\}, \lambda, \mu \in \{0,1\} \text{ and } \eta \in \{-1,1\},$$

define a polynomial in the indeterminate t by

(22)
$$R(g, h, \lambda, \eta, \mu; t) = \prod_{j=0}^{g+h+\lambda-1} (1 - q^{j\sigma_3}t^{\sigma_3}) \times \left\{ (1 + \eta(1 - \mu)q^{(g+h)\sigma_3 + \sigma_1 + \sigma_2 - \sigma} t^{\sigma_3}) \prod_{i=1}^{g+h-1} (1 + q^{i\sigma_3 + \sigma_1 + \sigma_2 - \sigma} t^{\sigma_3}) \right\},$$

where the bracketed part is set equal to 1 if g + h = 0. Equation (22) is the correct form of (9.22) in [3]. We only consider this function when $\mu \leq h$, $\eta = 1$ if $\lambda = 1$, and $\lambda = 0$ if $\mu = 1$.

The significance of (22) is as follows. Let $M \in \sum (m, \varepsilon^{\circ}, S) \# \cap GL_m(\Delta)$. Regard M as a hermitian structure on S^m . Then M is isomorphic to an orthogonal sum $L \perp D$ where L is δ -modular and $s(D) > \delta$. Define $(g, h, \lambda, \eta, \mu) = (g(M), h(M), \lambda(M), \eta(M), \mu(M))$ to be the unique tuple which satisfies (21) and

 (23) rank(L) = 2g + λ, rank(D) = h
 η = -1 if and only if L has even rank and is not hyperbolic, μ is the defect of D.

The defect is defined in [3; Definition 8.3], and generalizes the classical notion of defect in quadratic forms over fields of characteristic 2. It occurs only for Type IV situations. Define

(24)
$$R(M;t) = R(g(M), h(M), \lambda(M), \eta(M), \mu(M);t)$$

Now for $C \in Y(N) / GL_m(S)$, put R(N, C; t) = R(N[C]; t). Then

(25)
$$\alpha(N, t) = \sum_{C \in Y(N)/GL_m(S)} q^{(r-1)v(C)+v_1(C)} t^{2v(C)} R(N, C; t).$$

We shall isolate the greatest common divisor of the summands in (25).

If there is $C \in Y(N)$ such that N[C] is modular, define $\eta_0 = \eta_0(N)$ to be 1 unless N[C] has even rank and is not hyperbolic; in the latter case, define $\eta_0 = -1$. If N[C] is not modular for any C, put $\eta_0 = 0$. For each $C \in Y(N)$, define

$$P(N, C; t) = q^{(r-1)\nu(C)+\nu_1(C)} t^{2 \cdot \nu(C)} \prod_{\substack{j=g_0+\lambda_0}}^{g+h+\lambda-1} (1-q^{j\sigma_3} t^{\sigma_3})$$

$$\times \left\{ \frac{(1+\eta(1-\mu)q^{(g+h-1)\sigma_3+\sigma_4} t^{\sigma_3})}{(1+\eta_0 q^{(g_0-1)\sigma_3+\sigma_4} t^{\sigma_3})} \right\} \times \prod_{\substack{i=g_0-1}}^{g+h-2} (1+q^{i\sigma_3+\sigma_4} t^{\sigma_3}) \text{ if } \eta_0 \neq 0, \text{ or}$$

$$P(N, C; t) = q^{(r-1)\nu(C)+\nu_1(C)} t^{2 \cdot \nu(C)} \prod_{\substack{j=g_0+1}}^{g+h+\lambda-1} (1-q^{j\sigma_3} t^{\sigma_3})$$

$$\times \left\{ (1+\eta(1-\mu)q^{(g+h-1)\sigma_3+\sigma_4} t^{\sigma_3}) \prod_{\substack{i=g_0+\lambda_1}}^{g+h-2} (1+q^{i\sigma_3+\sigma_4} t^{\sigma_3}) \right\} \text{ if } \eta_0 = 0,$$

where, in the second formula, the bracketed expression is 1 if $g + h - 1 < g_0 + \lambda_1$. In fact, P(N, C; t) is R(N, C; t) divided by the greatest common factor of all polynomials R(N, C'; t). Define P(N; t) be the sum of P(N, C; t) as C

varies over $Y(N) / GL_m(S)$. Essentially, P(N; t) is the troublesome generalization of the σ -functions that appear in the Eisenstein series for $SL_2(\mathbf{Q})$.

4. Hermitian matrices of all ranks

Suppose $N_1 \in \sum (m, \varepsilon^{\circ}, S)$ # has the form

(27)
$$N_1 = \begin{bmatrix} N & 0 \\ 0 & 0 \end{bmatrix},$$

where $r \in \mathbf{N}$, $N \in \sum (r, \varepsilon^{\rho}, S) \# \cap GL_r(\Delta)$. If $N_1 = 0$, adopt the convention that r = 0 and $\alpha(N, t) = 1$; all of the formulas that follow will then be valid. Now

(28)
$$a(N_1, t) = F_{m,r}(t) \cdot \alpha(N, q^{m-r}t)$$

where

(29)
$$F_{m,r}(t) = \frac{\prod_{i=0}^{m-r-1} (1+q^{i\sigma_3+\sigma_4}t^{\sigma_3}) \prod_{i=0}^{m-r-1} (1-q^{i\sigma_3}t^{\sigma_3})}{\prod_{j=0}^{m-r-1} (1-q^{(m-1+j)\sigma_3+\sigma_5}t^{2\sigma_3})}.$$

Define g_0 , λ_0 , λ_1 and η_0 as in the previous section, for the matrix N. (If r = 0, put $g_0 = \lambda_0 = \lambda_1 = 0$ and $\eta_0 = 1$.) Then $\alpha(N_1, t)$ is the product of $P(N, q^{m-r}t)$ times

$$\begin{cases} \frac{\prod\limits_{t=0}^{m-g_0-\lambda_0-2} (1+q^{i\sigma_3+\sigma_4}t^{\sigma_3})\prod\limits_{i=0}^{m-g_0-1} (1-q^{i\sigma_3}t^{\sigma_3})}{\prod\limits_{j=0}^{m-r-1} (1-q^{(m-1+j)\sigma_3+\sigma_5}t^{2\sigma_3})} \\ \times (1+\eta_0 q^{(m-g_0-\lambda_0-1)\sigma_3+\sigma_4}t^{\sigma_3}) & \text{if } \eta_0 \neq 0 \text{ and } g_0 \neq 0, \end{cases}$$

(30)

$$\begin{cases} \frac{\prod\limits_{i=0}^{m-\lambda_0-1} (1+q^{i\sigma_3+\sigma_4} t^{\sigma_3}) \prod\limits_{i=0}^{m-1} (1-q^{i\sigma_3} t^{\sigma_3})}{\prod\limits_{j=0}^{m-r-1} (1+q^{(m-1+j)\sigma_3+\sigma_5} t^{2\sigma_3})} \end{cases} \text{ if } \eta_0 \neq 0 \text{ and } g_0 = 0, \\ \begin{cases} \frac{\prod\limits_{i=0}^{m-r-1} (1+q^{i\sigma_3+\sigma_4} t^{\sigma_3}) \prod\limits_{i=0}^{m-s_0-\lambda_0} (1-q^{i\sigma_3} t^{\sigma_3})}{\prod\limits_{i=0}^{m-r-1} (1+q^{(m-1+j)\sigma_3+\sigma_5} t^{2\sigma_3})} \end{cases} \text{ if } \eta_0 = 0. \end{cases}$$

Table (30) is the correct form of [3; Theorem 5.3].

183

5. On a question by Professor Nagaoka

Let F_0 be a totally real number field, let K_0/F_0 be a purely imaginary quadratic extension field and let ρ_0 be the Galois involution of K_0/F_0 . Let ψ be the ideal character of K_0/F_0 . Let \mathscr{P} be a finite prime of F_0 , let F be the localization of F_0 at \mathscr{P} , and let $K = K_0 \otimes_{F_0} F$ and $\rho = \rho_0 \otimes_{F_0} \mathbf{1}_F$. Let ω be a local generator of \mathscr{P} , and put $q = N\mathscr{P}$. To normalize our series, we need to compare $v(\omega)$ with $|\omega|_{\mathscr{P}}^{-1} = q$.

Let p be the rational prime which divides q, and let δ be a generator of the discriminant of F/\mathbf{Q}_p . On \mathbf{Q}_p , define χ_0 by $\chi_0(t) = e^{2\pi i r}$ for $r \in \mathbf{Q}$ any rational such that $r + t \in \mathbf{Z}_p$. Define χ_F to be the composition of χ_0 with the trace function of F/\mathbf{Q}_p . If M is any square matrix over K whose trace t lies in F, define $\chi(M) = \chi_F(t)$.

Let *h* be a non-zero member of the different of F/\mathbf{Q}_{p} — that is, the fractional ideal generated by δ^{-1} — and let $b \in \mathbf{N} \cup \{0\}$ such that ω^{b} divides $h\delta$ while ω^{b+1} does not. We claim that

(31)
$$\bar{\alpha}_{\mathscr{P}}^{(2)}\left(s, \begin{bmatrix} h & 0\\ 0 & 0 \end{bmatrix}\right) = (1 - q^{-s})(1 - \psi(\mathscr{P})q^{1-s})(1 - \psi(\mathscr{P})q^{2-s})^{-1}\left(\sum_{j=0}^{b} q^{j(3-s)}\right),$$

where the α -series derives from Eisenstein series for the hermitian modular group of genus 2 as in [1] or [4]. Here, m = 2, r = 1 and $\varepsilon = \varepsilon^{\rho} = 1$.

The justification of (31) depends on the behavior of \mathscr{P} in K_0 . Different factorizations for \mathscr{P} in S require different tables.

Case I: *P* splits.

This is the situation *not* discussed in the present addendum. Here, $K \cong F \oplus F$, and [3; Part I] applies. Inspection shows that $v(\omega) = 1$, so

$$\bar{\alpha}_{\mathcal{P}}^{\scriptscriptstyle (2)}\Big(s,\, \left[\begin{array}{cc}h&0\\0&0\end{array}\right]\Big)=\alpha\Big(\left[\begin{array}{cc}h&0\\0&0\end{array}\right],\,q^{-s}\Big).$$

Although the discriminant is not mentioned by name in [3; Part 1], it is referred to in its role as genarator of the fractional ideal

$$I = \{ s \in F : \chi(R \cdot s) = \{1\} \}.$$

The indexing set for the polynomial p(E, t) defined in [3; (2.4)] for the 1×1 matrix (δh) can be represented by $\{\omega^{j}\}_{j=0}$. Thus,

$$(32) p(\delta h, t) = \sum_{j=0}^{b} t^{j}.$$

Using [3; (2.6)] for parameters k = r = 2, m = 1 and σ (as defined in [3; Theorem 2.1]) equal to 1, we get

(33)
$$\bar{\alpha}_{\mathscr{P}}^{(2)}\left(s, \begin{bmatrix} h & 0\\ 0 & 0 \end{bmatrix}\right) = (1 - q^{-s})(1 - q^{1-s})(1 - q^{2-s})^{-1}\left(\sum_{j=0}^{b} q^{j(3-s)}\right).$$

Since $\phi(\mathscr{P}) = 1$, (33) is (31).

All remaining cases refer to the new tables. Let us make some general comments.

Hereafter, we assume K is a field extension of F. Let S be its ring of integers, and let δ_K be its discriminant as a \mathbf{Q}_p -extension. Let π be a generator of the prime of S.

We begin with a minor issue of normalization. For M a square matrix over K, define $\tau(M)$ to be the image of M's trace under the trace map of K/F. Now [3; Part II] consider matrix characters of the form $\zeta \circ \tau$. The character used in [1] or [4] is not $\chi_F \circ \tau$. Because the character is evaluated only on matrices whose trace is in F, there is no need to apply the trace of the extension K/F. However, we can describe this standard character as $\chi' \circ \tau$ where $\chi'(x) = \chi_F(x/2)!$ Thus, the series of [3; Part II] do emulate the standard local integrals.

As in Case I, the discriminant δ plays a role. Let $k \in \mathbb{N}$. The dual lattice $\Sigma(k, \varepsilon^{\rho}, S)$ # consists of all $k \times k$ (ρ , 1)-hermitian matrices whose diagonal entries lie in the fraction *F*-ideal generated by δ^{-1} and whose off-diagonal entries lie in the fractional *K*-ideal generated by δ_{K}^{-1} . Again, we fix $h \in \delta^{-1}R$.

The key parameters specialize as

(34) $\sigma = 2, \sigma_1 = 1, \sigma_2 = 0, \sigma_3 = 2, \sigma_4 = 1, \sigma_5 = 2,$ $v(\pi) = 2, v_1(\pi) = 2$ if \mathcal{P} is unramified, $\sigma = 2, \sigma_1 = 1, \sigma_2 = 0, \sigma_3 = 1, \sigma_4 = 0, \sigma_5 = 1,$ $v(\pi) = 1, v_1(\pi) = 1$ if \mathcal{P} ramifies.

The unramified situation will divide into two cases.

Regardless of ramification, $\sigma > \sigma_1 + \sigma_2$. Thus, $Cat(\rho, 1, \delta)$ is of Type I or Type III. In particular, the defect of any hermitian lattice will be 0. Classically, the defect is a concept related to quadratic forms rather than hermitian forms. Its present irrelevance is not surprising.

Regardless of ramification, $v(\omega) = 2$. This means that we wish to replace the variable t by $q^{-s/2}$ to get the appropriate Dirichlet series. In general, the exponential constant factor will be $1/\sigma$.

We generate the polynomial for the matrix N = (h). In this calculation,

 $g_0 = 0$ and $\lambda_0 = 1$. The η term for N[C] will always be 1, while η_0 could be 0 or 1, depending on h.

Case II: \mathcal{P} is unramified, b = 2y is even.

The polynomial P(N; t) is a sum indexed by matrices $c = (\omega^x)$ for $0 \le x \le y$. When x = y, N[c] is modular, hence, $\eta_0 = 1$, and $P(N, \omega^y; t) = q^{2y}t^{4y}$. For $0 \le x < y$, the key parameters are g = 0, h = 1, $\lambda = 0$, $\eta = 1$ and $\mu = 0$, which yields

$$P(N, \omega^{x}; t) = q^{2x} t^{4x} (1 + qt^{2}) = q^{2x} t^{4x} + q^{2x+1} t^{2(2x+1)}.$$

Consequently,

(35)
$$P(N;t) = \sum_{j=0}^{2y} q^{j} t^{2j}.$$
$$P(N;qt) = \sum_{j=0}^{2y} q^{3j} t^{2j} = \sum_{j=0}^{b} (q^{3} t^{2})^{j}.$$

The extra factor (30) works out to be

$$\frac{(1+q\,t^2)\,(1-t^2)\,(1-q^2\,t^2)}{(1-q^4\,t^4)} = \frac{(1+q\,t^2)\,(1-t^2)}{(1+q^2\,t^2)}$$

Now replace t by $q^{-s/2}$ and combine the terms to get

(36)
$$(1-q^{-s})(1+q^{1-s})(1+q^{2-s})^{-1}\left\{\sum_{j=0}^{b}q^{j(3-s)}\right\}.$$

This is exactly (31) after replacing $\psi(\mathcal{P}) = -1$.

Case III: \mathcal{P} unramified, b = 2y + 1 is odd

In this case, $\eta_0 = 0$, and we use different formulas. Since the relevant category is Type I or Type III, the parameter λ_1 must be 1. For $0 \le x \le y$, the parameters are g = 0, h = 1, $\lambda = 0$, $\eta = 1$, $\mu = 0$, and

$$P(N, \omega^x; t) = q^{2x} t^{4x}.$$

The combined factor is

(37)
$$\frac{(1+qt^2)(1+q^3t^2)(1-t^2)(1-q^2t^2)}{(1-q^4t^4)}\left\{\sum_{j=0}^{y}q^{6j}t^{4j}\right\}}{=\left\{\frac{(1+qt^2)(1-t^2)}{(1+q^2t^2)}\right\}\left\{(1+q^3t^2)\sum_{j=0}^{y}q^{6j}t^{4j}\right\}}$$

$$= \left\{ \frac{(1+qt^2)(1-t^2)}{(1+q^2t^2)} \right\} \left\{ \sum_{j=0}^{2y+1} q^{3j} t^{2j} \right\}.$$

Again after substitution $t = q^{-s/2}$, we get (31) with $\psi(\mathcal{P}) = -1$.

Case IV: \mathcal{P} is ramified

We may choose that $\omega = \pi \pi^{\rho}$. Since \mathscr{P} is ramified, $\operatorname{Cat}(\rho, 1, \delta)$ is Type III. Thus, $g_0 = 0$, $\lambda_0 = 1$ and $\eta_0 = 0$. For each $0 \le x \le b$, $P(N, \pi^x; t)$ has parameters g = 0, h = 1, $\lambda = 0$, $\eta = 1$ and $\mu = 0$. We get

(38)
$$P(N;t) = \sum_{j=0}^{b} q^{j} t^{2j}, \text{ and } P(N;qt) \stackrel{b}{=} q^{3j} t^{2j}.$$

Happily, the extra factor (30) simplifies:

$$\frac{(1+t)(1+qt)(1-t)(1-qt)}{(1-q^2t^2)} = (1-t^2).$$

The net rational factor becomes

(39)
$$(1-t^2) \sum_{j=0}^{b} q^{3j} t^{2j}$$

After substitution $t = q^{-s/2}$, we get (31) with $\psi(\mathcal{P}) = 0$.

REFERENCES

- [1] S. Nagaoka, On the Fourier coefficient of Hermitian Eisenstein series of degree 2, preprint.
- [2] P. Feit, Poles and residues of Eisenstein series for sympletic and unitary groups, Memoirs of the Amer. Math. Soc., 346, 1986.
- [3] —, Explicit formulas for local factors in the Euler products for Eisenstein series, Nagoya Math. J., 113 (1989), 37-87.
- [4] G. Shimura, On Eisenstein series, Duke Math. J., 50 (1983), 417-176.

University of Texas at Permian Basin Science and Engineering 4901 F. University Blvd. Odessa, TX 79762, U.S.A.