A new definition of discrete analytic functions

C.J. Harman

Abstract

The concept of a tetradiffric function is introduced. This new scheme for defining discrete analytic functions is shown to retain the algebraic simplicity of monodiffric functions, while introducing to the theory a symmetry similar to the Schwarz Reflection Principle.

1. Introduction and definitions

Discrete analytic functions of the first kind (or monodiffric functions) are defined on the set of gaussian integers and satisfy the forward-difference equation

$$
f(z+1)-f(z)=\frac{f(z+i)-f(z)}{i}
$$

(see for example isaacs $[7,8]$ and Berzsenyi [1, 2]). In [6], the monodiffric function $z^{(\alpha)}$ (the discrete analogue of z^{α}) was found. This function highlighted certain shortcomings in the monodiffric scheme. Monodiffric functions lack symmetry: for example $(-z)^{(\alpha)} \neq(-1)^{\alpha} z^{(\alpha)}$, and in the theory there is no analogue of the Schwarz Reflection Principle.

In this paper an alternative definition of discrete analytic functions is examined. The resulting functions demonstrate a symmetry similar to discrete functions of the second kind which were defined by Ferrand [4] and further developed by Duffin [3] and others. Unlike second kind functions however, it is seen that the simple algebraic form of monodiffric functions

Received 27 November 1973.
is retained. The function $z^{(\alpha)}$ is expressed in terms of divergent series when α is not an integer and as a polynomial when α is a non-negative integer. Finally an analogue of the Schwarz Reflection Principle is obtained.

The domain of definition to be considered is the set G of gaussian integers. Hence,

$$
G=\{z ; z=(x, y)=x+i y \text {, where } x \text { and } y \text { are integers }\} .
$$

Subsets of G in the four quadrants of the complex plane are defined by,

$$
\begin{aligned}
& G_{1}=\{z ; z \in G, x>0, y>0\}, G_{2}=\{z ; z \in G, x<0, y>0\}, \\
& G_{3}=\{z ; z \in G, x<0, y<0\}, G_{4}=\{z ; z \in G, x>0, y<0\},
\end{aligned}
$$

and on the axes,

$$
\begin{aligned}
& X^{+}=\{z ; z \in G, x \geq 0, y=0\}, X^{-}=\{z ; z \in G, x \leq 0, y=0\}, \\
& Y^{+}=\{z ; z \in G, x=0, y \geq 0\}, Y^{-}=\{z ; z \in G, x=0, y \leq 0\} .
\end{aligned}
$$

Forward and backward difference operators are defined by,

$$
\begin{align*}
& \Delta_{1} f(z)=f(z)-f(z-1), \tag{1.1}\\
& \Delta_{2} f(z)=\frac{f(z)-f(z-i)}{i}, \\
& \Delta_{3} f(z)=f(z+1)-f(z), \\
& \Delta_{4} f(z)=\frac{f(z+i)-f(z)}{i}
\end{align*}
$$

2. Tetradiffric functions

A new type of discrete analytic function, based on the concept of a monodiffric function, is now defined. The definition involves a consideration of a separate monodiffric scheme in each of the four quadrants G_{1}, G_{2}, G_{3}, and G_{4}.

A function f is said to be tetradiffric at the point $z \in G_{k}$ ($k=1,2,3$, or 4), if

$$
\begin{equation*}
\Delta_{k} f(z)=\Delta_{k+1} f(z) \tag{2.1}
\end{equation*}
$$

(For convenience of notation it has been assumed that in the case when $k=4$, the operator Δ_{5} means Δ_{1}.)

The importance of this method of definition is illustrated by the following theorem:- a tetradiffric function can be represented in any of the four quadrants of the complex plane by a linear combination of values from both the X and Y axes.

THEOREM 2.1. The unique tetradiffric function f, with values prescribed on the axes (on $X^{+} \cup X^{-} \cup Y^{+} \cup Y^{-}$) is given by the following:(i) if $z=(x, y) \in G_{1}$,
$f(z)=(1-i)^{-(x+y)}\left\{\sum_{j=0}^{x}\binom{x+y}{j}(-i)^{j}\left(1-i \Delta_{1}\right)^{x-j} f(x-j, 0)\right.$ $\left.+\sum_{j=x+1}^{x+y}\binom{x+y}{j}(-i)^{j}\left(1-\Delta_{2}\right)^{j-x} f(0, j-x)\right\} ;$
(ii) if $z=(x, y) \in G_{2}$,
$f(z)=(1+i)^{x-y}\left\{\sum_{j=0}^{-x}\binom{y-x}{j} i^{j}\left(1-i \Delta_{3}\right)^{-x-j} f(x+j, 0)\right.$
$\left.+\sum_{j=1-x}^{y-x}\binom{y-x}{j} i^{j}\left(1+\Delta_{2}\right)^{x+j} f(0, x+j)\right\} ;$
(iii) if $z=(x, y) \in G_{3}$,
$f(z)=(1-i)^{x+y}\left\{\sum_{j=0}^{-x}\binom{-x-y}{j}(-i)^{j}\left(1+i \Delta_{3}\right)^{-x-j} f(x+j, 0)\right.$

$$
\left.+\sum_{j=1-x}^{-x-y}\binom{-x-y}{j}(-i)^{j}\left(1+\Delta_{4}\right)^{x+j} f(0,-x-j)\right\}
$$

(iv) if $z=(x, y) \in G_{4}$,

$$
\begin{aligned}
& f(z)=(1+i)^{y-x}\left\{\sum_{j=0}^{x}\binom{x-y}{j} i^{j}\left(1+i \Delta_{1}\right)^{x-j} f(x-j, 0)\right. \\
&\left.+\sum_{j=x+1}^{x-y}\binom{x-y}{j} i^{j}\left(1-\Delta_{4}\right)^{j-x} f(0, x-j)\right\} .
\end{aligned}
$$

The binomial operators in the above are defined in the usual way; for example

$$
\left(1-i \Delta_{1}\right)^{x-j}=\sum_{j=0}^{x-j}\binom{x-j}{k}(-i)^{k_{\Delta}^{k}} ;\left(1-i \Delta_{1}\right)^{0}=I
$$

where I is the identity operator.
The proof of (i) above follows from [6, Theorem 2.3] and (ii), (iii), (iv) are proved in a similar way.

Hence a tetradiffric function $f(z)$ can be expressed in terms of a combination of specified values on the two half-axes which bound the quadrant containing the point z.

For example consider two simple cases:- from the above theorem it follows that for $z=(1,1) \in G_{1}$,

$$
\begin{equation*}
f(1,1)=(1-i)^{-1}[f(1,0)-i f(0,1)] \tag{2.2}
\end{equation*}
$$

and for $z=(2,-1) \in G_{4}$,

$$
f(2,-1)=(1+i)^{-3}[2 i f(2,0)+(i-1) f(1,0)-(1+i) f(0,-1)]
$$

3. The tetradiffric function $z^{(\alpha)}$

The monodiffric function $z^{(\alpha)}$ (α not a negative integer), given in [6], is now extended to tetradiffric functions. The resulting function highlights some important advantages of the tetradiffric scheme.

For points on the X-axis, the function $x^{(\alpha)}$ is to be defined by

$$
x^{(\alpha)}= \begin{cases}\frac{\Gamma(x+\alpha)}{\Gamma(x)} ; & x \in X^{+} \tag{3.1}\\ \frac{(-1)^{\alpha} \Gamma(\alpha-x)}{\Gamma(-x)} ; & x \in X^{-}\end{cases}
$$

and on the Y-axis

$$
\begin{equation*}
(i y)^{(\alpha)}=i^{\alpha} y^{(\alpha)} ; \quad i y \in Y^{+} \cup Y^{-} \tag{3.2}
\end{equation*}
$$

where $y^{(\alpha)}$ is given by (3.1).
Note that $x^{(\alpha)}$ satisfies $\Delta_{1} x^{(\alpha)}=\alpha x^{(\alpha-1)}$ for $x \in X^{+}$, and $\Delta_{3} x^{(\alpha)}=\alpha x^{(\alpha-1)}$ for $x \in X^{-}$. Also it can be shown that $x^{(\alpha)}$ is a very good asymptotic approximation to x^{α} on both X^{+}and X^{-}.

The tetradiffric analogue $z^{(\alpha)}$ of the classical function z^{α} is required to satisfy
(i) $\Delta z^{(\alpha)}=z^{(\alpha-1)}$,
(ii) $0^{(\alpha)}=0, \alpha>0$, and
(iii) $z^{(0)}=1$,
where $\Delta=\Delta_{k}$ or Δ_{k+1} for $z \in G_{k} ; k=1,2,3,4$.
The case when $\alpha=n$, a non-negative integer, is quite simple. It can be shown that the function $z^{(n)}$ given by,

$$
\begin{equation*}
z^{(n)}=\sum_{j=0}^{n}\binom{n}{j} x^{(n-j)} i^{j} y^{(j)} ; \quad z^{(0)}=1 \tag{3.4}
\end{equation*}
$$

is the tetradiffric function satisfying (3.3) and having the values $x^{(n)}$ and $(i y)^{(n)}$ on the axes.

When α is a negative integer, the function $x^{(\alpha)}$ has singularities at certain points on $X^{+} \cup X^{-}$. It will now be assumed that α is not an integer, but is otherwise an arbitrary constant.

By specifying $x^{(\alpha)}$ and $(i y)^{(\alpha)}$ on the axes, Theorem 2.1 provides the tetradiffric function $z^{(\alpha)}$ at any point in G, and as in [6, Theorem 3.1] it can easily be shown that $z^{(\alpha)}$ satisfies conditions (i) and (ii) of (3.3). However the resulting function $z^{(\alpha)}$ has a rather complicated
form, and an alternative expression is now derived which has a remarkable analogy with the binomial expansion of the function $z^{\alpha}=(x+i y)^{\alpha}$.

THEOREM 3.1. If $z=(x, y) \in G$ and $x^{(\alpha)}, y^{(\alpha)}$ are defined by (3.1) then the tetradiffric function $z^{(\alpha)}$ is given by

$$
z^{(\alpha)}=\sum_{j=0}^{\infty}\binom{\alpha}{j} x^{(\alpha-j)_{i}{ }_{y}(j)}+\sum_{j=0}^{\infty}\binom{\alpha}{j} x^{(j)} i^{\alpha-j} y^{(\alpha-j)},
$$

where the two divergent series are sumable (E, q) in the Euler sense for $q>0$.

Proof. Define a function $z^{(\alpha)}$ by

$$
\begin{equation*}
z^{(\alpha)}=\sum_{j=0}^{\infty}\binom{\alpha}{j} x^{(\alpha-j)_{i} i_{y}(j)}+\sum_{j=0}^{\infty}\binom{\alpha}{j} x^{(j)_{i} i^{\alpha-j} y^{(\alpha-j)},} \tag{3.5}
\end{equation*}
$$

and let $z=(x, y) \in G_{1}$. For convenience consider the first of the above two sums and denote it by

$$
S_{\alpha}(z)=\sum_{j=0}^{\infty} a_{j} \text {, where } a_{j}=\binom{\alpha}{j} x^{(\alpha-j)_{i} j_{y}(j)}
$$

Now it can easily be verified that for $z \in G_{1}$, the series $S_{\alpha}(z)$ diverges. For S_{α} to be summable (E, q) it must be shown that
(a) $\sum_{j=0}^{\infty} a_{j} j^{j+1}$ converges for small ρ, and
(b) the series $s_{\alpha}(z)$ defined by

$$
s_{\alpha}(z)=\sum_{n=0}^{\infty}(1+q)^{-n-1} \sum_{j=0}^{n}\binom{n}{j} \alpha_{j} q^{n-j}
$$

converges (see Hardy [5]).
If these conditions hold, the series S_{α} is said to be summable (E, q) to the sum s_{α}. That condition (a) holds in this case is readily checked. The following lemma shows that (b) is true.

LEMMA 3.1. For $z=(x, y) \in G_{1}$, the series defined by

$$
s_{\alpha}(z)=\sum_{n=0}^{\infty}(1+q)^{-n-1} \sum_{j=0}^{n}\binom{n}{j}\binom{\alpha}{j} x^{(\alpha-j)} i_{i} j^{(j)} q^{n-j}
$$

converges absolutely for $q>0$.
Proof. For $z \in G_{I}$ it follows from the definitions of $x^{(\alpha)}$ and $y^{(\alpha)}$ that

$$
\binom{\alpha}{j} x^{(\alpha-j)_{y}(j)}=\frac{(\alpha-j+1)(\alpha-j+2) \ldots(\alpha-j+x-1)(j+1)(j+2) \ldots(j+y-1)}{\Gamma(x) \Gamma(y)}
$$

This is a polynomial in j of degree $(x+y-2)$, and can be writt en as

$$
\binom{\alpha}{j} x^{(\alpha-j)} y^{(j)}=\sum_{k=0}^{x+y-2} b_{k^{j}}{ }^{k}
$$

where the coefficients b_{k} are determined by x, y and α. Hence $s_{\alpha}(z)$ becomes;

$$
s_{\alpha}(z)=\sum_{n=0}^{\infty}(1+q)^{-n-1} \sum_{k=0}^{x+y-2} b_{k} \sum_{j=0}^{n}\binom{n}{j} q^{n-j} i_{j} k .
$$

Now it can readily be shown by induction on k that for fixed n,

$$
\sum_{j=0}^{n}\binom{n}{j} q^{n-j} i_{j} j^{k}= \begin{cases}(q+i)^{n} & ; k=0 \\ \sum_{r=1}^{k} \frac{S_{r}^{(k)} n!i^{r}(q+i)^{n-r}}{(n-r)!} & k \geq 1\end{cases}
$$

where $S_{r}^{(k)}$ are Stirling numbers of the second kind.
Hence, assuming for the moment that summation can be interchanged,

$$
s_{0}(z)=b_{0} \sum_{n=0}^{\infty} \frac{(q+i)^{n}}{(q+1)^{n+1}}+\sum_{k=1}^{x+y-2} b_{k} \sum_{r=1}^{k} \frac{s_{r}^{(k)} i^{r}}{(q+1)^{r+1}} \sum_{n=0}^{\infty} \frac{n!}{(n-r)!}\left(\frac{q+i}{q+1}\right)^{n-r}
$$

and since $\left|\frac{q+i}{q+1}\right|<1$ when $q>0$, it follows that the above series are absolutely convergent, which justifies the interchange of summation and proves the lerma.

Returning th the proof of the theorem; it has been shown that $s_{\alpha}(z)$
converges and hence by (a) and (b) above, $S_{\alpha}(z)$ is summable (E, q) for $q>0$ to the sum $s_{\alpha}(z)$.

Similarly the second series in (3.5), $\sum_{j=0}^{\infty}\binom{\alpha}{j} x^{(j)} i^{\alpha-j} y^{(\alpha-j)}$ is. summable (E, q) , q>0.

Now by (1.1),

$$
\begin{aligned}
\Delta_{1} z^{(\alpha)}= & z^{(\alpha)}-(z-1)^{(\alpha)} \\
= & \sum_{j=0}^{\infty}\binom{\alpha}{j} x^{(\alpha-j)} i^{j} y^{(j)}-\sum_{j=0}^{\infty}\binom{\alpha}{j}(x-1)^{(\alpha-j)} i^{j} y^{(j)} \\
& +\sum_{j=0}^{\infty}\binom{\alpha}{j} x^{(j)} i^{\alpha-j} y^{(\alpha-j)}-\sum_{j=0}^{\infty}\binom{\alpha}{j}(x-1)^{(j)_{i}^{\alpha-j}} y_{y}^{(\alpha-j)}
\end{aligned}
$$

and by Hardy [5, p. 180, Properties α, β] it follows that

$$
\begin{aligned}
\Delta_{1} z^{(\alpha)} & =\alpha \sum_{j=0}^{\infty}\binom{\alpha-1}{j} i^{j} y^{(j)} x^{(\alpha-1-j)}+\alpha \sum_{j=0}^{\infty}\binom{\alpha-1}{j} i^{\alpha-1-j} y^{(\alpha-1-j)_{x}(j)} \\
& =\alpha z^{(\alpha-1)}
\end{aligned}
$$

Similarly $\Delta_{2} z^{(\alpha)}=\alpha z^{(\alpha-1)}$ and so the function $z^{(\alpha)}$ is tetradiffric for $z \in G_{1}$. It evidently satisfies $0^{(\alpha)}=0$.

On the axes, $z^{(\alpha)}=x^{(\alpha)}$ when $y=0$, and $z^{(\alpha)}=i^{\alpha} y^{(\alpha)}$ when $x=0$. Hence by Theorem 2.1, $z^{(\alpha)}$ is the unique tetradiffric function in G_{1} with prescribed values $x^{(\alpha)}$ on X^{+}and $(i y)^{(\alpha)}$ on Y^{+}.

In a similar manner it can be shown that (3.5) represents the tetradiffric analogue of z^{α} in the other three quadrants G_{2}, G_{3} and G_{4}. This completes the proof of Theorem 3.1.

As an example of the method of Euler summability in the above theorem, consider the simple case $z=1+i$. From (3.5),

$$
\begin{aligned}
z^{(\alpha)}=(1,1)^{(\alpha)} & =\sum_{j=1}^{\infty}\binom{\alpha}{j} 1^{(\alpha-j)_{i} j_{1}(j)}+\sum_{j=0}^{\infty}\binom{\alpha}{j} 1_{1}^{(j)_{i}^{\alpha-j} 1}(\alpha-j) \\
& =1^{(\alpha)} \sum_{j=0}^{\infty} i^{j}+1^{(\alpha)} \sum_{j=0}^{\infty} i^{\alpha-j}
\end{aligned}
$$

Defining S by

$$
S \equiv \sum_{j=0}^{\infty} i^{j}=1+i-1-i+1+i-1-i+\ldots,
$$

then by Hardy [5, p. 180, Properties $\gamma, \delta]$ it follows that

$$
\begin{aligned}
S & =1+i(1+i-1-i+1+\ldots) \\
& =1+i S
\end{aligned}
$$

and so $S=(1-i)^{-1}$. Similarly

$$
\sum_{j=0}^{\infty} i^{\alpha-j}=-i^{\alpha+1}(1-i)^{-1}
$$

and hence $(1,1)^{\alpha}=1^{(\alpha)}\left(1-i^{\alpha+1}\right)(1-i)^{-1}$, which checks with (2.2) on substituting $f(1,0)=1^{(\alpha)}, f(0,1)=i_{1}^{(\alpha)}$.

4. Properties

When α is not an integer, the tetradiffric function $z^{(\alpha)}$ given by (3.5) is evidently multi-valued. This demonstrates a good analogy with the classical function z^{α}.

Also by making use of backward differences on the positive half axes and forward differences on the negative half axes, the function $z^{(\alpha)}$ can be shown to be a very good approximation to z^{α} on $X^{+} \cup X^{-} \cup Y^{+} \cup Y^{-}$, even for small integer values of x and y.

The Schwarz Reflection Principle has an analogy for the tetradiffric function $z^{(\alpha)}$ as is indicated in the following theorem.

THEOREM 4.1. When α is real, the tetradiffric function $z^{(\alpha)}$ is real for $z \in X^{+}$and satisfies the symmetry condition $z^{(\alpha)}=\overline{\left(_{\bar{z}}\right)^{(\alpha)}}$ for
$z \in G_{1} \cup G_{4}$.
Proof. Let $z=(x, y) \in G_{1}$. By (3.4),

Since $i y \in Y^{+},-i y \in Y^{-}$it follows from (3.1), (3.2) that

$$
(-y)^{(\alpha)}=(-1)^{\alpha} \frac{\Gamma(\alpha+y)}{\Gamma(y)}=(-1)^{\alpha} y^{(\alpha)} .
$$

Hence

$$
(\bar{z})^{(\alpha)}=\sum_{j=0}^{\infty}\binom{\alpha}{j} x^{(\alpha-j)}(-i)^{j} y^{(j)}+\sum_{j=0}^{\infty}\binom{\alpha}{j} x^{(j)}(-i)^{\alpha-j} y^{(\alpha-j)},
$$

and since $x^{(\alpha)}, y^{(\alpha)}$ are real for real α and $x \geq 0, y \geq 0$, it follows that

$$
\overline{(\bar{z})^{(\alpha)}}=z^{(\alpha)} .
$$

If $z \in G_{4}$ the above argument can be reversed, proving the theorem.
Another important property of $z^{(\alpha)}$ which demonstrates once again the symmetry of tetradiffric functions is given by the following.

THEOREM 4.2. For $z \in G$,

$$
(-z)^{(\alpha)}=(-1)_{z}^{\alpha(\alpha)}
$$

The proof follows immediately from (3.1), (3.2), and (3.5).
Theorem 4.1 can be generalized to a wider class of tetradiffric functions as follows.

THEOREM 4.3. If f is a tetradiffric function which is real on the X-axis and such that $\overline{f(z)}=f(z)$ for $z \in Y^{+} \cup Y^{-}$, then for all $z \in G$,

$$
\overline{f(\bar{z})}=f(z) .
$$

The proof follows readily from Theorem 2.1 and so is omitted.
When $\alpha=n$ a non-negative integer, Theorems 4.1 and 4.2 also apply to the function $z^{(n)}$ given by (3.4).

For convenience it has been assumed throughout this paper that the functions concerned are tetradiffric on all of G. This restriction can of course be weakened to a consideration of functions tetradiffric on smaller domains.

References

[1] George Berzsenyi, "Line integrals for monodiffric functions", J. Math. Anal. App2. 30 (1970), 99-112.
[2] George Berzsenyi, "Convolution products of monodiffric functions", J. Math. Anal. Appl. 37 (1972), 271-287.
[3] R.J. Duffin, "Basic properties of discrete analytic functions", Duke Math. J. 23 (1956), 335-363.
[4] Jacqueline Ferrand, "Fonctions préharmoniques et fonctions préholomorphes", BuZZ. Sci. Math. (2) 68 (1944), 152-180.
[5] G.H. Hardy, Divergent series (Clarendon Press, Oxford, 1949).
[6] C.J. Harman, "A note on a discrete analytic function", Bull. Austral. Math. Soc. 10 (1974), 123-134.
[7] Rufus Philip Isaacs, "A finite difference function theory", Univ. Nac. Tucumán Rev. Ser. A 2 (1941), 177-201.
[8] Rufus Isaacs, "Monodiffric functions", Construction and applications of conformal maps, 257-266 (Proc. Sympos. 1949, Numerical analysis, National Bureau of Standards, Univ. California, Los Angeles. National Bureau of Standards Applied Mathematics Series, 18. United States Department of Commerce; US Government Printing Office, Washington, DC, 1952).

Department of Supply, Weapons Research Establishment, Salisbury, South Australia.

