BULL. AUSTRAL. MATH. SOC. VOL. 10 (1974), 281-291.

A new definition of discrete analytic functions

C.J. Harman

The concept of a *tetradiffric* function is introduced. This new scheme for defining discrete analytic functions is shown to retain the algebraic simplicity of *monodiffric* functions, while introducing to the theory a symmetry similar to the Schwarz Reflection Principle.

1. Introduction and definitions

Discrete analytic functions of the first kind (or *monodiffric* functions) are defined on the set of gaussian integers and satisfy the forward-difference equation

$$f(z+1) - f(z) = \frac{f(z+i)-f(z)}{i}$$

(see for example isaacs [7, 8] and Berzsenyi [1, 2]). In [6], the monodiffric function $z^{(\alpha)}$ (the discrete analogue of z^{α}) was found. This function highlighted certain shortcomings in the monodiffric scheme. Monodiffric functions lack symmetry: for example $(-z)^{(\alpha)} \neq (-1)^{\alpha} z^{(\alpha)}$, and in the theory there is no analogue of the Schwarz Reflection Principle.

In this paper an alternative definition of discrete analytic functions is examined. The resulting functions demonstrate a symmetry similar to discrete functions of the second kind which were defined by Ferrand [4] and further developed by Duffin [3] and others. Unlike second kind functions however, it is seen that the simple algebraic form of monodiffric functions

Received 27 November 1973.

is retained. The function $z^{(\alpha)}$ is expressed in terms of divergent series when α is not an integer and as a polynomial when α is a non-negative integer. Finally an analogue of the Schwarz Reflection Principle is obtained.

The domain of definition to be considered is the set G of gaussian integers. Hence,

 $G = \{z; z = (x, y) = x + iy$, where x and y are integers $\}$. Subsets of G in the four quadrants of the complex plane are defined by,

 $\begin{aligned} G_1 &= \{z; \ z \in G, \ x > 0, \ y > 0\} \ , \quad G_2 &= \{z; \ z \in G, \ x < 0, \ y > 0\} \ , \\ G_3 &= \{z; \ z \in G, \ x < 0, \ y < 0\} \ , \quad G_{\underline{1}} &= \{z; \ z \in G, \ x > 0, \ y < 0\} \ , \end{aligned}$

and on the axes,

 $X^{+} = \{z; z \in G, x \ge 0, y = 0\}, \quad X^{-} = \{z; z \in G, x \le 0, y = 0\},$ $Y^{+} = \{z; z \in G, x = 0, y \ge 0\}, \quad Y^{-} = \{z; z \in G, x = 0, y \le 0\}.$

Forward and backward difference operators are defined by,

(1.1)

$$\Delta_{1}f(z) = f(z) - f(z-1) ,$$

$$\Delta_{2}f(z) = \frac{f(z) - f(z-i)}{i} ,$$

$$\Delta_{3}f(z) = f(z+1) - f(z) ,$$

$$\Delta_{4}f(z) = \frac{f(z+i) - f(z)}{i} .$$

2. Tetradiffric functions

A new type of discrete analytic function, based on the concept of a monodiffric function, is now defined. The definition involves a consideration of a separate monodiffric scheme in each of the four quadrants G_1 , G_2 , G_3 , and G_4 .

A function f is said to be *tetradiffric* at the point $z \in G_k$ (k = 1, 2, 3, or 4), if

$$(2.1) \qquad \qquad \Delta_k f(z) = \Delta_{k+1} f(z) \ .$$

(For convenience of notation it has been assumed that in the case when k = 4 , the operator Δ_5 means Δ_1 .)

The importance of this method of definition is illustrated by the following theorem:- a tetradiffric function can be represented in any of the four quadrants of the complex plane by a linear combination of values from both the X and Y axes.

THEOREM 2.1. The unique tetradiffric function f, with values prescribed on the axes (on $X^+ \cup X^- \cup Y^+ \cup Y^-$) is given by the following:-

(i) if $z = (x, y) \in G_1$,

$$\begin{split} f(z) &= (1-i)^{-(x+y)} \left\{ \sum_{j=0}^{x} {x+y \choose j} (-i)^{j} (1-i\Delta_{1})^{x-j} f(x-j, 0) \right. \\ &+ \sum_{j=x+1}^{x+y} {x+y \choose j} (-i)^{j} (1-\Delta_{2})^{j-x} f(0, j-x) \right\} ; \\ (ii) \quad if \quad z = (x, y) \in G_{2} , \\ f(z) &= (1+i)^{x-y} \left\{ \sum_{j=0}^{-x} {y-x \choose j} i^{j} (1-i\Delta_{3})^{-x-j} f(x+j, 0) \right. \\ &+ \sum_{j=1-x}^{y-x} {y-x \choose j} i^{j} (1+\Delta_{2})^{x+j} f(0, x+j) \right\} ; \end{split}$$

(*iii*) if $z = (x, y) \in G_3$,

$$\begin{split} f(z) &= (1-i)^{x+y} \left\{ \sum_{j=0}^{-x} \left(\sum_{j=0}^{-x-y} (-i)^{j} (1+i\Delta_{3})^{-x-j} f(x+j, 0) \right. \\ &+ \sum_{j=1-x}^{-x-y} \left(\sum_{j=1-x}^{-x-y} (-i)^{j} (1+\Delta_{4})^{x+j} f(0, -x-j) \right\} ; \\ (iv) \quad if \quad z = (x, y) \in G_{4} , \end{split}$$

$$\begin{split} f(z) &= (1+i)^{y-x} \left\{ \sum_{j=0}^{x} {x-y \choose j} i^{j} (1+i\Delta_{1})^{x-j} f(x-j, 0) \right. \\ &+ \sum_{\substack{j=x+1 \\ j=x+1}}^{x-y} {x-y \choose j} i^{j} (1-\Delta_{1})^{j-x} f(0, x-j) \right\} \,. \end{split}$$

The binomial operators in the above are defined in the usual way; for example

$$(1-i\Delta_1)^{x-j} = \sum_{j=0}^{x-j} {x-j \choose k} (-i)^k \Delta_1^k ; (1-i\Delta_1)^0 = I ,$$

where I is the identity operator.

The proof of (i) above follows from [6, Theorem 2.3] and (ii), (iii), (iv) are proved in a similar way.

Hence a tetradiffric function f(z) can be expressed in terms of a combination of specified values on the two half-axes which bound the quadrant containing the point z.

For example consider two simple cases:- from the above theorem it follows that for $z = (1, 1) \in G_1$,

(2.2) $f(1, 1) = (1-i)^{-1}[f(1, 0)-if(0, 1)]$,

and for $z = (2, -1) \in G_{l_1}$,

$$f(2, -1) = (1+i)^{-3}[2if(2, 0)+(i-1)f(1, 0)-(1+i)f(0, -1)] .$$

3. The tetradiffric function $z^{(\alpha)}$

The monodiffric function $z^{(\alpha)}$ (α not a negative integer), given in [6], is now extended to tetradiffric functions. The resulting function highlights some important advantages of the tetradiffric scheme.

For points on the X-axis, the function $x^{(\alpha)}$ is to be defined by

(3.1)
$$x^{(\alpha)} = \begin{cases} \frac{\Gamma(x+\alpha)}{\Gamma(x)} ; & x \in X^{+}, \\ \\ \frac{(-1)^{\alpha}\Gamma(\alpha-x)}{\Gamma(-x)} ; & x \in X^{-}, \end{cases}$$

and on the Y-axis

(3.2) $(iy)^{(\alpha)} = i^{\alpha}y^{(\alpha)}; iy \in Y^+ \cup Y^-,$

where $y^{(\alpha)}$ is given by (3.1).

Note that $x^{(\alpha)}$ satisfies $\Delta_1 x^{(\alpha)} = \alpha x^{(\alpha-1)}$ for $x \in X^+$, and $\Delta_3 x^{(\alpha)} = \alpha x^{(\alpha-1)}$ for $x \in X^-$. Also it can be shown that $x^{(\alpha)}$ is a very good asymptotic approximation to x^{α} on both X^+ and X^- .

The tetradiffric analogue $z^{(\alpha)}$ of the classical function z^{α} is required to satisfy

(3.3) (i)
$$\Delta z^{(\alpha)} = z^{(\alpha-1)}$$
,
(ii) $0^{(\alpha)} = 0$, $\alpha > 0$, and
(iii) $z^{(0)} = 1$,

where $\Delta = \Delta_k$ or Δ_{k+1} for $z \in G_k$; k = 1, 2, 3, 4.

The case when $\alpha = n$, a non-negative integer, is quite simple. It can be shown that the function $z^{(n)}$ given by,

(3.4)
$$z^{(n)} = \sum_{j=0}^{n} {n \choose j} x^{(n-j)} i^{j} y^{(j)} ; z^{(0)} = 1 ,$$

is the tetradiffric function satisfying (3.3) and having the values $x^{(n)}$ and $(iy)^{(n)}$ on the axes.

When α is a negative integer, the function $x^{(\alpha)}$ has singularities at certain points on $X^{+} \cup X^{-}$. It will now be assumed that α is not an integer, but is otherwise an arbitrary constant.

By specifying $x^{(\alpha)}$ and $(iy)^{(\alpha)}$ on the axes, Theorem 2.1 provides the tetradiffric function $z^{(\alpha)}$ at any point in *G*, and as in [6, Theorem 3.1] it can easily be shown that $z^{(\alpha)}$ satisfies conditions (i) and (ii) of (3.3). However the resulting function $z^{(\alpha)}$ has a rather complicated form, and an alternative expression is now derived which has a remarkable analogy with the binomial expansion of the function $z^{\alpha} = (x+iy)^{\alpha}$.

THEOREM 3.1. If $z = (x, y) \in G$ and $x^{(\alpha)}, y^{(\alpha)}$ are defined by (3.1) then the tetradiffric function $z^{(\alpha)}$ is given by

$$z^{(\alpha)} = \sum_{j=0}^{\infty} {\alpha \choose j} x^{(\alpha-j)} i^{j} y^{(j)} + \sum_{j=0}^{\infty} {\alpha \choose j} x^{(j)} i^{\alpha-j} y^{(\alpha-j)}$$

where the two divergent series are summable (E, q) in the Euler sense for q > 0 .

Proof. Define a function $z^{(\alpha)}$ by

$$(3.5) z^{(\alpha)} = \sum_{j=0}^{\infty} {\alpha \choose j} x^{(\alpha-j)} i^j y^{(j)} + \sum_{j=0}^{\infty} {\alpha \choose j} x^{(j)} i^{\alpha-j} y^{(\alpha-j)} ,$$

and let $z = (x, y) \in G_1$. For convenience consider the first of the above two sums and denote it by

$$S_{\alpha}(z) = \sum_{j=0}^{\infty} a_j$$
, where $a_j = {\alpha \choose j} x^{(\alpha-j)} i^j y^{(j)}$

Now it can easily be verified that for $z \in G_1$, the series $S_\alpha(z)$ diverges. For S_α to be summable (E,q) it must be shown that

(a)
$$\sum_{j=0}^{\infty} a_j \rho^{j+1}$$
 converges for small ρ , and

(b) the series $s_{\alpha}(z)$ defined by

$$s_{\alpha}(z) = \sum_{n=0}^{\infty} (1+q)^{-n-1} \sum_{j=0}^{n} {n \choose j} a_{j} q^{n-j}$$

converges (see Hardy [5]).

If these conditions hold, the series S_{α} is said to be summable (E, q) to the sum s_{α} . That condition (a) holds in this case is readily checked. The following lemma shows that (b) is true.

LEMMA 3.1. For $z = (x, y) \in G_1$, the series defined by

$$s_{\alpha}(z) = \sum_{n=0}^{\infty} (1+q)^{-n-1} \sum_{j=0}^{n} {n \choose j} {\alpha \choose j} x^{(\alpha-j)} i^{j} y^{(j)} q^{n-j}$$

converges absolutely for q > 0.

Proof. For
$$z \in G_1$$
 it follows from the definitions of $x^{(\alpha)}$ and $y^{(\alpha)}$ that

$$\begin{pmatrix} \alpha \\ j \end{pmatrix} x^{(\alpha-j)} y^{(j)} = \frac{(\alpha-j+1)(\alpha-j+2)\dots(\alpha-j+x-1)(j+1)(j+2)\dots(j+y-1)}{\Gamma(x)\Gamma(y)}$$

This is a polynomial in j of degree (x+y-2), and can be written as

$$\begin{pmatrix} \alpha \\ j \end{pmatrix} x^{(\alpha-j)} y^{(j)} = \sum_{k=0}^{x+y-2} b_k j^k ,$$

where the coefficients b_k are determined by x, y and α . Hence $s_{\alpha}(z)$ becomes;

$$s_{\alpha}(z) = \sum_{n=0}^{\infty} (1+q)^{-n-1} \sum_{k=0}^{x+y-2} b_k \sum_{j=0}^{n} {n \choose j} q^{n-j} i^j j^k .$$

Now it can readily be shown by induction on k that for fixed n,

$$\sum_{j=0}^{n} {n \choose j} q^{n-j} i^{j} j^{k} = \begin{cases} (q+i)^{n} & ; \quad k = 0 \\ k & \frac{S^{(k)}_{r} n! i^{r} (q+i)^{n-r}}{\sum_{r=1}^{k} \frac{(q+i)^{n-r}}{(n-r)!}} ; \quad k \ge 1 \end{cases}$$

where $S_r^{(k)}$ are Stirling numbers of the second kind.

Hence, assuming for the moment that summation can be interchanged,

$$s_{\alpha}(z) = b_{0} \sum_{n=0}^{\infty} \frac{(q+i)^{n}}{(q+1)^{n+1}} + \sum_{k=1}^{x+y-2} b_{k} \sum_{r=1}^{k} \frac{S_{r}^{(k)} i^{r}}{(q+1)^{r+1}} \sum_{n=0}^{\infty} \frac{n!}{(n-r)!} \left(\frac{q+i}{q+1}\right)^{n-r},$$

and since $\left|\frac{q+i}{q+1}\right| < 1$ when q > 0, it follows that the above series are absolutely convergent, which justifies the interchange of summation and proves the lemma.

Returning to the proof of the theorem; it has been shown that $s_{\alpha}(z)$

converges and hence by (a) and (b) above, $S_{\alpha}(z)$ is summable (E, q) for $q \ge 0$ to the sum $s_{\alpha}(z)$.

Similarly the second series in (3.5), $\sum_{j=0}^{\infty} {\alpha \choose j} x^{(j)} i^{\alpha-j} y^{(\alpha-j)}$ is summable (E, q), $q \ge 0$.

$$\Delta_{1}z^{(\alpha)} = z^{(\alpha)} - (z-1)^{(\alpha)}$$

$$= \sum_{j=0}^{\infty} {\alpha \choose j} x^{(\alpha-j)} i^{j} y^{(j)} - \sum_{j=0}^{\infty} {\alpha \choose j} (x-1)^{(\alpha-j)} i^{j} y^{(j)}$$

$$+ \sum_{j=0}^{\infty} {\alpha \choose j} x^{(j)} i^{\alpha-j} y^{(\alpha-j)} - \sum_{j=0}^{\infty} {\alpha \choose j} (x-1)^{(j)} i^{\alpha-j} y^{(\alpha-j)}$$

and by Hardy [5, p. 180, Properties α , β] it follows that

$$\Delta_{1}z^{(\alpha)} = \alpha \sum_{j=0}^{\infty} {\alpha-1 \choose j} i^{j} y^{(j)} x^{(\alpha-1-j)} + \alpha \sum_{j=0}^{\infty} {\alpha-1 \choose j} i^{\alpha-1-j} y^{(\alpha-1-j)} x^{(j)}$$
$$= \alpha z^{(\alpha-1)}$$

Similarly $\Delta_2 z^{(\alpha)} = \alpha z^{(\alpha-1)}$ and so the function $z^{(\alpha)}$ is tetradiffric for $z \in G_1$. It evidently satisfies $0^{(\alpha)} = 0$.

On the axes, $z^{(\alpha)} = x^{(\alpha)}$ when y = 0, and $z^{(\alpha)} = i^{\alpha}y^{(\alpha)}$ when x = 0. Hence by Theorem 2.1, $z^{(\alpha)}$ is the unique tetradiffric function in G_1 with prescribed values $x^{(\alpha)}$ on χ^+ and $(iy)^{(\alpha)}$ on χ^+ .

In a similar manner it can be shown that (3.5) represents the tetradiffric analogue of z^{α} in the other three quadrants G_2 , G_3 and G_1 . This completes the proof of Theorem 3.1.

As an example of the method of Euler summability in the above theorem, consider the simple case z = 1 + i. From (3.5),

$$z^{(\alpha)} = (1, 1)^{(\alpha)} = \sum_{j=1}^{\infty} {\alpha \choose j} 1^{(\alpha-j)} i^{j} 1^{(j)} + \sum_{j=0}^{\infty} {\alpha \choose j} 1^{(j)} i^{\alpha-j} 1^{(\alpha-j)}$$
$$= 1^{(\alpha)} \sum_{j=0}^{\infty} i^{j} + 1^{(\alpha)} \sum_{j=0}^{\infty} i^{\alpha-j} .$$

Defining S by

$$S \equiv \sum_{j=0}^{\infty} i^{j} = 1 + i - 1 - i + 1 + i - 1 - i + \dots$$

then by Hardy [5, p. 180, Properties γ , δ] it follows that

$$S = 1 + i(1+i-1-i+1+...)$$

= 1 + iS

and so $S = (1-i)^{-1}$. Similarly

$$\sum_{j=0}^{\infty} i^{\alpha - j} = -i^{\alpha + 1} (1 - i)^{-1}$$

and hence $(1, 1)^{\alpha} = 1^{(\alpha)} (1-i^{\alpha+1}) (1-i)^{-1}$, which checks with (2.2) on substituting $f(1, 0) = 1^{(\alpha)}$, $f(0, 1) = i^{\alpha} 1^{(\alpha)}$.

4. Properties

When α is not an integer, the tetradiffric function $z^{(\alpha)}$ given by (3.5) is evidently multi-valued. This demonstrates a good analogy with the classical function z^{α} .

Also by making use of backward differences on the positive half axes and forward differences on the negative half axes, the function $z^{(\alpha)}$ can be shown to be a very good approximation to z^{α} on $x^+ \cup x^- \cup y^+ \cup y^-$, even for small integer values of x and y.

The Schwarz Reflection Principle has an analogy for the tetradiffric function $z^{(\alpha)}$ as is indicated in the following theorem.

THEOREM 4.1. When α is real, the tetradiffric function $z^{(\alpha)}$ is real for $z \in X^+$ and satisfies the symmetry condition $z^{(\alpha)} = \overline{(z)^{(\alpha)}}$ for

 $z \in G_1 \cup G_4$.

Proof. Let $z = (x, y) \in G_1$. By (3.4),

$$(\overline{z})^{(\alpha)} = (x, -y)^{(\alpha)} = \sum_{j=0}^{\infty} {\alpha \choose j} x^{(\alpha-j)} i^j (-y)^{(j)} + \sum_{j=0}^{\infty} {\alpha \choose j} x^{(j)} i^{\alpha-j} (-y)^{(\alpha-j)}$$

Since $iy \in Y^+$, $-iy \in Y^-$ it follows from (3.1), (3.2) that

$$(-y)^{(\alpha)} = (-1)^{\alpha} \frac{\Gamma(\alpha+y)}{\Gamma(y)} = (-1)^{\alpha} y^{(\alpha)}$$

Hence

$$(\bar{z})^{(\alpha)} = \sum_{j=0}^{\infty} {\alpha \choose j} x^{(\alpha-j)} (-i)^j y^{(j)} + \sum_{j=0}^{\infty} {\alpha \choose j} x^{(j)} (-i)^{\alpha-j} y^{(\alpha-j)},$$

and since $x^{(\alpha)}, y^{(\alpha)}$ are real for real α and $x \ge 0$, $y \ge 0$, it follows that

$$\overline{(\bar{z})^{(\alpha)}} = z^{(\alpha)}$$

If $z \in G_{h}$ the above argument can be reversed, proving the theorem.

Another important property of $z^{(\alpha)}$ which demonstrates once again the symmetry of tetradiffric functions is given by the following.

THEOREM 4.2. For $z \in G$,

$$(-z)^{(\alpha)} = (-1)^{\alpha} z^{(\alpha)}$$

The proof follows immediately from (3.1), (3.2), and (3.5).

Theorem 4.1 can be generalized to a wider class of tetradiffric functions as follows.

THEOREM 4.3. If f is a tetradiffric function which is real on the X-axis and such that $\overline{f(z)} = f(z)$ for $z \in Y^+ \cup Y^-$, then for all $z \in G$, $\overline{f(z)} = f(z)$.

The proof follows readily from Theorem 2.1 and so is omitted.

When $\alpha = n$ a non-negative integer, Theorems 4.1 and 4.2 also apply to the function $z^{(n)}$ given by (3.4).

For convenience it has been assumed throughout this paper that the functions concerned are tetradiffric on all of G. This restriction can of course be weakened to a consideration of functions tetradiffric on smaller domains.

References

- [1] George Berzsenyi, "Line integrals for monodiffric functions", J. Math. Anal. Appl. 30 (1970), 99-112.
- [2] George Berzsenyi, "Convolution products of monodiffric functions", J. Math. Anal. Appl. 37 (1972), 271-287.
- [3] R.J. Duffin, "Basic properties of discrete analytic functions", Duke Math. J. 23 (1956), 335-363.
- [4] Jacqueline Ferrand, "Fonctions préharmoniques et fonctions préholomorphes", Bull. Sci. Math. (2) 68 (1944), 152-180.
- [5] G.H. Hardy, Divergent series (Clarendon Press, Oxford, 1949).
- [6] C.J. Harman, "A note on a discrete analytic function", Bull. Austral. Math. Soc. 10 (1974), 123-134.
- [7] Rufus Philip Isaacs, "A finite difference function theory", Univ. Nac. Tucumán Rev. Ser. A 2 (1941), 177-201.
- [8] Rufus Isaacs, "Monodiffric functions", Construction and applications of conformal maps, 257-266 (Proc. Sympos. 1949, Numerical analysis, National Bureau of Standards, Univ. California, Los Angeles. National Bureau of Standards Applied Mathematics Series, 18. United States Department of Commerce; US Government Printing Office, Washington, DC, 1952).

Department of Supply, Weapons Research Establishment, Salisbury, South Australia.