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REGULARITY FOR HAMILTON-JACOBI EQUATIONS
VIA APPROXIMATION

BUM I I HONG

We prove new regularity results for solutions of first-order partial differential equa-
tions of Hamilton-Jacobi type posed as initial value problems on the real line.
We show that certain spaces determined by quasinorms related to the solution's
approximation properties in C(R) by continuous, piecewise quadratic polynomial
functions are invariant under the action of the differential equation. As a result,
we show that solutions of Hamilton-Jacobi equations have enough regularity to be
approximated well in C(R) by moving-grid finite element methods. The preceding
results depend on a new stability theorem for Hamilton-Jacobi equations in any
number of spatial dimensions.

1. INTRODUCTION

Analysis by the method of characteristics shows that if / and «o are smooth and

uo has compact support, then the Hamilton-Jacobi equation

ut + /(Vw) = 0 x E RN, t > 0,

(H-J)

u{x, 0) = uo(x), x £ KN,

has a unique C1 solution u on some maximal time interval 0 ^ t < T for which

lim v,(x, t) exists uniformly; but this limiting function is not continuously differen-

tiable. Thus, ux becomes discontinuous at t = T, and it is therefore necessary to

deal with nonsmooth solutions if we want a solution of (H-J) that is defined for all

t > 0. If the equation is understood in the "almost-everywhere" sense, one can pro-

duce Lipschitz continuous functions on RN which satisfy (H-J) for all positive time.

Though "generalised" solutions in this sense are not unique, both existence and unique-

ness of generalised solutions that satisfy a so-called "viscosity" condition were shown

by Crandall and Lions [3]. The viscosity solution of (H-J) is the limit as e tends to
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196 B.I. Hong [2]

zero of the solution of (H-J) with the right-hand side replaced by eAu (hence the name
"viscosity"). Crandall, Evans, and Lions [2] provide a perhaps simpler introduction to
the subject, and the book by Lions [11] gives theory and references. Souganidis [15]
also discusses the existence of a unique viscosity solution under certain assumptions.
Crandall and Lions [4] establish the convergence of a general class of finite difference
schemes to the viscosity solution of (H-J) and give explicit error estimates. Sougani-
dis [14] establishes several results concerning the convergence of explicit and implicit
finite difference schemes (with error estimates) under certain assumptions. Jensen and
Souganidis [8] consider regularity for Hamilton-Jacobi equations in one space dimension
by studying the structure of the singularities of solutions.

In one space dimension, the equation (H-J) is closely related to hyperbolic conser-
vation laws. This relation is very simple: if u solves (H-J), then v = ux solves a scalar
conservation law

v* + f(v)x = °i i € l , i>0,

(C)

v ( x , 0 ) = v o ( x ) = u ' 0 ( x ) , x £ R .

This can be proved by noting that the entropy solution of (C) is also the limit as e tends

to zero of the solution of (C) with the right hand side replaced by evxx; see Kruzhkov

[9].

2. VISCOSITY SOLUTIONS OF (H-J)

To repeat, one cannot in general find a classical solution of (H-J) on R x [0, oo),
while Lipschitz continuous "generalised solutions" in the almost-everywhere sense exist
but are not unique. If u and v are generalised solutions of (H-J), then so are min(tt, v)

and max(u, v). In fact, if the problem is nonlinear, one can expect infinitely many
generalised solutions. The uniqueness problem is resolved by introducing a notion of
viscosity. Crandall and Lions [3] give the notion of viscosity and uniqueness results for
viscosity solutions.

DEFINITION 2.1: A viscosity subsolution (respectively, supersolution) of (H-J)
with / G C(RN) is a function u G C(RN x [0, oo)) such that for every <j> £
C ^ R " x (0, co)) and T > 0:

If (xo, to) is a local maximum point of u — <f>

(2.1.1) on RN x (0, T] , then
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(respectively,

If (xo, to) is a local maximum point of u — <j>

(2.1.2) on RN x (0, T), then

DEFINITION 2.2: A viscosity solution of (H-J) is a function u € C(RN x [0, oo))
for which both (2.1.1) and (2.1.2) hold (that is, u is both a viscosity subsolution and a
viscosity supersolution).

REMARK. If u is a classical solution of (H-J), then it is a viscosity solution, and if u is
a viscosity solution of (H-J), then ut(xo, to) + /(Vu(xo, ^o)) = 0 at any point (xo, to)
where u is differentiable.

LEMMA 2 . 3 . Suppose that u(x, t) and v(x, t) are viscosity solutions of

v>t + /(Vto) = 0, x G KN, t> 0,

w(x,0)=wo(x), I E R " ,

with initial data uo(x) and vo(x) respectively. Then

\\u(; t)-v{-, 0llL~(aw) < lko-wo||Loo(Ejv) and

inf «o(s) ^ */(0) +u(-, t)

PROOF: See [2] and [4]. •

LEMMA 2 . 4 . The function v is the viscosity solution of vt + <7(Vv) = 0 if and
only if u = —v is the viscosity solution of ut — j ( -Vu) = 0.

PROOF: (=») (1) Suppose tha t u - -v. Let <f> £ C 1 ^ x (0, oo)) and let v -<f>

at tain a local m a x i m u m at ( z 0 , to) . Then

(A) ^ ( x 0 l t o ) + f f ( V ^ ( x 0 , to))^O

Since —(w — <f>) = —v — (—<j>) = — (—<f>) and u — (—<j>) a t ta ins a local min imum at

(x0, t0), by (A),

-<f>t(xo, to) - g(-{-V<f>(x0, t0))) = -<A«(x0) t0) - s (V^(x 0 ) t0)) > 0.

Therefore, u — —v is a viscosity supersolution of ut — g(—Au) = 0.
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(2) Let v — <$> attain a local minimum at (xo, to)- Then

(B) *«(*o,*o)+ff(V#*o,to))^0.

Since — (v — <j>) — —v — {—<t>) = u — (—$) and u — (—<f>) attains a local maximum at

(a;o,<o),by (B),

-&(xo, h) - g(-(-V<t>(x0, to))) = -<t>t(xo, to) - s W ( z o , to)) < 0.

Therefore, u — —v is a viscosity subsolution of Ut — j ( - V u ) = 0. By (1) and (2), the
conclusion follows.

(<=) By the same argument, the other part follows. u

STABILITY OF TWO VISCOSITY SOLUTIONS

We prove that viscosity solutions are stable under changes in the nonlinear flux
functions as well as changes in the initial data. The following result is similar to the
stability result of Lucier [12] for conservation Laws. His result holds only for one space
dimension, but mine holds for several space dimensions.

THEOREM 3 . 1 . Let u and v be the viscosity solutions of

ut + /(Va) = 0, x G RN, t> 0,

u(x, 0) = uo(x), x G RN,

and

fi+0(Vv) = O, xeRN, t>0,

v(x, 0) = voW, x e RN,

respectively, where f and g are Lipschitz continuous, /(0) = ^(0) = 0, and «o and vo

are bounded and Lipschitz continuous. Then tor any t > 0,

+t\\f~ S|lL

Theorem 3.1 is the main result of this section. To prove that, we prepare with two

lemmas.

LEMMA 3 . 2 . Let u and w be the viscosity solutions of

«i + / (Vu) = 0, x G RN, t> 0,

u(x, 0) = WO(!B), x G RN,
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[5] Hamilton-Jacobi equations 199

and

wt + g(Vto) = 0, x e RN, t > 0

w(x, 0) = uo(x), x£RN,

respectively, where f and g are Lipschitz continuous, /(0) = <7(0) = 0, and tto is

bounded and Lipschitz continuous. Then for all positive time t,

\\u(; t) - W{-, 0|lLo

Theorem 3.1 follows by combining Lemma 2.3 and Lemma 3.2 and Lemma 3.2
follows from Lemma 3.3.

LEMMA 3 . 3 . Assume that u and w are as in Lemma 3.2. Let M = \\V>O\\LOO(J$N\

and let r)(z) be a smooth {unction on R such that TJ(—Z) = 77(2), 0 ^ 77(2) ^ 1, 7/(0) = 1

and 77(2) — 0 if \z\ > 1. Suppose that

a :— sup (u(x, t) — w(x, t)) > 0.
RNx[0,T)

For any A > 2 and e > 0 define

ip{x, t, y , 3) = u(x, t) - w(y, s) - ^(t + s) + (sM + ^)Pe(x ~V,t- * ) •

N
where /3e{x, t) is defined onRN xR by /3e(x, t) = r)(t/e) H ^{xi/e). If

1 = 1

(3.3.1) sup \u(x, t)\ and sup \w(x, t)\ —» 0 as r —> oo,
\\ \

then for any A > 2, there exists an e > 0 and a point (x0, t0, y0, a0) G (RN x (0, T])

such that ij,(xQ, t0, 2/0, 80) ^ i>(x, t, y, a) on (RN X (0, T ] ) 2 .

PROOF: Fix A > 2 and e > 0. If there is a sequence {(a:;, U, j / j , ai)}»^i in

(RN x [0, T])2 such that

(3.3.2) il>(xi, U, yt, at) -> s u p rj>,
(»wx[o,T])3

then (xi, U, yi, 8i) remains bounded by the following arguments.
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First,

s u p V > «(as, 0 - w(x, t) - -?-(t + t)+ UM + J W * -x,t-t)
[oT])J A I z/

= u(x, t) - w(x, t) - — + 5M + - for aU (x, ( j e R ^ x [0, T\.

Therefore

sup V ̂  SUP (u(s) 0 - w{x, t)) — + 5M + —
(m"x[o,T])J (m"x[oT]) A 2

(3-3-3)

If /3e(x - y, t - s) — 0, then

= u(x, t) - io(y, s) - — (t + s)

^u(x,t)-w(y, a)

Hence, (3.3.2) implies that f3c(xi — y,, U — Si) > 0 for large i, whence \xi — yi\ < e and
|<i — Si| < e. If \x{\ —> oo and \yi\ —> oo, then

lim sup V(*ii <i, 2/i, *0 < 5M + - by (3.3.1).
^ ° ° 2 l

This contradicts (3.3.2) and (3.3.3). Therefore, {(x,-, U, j/i, Zi)},^i is a bounded se-
quence and there is a convergent subsequence of {(«,-, U, yi, Si)}^ . Let (XQ, to, yo, so)
be the limit of the above subsequence. We shall show that we can pick e such that
t0 > 0 and a0 > 0.

We write

1>(x0, U, yo, so) = w(a;o, to)-v.(xo, 0)+u(z0 ,0) -w(xo, 0)

+ iu(a;o, 0) - 10(2/0, 0) + w(yo, 0) - w(y0, a0)

- Tfito + so) + (5M + -J/3e(xo - yo, U - so)-

We have \u(x0, to) -u(x0, 0)| ^ Lft0 where Lf :- sup{|/(p)| | \p\ ^ |Vu0|Loo(ajv)}

(and similarly \w(yo,0)—w(yo, ao)\ ^ ^9^0), w(xoi 0) — w(xo, 0) = 0, and
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|w(zo, 0) —10(1/0> 0)| ^ w(i«o, e), where w(woj •) is the modulus of smoothness of via •

Therefore, if max(io, sQ) — 6, then

ip(x0, to,yo, s0) < (Lf + Lg)6 + u(wo, e) + {5M + -).

From this inequality and (3.3.3) we see that

5 M + <rf | - | ) < (Lf + Lg)S + u(w0, e)

or

Assume that 60 satisfies

then, for any 0 < e ^ eo, we have

1

This is independent of e for 0 < e ^ e0 ; so choose e < 5/2. Then we have max(t0 , s0) =

6 and |t0 - so | ^ e < 6/2, so min(<0, «o) > */2 > 0. D

REMARK. If u is the viscosity solution of (H-J) with HuollioofuJV) ^ M for some

M > 0, then, by Lemma 2.3, ||u(-, <)||ioo(mjv) < M.

PROOF OF LEMMA 3.2: We shall prove that a, defined in Lemma 3.3, satisfies

By symmetry in u and w, we see that this implies

IN - Hlt-(1W x[0,T]) ^ T 11/ - 0llL

We first assume that

(A) sup \u(x, t)\ and sup \w(x, t)\ —* 0 as r —» 00.
l | |

If o- = 0, then we are done. Otherwise, by Lemma 3.3, for any A > 2 we can find an

e > 0 and a point (x0, to,yo,so)e (M.N x (0, T])2 such that

u(x, t) - (w(y0, so) + -^{t + s0) - (f>M + 7j)0e(x -yo,t- so)j
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attains a local maximum at (xo, to), whence

— - (5M + - ) -xj-(x0 - y0, U - s0)
(3.2.1) AT V 2 / dt

+ / ( - ( 5 M + !)v,j8,(*o - 2/o, t0 - s0)) < 0.

Similarly

-io(y, s) - (-u(a;o, to) + -^(U + s) - (tM + | ) l . ( x 0 - 2/, *o - a))

attains a local majtimum at (j/o> so). Let z(j/, s) = — w(y, s) and let

4>(y, s) = ti(x0> i0) - 3^(*o + «) + (5M + | ) A(x0 - y, <o - *).

Then z(y, s) - {—<j>{y, a)) attain a local maximum at (y0, s0). Since Lemma 2.4
says that z(y, s) is the visocsity solution of z, — g(—Vyz) = 0 and —<f>,(yo, -so) —

, ao)) ^ 0, we have

^ - UM + ^ ) -^ (xo - J/o, <o - so)

( ( | ) ) 0.

Adding (3.2.1) and (3.2.2) gives

— - [bM + - J - ^ ( s o - yo, <o - so) - [5M + | j -Tjj-fco - 2/o, <o - s0)

, A ( x 0 - 3/o, <o - so))

Since ^ - ( s o - J/o, * - s0)|*=t0 = - ^ - ( ^ o - 2/o, <o - s) | ,=,0 and Vx/3c(x - y0, t0 - s0)

U=x0 = -Vj,/9€(xo - y, <o - «o)|»=y0 , we have

^ + ( / - P ) ( - (5M + | ) V«/3E(x0 - yo, <o - *o)) < 0.

Hence

jjji < (5 - / ) ( - ( 5M + | ) V,j9,(x0 - yo, *o - s0))

2o-
^ AT "^ "" "L°°(!!liV)

AT

< I I Z l l
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Letting A —» 2, we obtain

We now drop the assumption (A). For r > 0, let p(a;) be a smooth function having
support in the ball B(0, r + 1) = {x £ RN | |x| ^ r + 1} such that p(x) = 1 on |z| ^ r.
Suppose that «J(z) = p(x)uo(x) and w%(x) = p(x)t«o(x), then for all positive time t,
the corresponding viscosity solutions up{x) and wp(x) have the following properties:

u"(x)=u(x) on | a s | < r - < | / | L l p and

wp(x) = w(x) on |z| < r - t \g\Lip ;

see [11]. Let L = max{|/ |L ip, |<7|Lip}. Then

max |ii(a:, t) — w(x, t)\ = max \up(x, t) — wp(x, t)\
|l|<r-it \x\<r-Lt

^ * 11/ - 9\\L°°(mN) ty *^e previous argument.

Hence, letting r —> oo, we have

II" - HIL°°(IR") < ' 11/ ~ sllz,

This completes the proof. U

We now prove Theorem 3.1.

PROOF OF THEOREM 3.1: In addition to the equation in the statement of Theorem
3.1, consider

wt + g(Vw) = 0, x e RN, t > 0,

w(x, 0) = uo(x), i E l N .

Then, by Lemma 3.2 and Lemma 2.3,

* 11/ - 5llLcc(aJv) + M - , 0) - *(., 0)||L

This completes the proof. U
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4. APPROXIMATION SPACES, BESOV SPACES AND BESOV-TYPE SPACES

In this section we give the definitions of approximation spaces, Besov spaces, and
Besov-type spaces, and we recall the relationship between approximation spaces and
Besov-type spaces. The general references for this section are [7] and [13].

Consider the approximation of functions in C(I) where / :— [0, 1]. For any / £
C(I) and any positive integer N, let Ef^(f, C(I)) := inf | | / — $||c(j) where the infimum
is taken over all continuous, piecewise polynomial functions <f> defined on / of degree less
than 3 with N — 1 free interior knots. For each positive a less than 3 and q £ (0, oo],
define A°(C(I)) to be the set of functions for which

1/9

,. ) < °°'

if 0 < q < oo and

ll/llx-(O(/)) := H/llc(/) + suP{NaE3
N(f, C(I))} < oo,

if q = oo.

REMARK. If <*i > a2, then A£(C(I)) C A°j(C(I)) for any 91 and q2. But if ax =
a2 = a and 9 l > q2, then A£(<?(/)) D A^{C{I)).

We now define Besov spaces. For a € (0, 00), q e (0, 00] and p € (0, 00], the
Besov spaces B*(LP(I)) are defined as follows: Pick any integer r > a, let V ( / , h)(x)

be the r th forward difference of / at x with step h (that is, V°(/, h)(x) := /(x) and
V ( / , h)(x) := V - H / , h)(x + h) - V - ^ / , *)(*))• Let Irh = {x £ I | x + rh e / } .

Define wr(/ , t)o = sup | | V ( / , AJIUpfr v The Besov space Bf(V(I)) is defined to
p \h\<t y Th) *

be the set of functions / for which

1 '

if 0 < q < 00 and
: = SUP {<"~°'a;r(/, <)„} < 00,

0<«<oo

if g = 00. Set | | / | |Ba(z,P( / ) ) := \\f\\LP(I) + | /IB«(LP(/))-

The relationship between approximation spaces and Besov spaces can be shown by

means of if-functionals. The real method of interpolation using if-functionals can be

described as follows. For any two spaces Xo and X\ contained in a linear metric space

X, define the following functional for all / in Xo + X\.

K{f, t, Xo, X1) := inf {||/o||Xo +
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[11] Hamilton-Jacobi equations 205

where / 0 G Xo and fi £Xi. The new space Xe,q = {Xo, X1)gq (0 < 6 < 1, 0 < q < oo)
consists of functions / for which

aO

yfhere\\f\\Xo+Xi=K(f,l,X0,X1).
The approximation spaces A*(C(I)) cannot in general be characterised in terms of

Besov spaces. It is possible however to characterise A°(C(I)) in terms of certain spaces
which are closely related to Besov spaces. For this type of approximation, Petrushev
[13] has given Jackson and Bernstein inequalities in terms of the space B" , 3 > a > 1,
consisting of all absolutely continuous functions / for which / ' is in JB°~1(i'(/))
where a = 1/q. That is, E^(u0, C(/)) < CN~a \\uo\\Ba (the Jackson inequality) and
II^HBQ ^ CNa ||<£||c (the Bernstein inequality) for any continuous, piecewise polyno-
mial <f> of degree less than 3. (Petrushev in fact proved such inequalities for polynomials
of degree less than r and 1 < a < r.) The first statement of the following theorem
follows directly from these estimates, while the second statement relies on a character-
isation of some of these interpolation spaces by DeVore and Popov [7].

THEOREM 4 . 1 . When 0 < q < oo, 1 </3 ^ 3 and 1 < a < /?,

and if q= I / a ,

5. REGULARITY FOR HAMILTON-JACOBI EQUATIONS

We prove the following theorem and corollary that are the main results of this
paper. A similar result for conservation laws was shown by DeVore and Lucier [6].

THEOREM 5 . 1 . Suppose that uo is Lipschitz continuous, has support in [0, 1],
and that u'o G BV(R). Let a € (0, 3) and q € (0, oo] and let Q = {y \ \y\ <
C1UOIBV(1E)}> w A e r e C will be specified latter. If /(0) = 0, / " > 0, and / ' and / '"
are bounded on Q, and if UQ £ A°(C([0, 1])), then for all t > 0, u(-, t) has support in
It = [inf f'(p)t, 1 4- sup/'(p)<], is Lipschitz continuous, and is in A°(C(It)).

COROLLARY 5 . 1 . Let a E (1, 3). Suppose that uo is Lipschitz continuous, has
support in[0, 1] and that u'o £ BV{R). Let /(0) = 0. Suppose that f" > 0 and that
f and / " ' are bounded on fi as given in Theorem 5.1. If uo is in B°(\0, 1]), tien
u(-, t) has support in It given in Theorem 5.1 and is in B°(It) for all t > 0.

Suppose that vo is a good continuous, piecewise quadratic approximation to
«o with N — 1 free interior knots where / := [0,1] such that ||u0 — «o||cm ^
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2inf ||uo — 0Hc(/) = 2£?^(«o, C(J)) and that vo has support in / . Let {7v}£Lo,
with To = 0 and r̂ v = 1, be the ordered set of knots of VQ . Consider each inter-
val /,• := [T,-, TJ+I]. Now |7i| := r,-+i — Tj, and let Pi be a quadratic approximation to
u0 on each /< such that ||uo — -P«Hc(j,) ^ lluo ~vo\\c(l)- ^ e t zo(x) be the piecewise,
discontinuous quadratic approximation to UQ satisfying za\ii = Pi for i = 0, . . . , N — 1
and having support in / . Then ||tto — •Zo||#oo(u) ^ ||uo — vo||c(K) •

Now construct a continuous, piecewise quadratic approximation u>o(x) having

support in [0, 1] from ZQ(X) as follows. On each interval Zj, add a linear poly-

nomial li(x) to P,(x) so that wo(ri) = WO(T<) and wo(Ti+i) = «O(T»+I)- Then

\\li(x)\\L°°(li) < lluo - «o||c(iR) f o r ^ *• Hence

lluo -zolL«.(m) + ll2o -

Let »7o(a:) be the piecewise linear interpolant to uo(x) at {n}iL1. Then we have the

following lemmas.

LEMMA 5 . 2 . Ifu'0£ BV(R), then \r,'0\Bvm < KIBV(E)-

PROOF: One can see that for each i,

For each i, one can find <ri, a{ £ [r ,̂ TJ+I] such that «[,(£.) ^ '/oU, ^ uo(°"«)- We
now order them. Then we have at most 2N distinct knots, say £,• for i = 1, . . . , 2N.
Hence,

N-2

t = 0

2W-1

< IUOIBV(E) •

This completes the proof. Q
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LEMMA 5 . 3 . Suppose that u'o E BV(R) with support in [0, 1]. Then there is a
constant C such that the approximation wg satisfies \w'o |BV(a) ^ C \u'o IBV(») -

PROOF: Let Li(x) be the linear polynomial on each I{ satisfying 1/.(TJ) = wo(7v)
and L'^Ti) = u'0(ri) for each t. (Here we assume that u'o is taken to be right continu-
ous.) Since W'Q is a constant and uj is a measure,

= / Wo\dx

-L'!\dx

~ •^*Hi0O(/j) (true for polynomials of fixed degree)

•L

c_

c
= TTTSUP

«O(TO + v,'0(Ti)(x - TO + I (* - s)u'i(s)ds - Li(x)

C
sup / | iB-a | |«o |dx

Hence K | B V ( / . ) ^ C \u'0\BV{Ii) for all i.

We now measure the jump |i"o(Ti+) ~tyo(ri~)|- Because too is quadratic on /;,
rjo is hnear on / j , and WO(TJ) = »7o(Tt) for all i, one can see that

+1 K'( ) |d ^

Therefore,

« = 0 t = 0 i = 0

N

i=0
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Adding these two constants gives us the desired value of C. D

This C is the constant of Theorem 5.1. Since C is greater than 1 and |I"Q|BV/,JJ ^

C |MOIBV(JB) • So, the ranges of u'o and w'o are contained in fi = {y | \y\ ^ C \u'o | B V / a ) } .

There is a C1 piecewise quadratic approximation fe to / with knots at the points

j/N, j S Z, that is denned by f'(j/N) = /|(j/JV), /(0) = / t(0); / , is strictly convex.

Moreover | | / — fe\\i,oaim ^ C \\f'"\\i,oo/^\ N~3 ; see [1, 5]. Consider now the perturbed

problem

v>t + fe{v>x) = 0 , xeR, t>0,

( P )

w(x, 0) = wo(x), i g R .

Lions [11] proved that the viscosity solution of this equation can be found using a

technique introduced by Lax [10], which we shall now describe. Let z = f'e(w) and

g{z) = zw- /.(«;). Then g(z) = z{f()-\z) - / . ( ( / i ) " 1 ^ ) ) and

% = (fir1 w+*((/:r1)'w - r.far1

But (f'e) is increasing, so g(z) is strictly convex. Moreover, g' and f'e are inverse

functions.

Lions [11] showed that w(x, t) — min{tg((x — y)/t) + v>o(y)} is the viscosity so-

lution of (P), and w(x, t) is Lipschitz continuous if Wo is Lipschitz continuous and
fe is convex. The minimisation problem introduced by Lax [10] picks out a specific
value y :— y(x, t) among possibly many solutions of (x — y)/t = f'e(w'o(y)) so that
w(x, t) — min{f<7((a; — y)/t) + wo(y)} is attained. Moreover, he shows that y(x, t) is

an increasing function of x for fixed t. The derivative of the solution w(x, t) with

respect to x is discontinuous wherever y[x, i) is discontinuous in x.

We now count some points, which we call points of transition, at which the deriva-

tive of the viscosity solution ti>(aj, t) with respect to x is not continuous. We fix t and

introduce 2 types of points in / := [0, 1].

The first are the knots of WQ(X). By construction, there are N such points.
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The second type of points are isolated points x where vi'0{x) — j/N for some
j 6 Z . Ji w'o is discontinuous at x and there are several values of j such that
min(w'0(x~), w'0(x

+)) < j/N < max(tOo(a;+), w'0(x~)), then add these points to the
second type. On each interval /,- = [TJ, TJ+I ] , the number of isolated points for w'o is
no more than N I^OIBVYJ) + 1 by the following argument. Since w'0(x) is linear on
/ j , the number of isolated points for w'0(x) is the same as the number of values of j
for which j/N is on the interval [min (w'o (rf), ^ ( T ^ ) ) , max (iu{,(r/"), t o i ^ + i ) ) ]
and the number of these points is at most N times the length of the interval
[min(w'0(T?~), w'0(Tr+J)), msx(w'0(r^), w'0(rr+1))] plus 1 which is N \w'0\BV{I{) + 1.

N-1 ( \
So, the total number of isolated points is no more than X) \N \W'O\BV(I) + -M •
Similarly, when w'0(x) is discontinuous at x, the number of values of j satisfying
min^Cz-), w'0(x

+)) < j/N < max«(x+), w'0(x-)) is at most N \W'0(T?) - w'0(rr)\.
N

So, the total number of these points is at most. N ^ |t"o(r,:^) ~ w o ( T i~ ) | - Oyer-

all, the total number of points of the second type is, by Lemma 5.2, no more than

because E

and NZ\<(T?)-w'0(Tr)\ ^ CK|BV(K)iV. Consider F(y(x, <)) = y{x,t) +
i=0

tf'c(w'0(y(x, t)))- Since F(y) is a linear polynomial in y between points of type one and
type two, there is no zero of JP'(J/) between points of type one and type two. There-
fore, F(y) is monotone on each open interval which contains no points of the two types
described above. The solution w(x, t) of (P) satisfies w(x, i) — g((x — y)/t) + wo(y)

for some solution y := y(x, t) to the equation

(5-1) x-^

Consider now a maximal interval /<> of x values on which y takes values in an

interval J which contains no points of the two types described above. Since F(y) is

monotone on J , there is at most one solution of y to (5.1) in J. Since y increases as

x increases, each interval IQ contains at most one point at which the jump of y(x, t)

happens. (That is, the derivative of w(x, t) is discontinuous.) Since there are at most

f 2 + 1C |«OIBV(») J-^ intervals IQ, there are at most 12 + 1C l^dlgy/^ )N points of

transition in the solution w(x, t). Between these points of transition, we can easily see

that

t o .

Since ff'(s) is linear in s and y is linear in x, wx(x, t) is linear in x. So, w(x, t) is
quadratic in x between any two points of transition. Therefore, the solution w[x, t)
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of the perturbed problem (P) is a continuous, piecewise quadratic polynomial for fixed

t > 0 with no more than (2 -f 2C |uJ)|Bv(i) )N pieces.

THEOREM 5 . 4 . Let u'o e BV(R) and let u0 have support in I :- [0, 1]. Let
/(0) = 0. Suppose that f" > 0 and that f and / ' " are bounded on fi as defined in
Theorem 5.1. Suppose that a e (0, 3) and u0 G A°(C(I)) where q 6 (0, oo]. TAen
u(-, t) has support in It — [inf tf'(p), sup 1 + tf'(p)] and for any JV > 1,

pen £n

(5.4) E3
FiN)(u(; t),

wiere F(N) = (2 + 2C |M(, |BV(m) ) -^ a11^ C JS given in Lemma 5.3.

PROOF: The first conclusion is classical. We shall prove the second conclusion.
Consider two equations

ut + f{ux) = 0, xeR,t>0,

u(x, 0) = uo(x), iel,

and

wt + fe(wx) =0 , xGR, t > 0 ,

w(x, 0) =wo(x), x GK.

By Theorem 3.1 and the construction of fc,

\\u(-,t)-w(-,t)\\LOO{m) ^ ||u0-i)o||Loo(ls) + / | | / - / * | | L oo ( B )

Since ||u0 — wo|li,oo(ffi) ^ 2 ||u0 — ^O|ILOO(J) ^ 4^^(n0, C(-f)), w(-, t) has no more than
F(N) breakpoints, and E^,,NJu, C(It)) ^ ||w(-, <) — «;(•, 2)IIL°°(II) I *^e second conclu-
sion immediately follows. U

Theorem 5.4 can be now used to prove Theorem 5.1.

PROOF OF THEOREM 5.1: Inequality (5.4) shows that

C3/N\

here C2 = 1/(2 + 2C K | B V ( 1 ) ) and C3 = Cxt | |/"' | |L«(1S) / (2 + 2C K | B V ( 1 ) ) S .
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From now on, we shall use a generic C. For 0 < q < oo,

/ oo

C/N3)]"-
1/9

1 /9

(5.1.1) Y-i-
(CECN{U0, C(I)) + C/N3)]3\l?

1 /9

\N=1

1/9

\N=1

If 0 < q < 1, then

[(CN)a-<ECN{uo, C{I))

Therefore,

(5.1.2)

(5.1.1)

3-°+\Y<

+

\N=1

oo

{CN)a-l'ECN{uo, C{I))Y+ £ [c/N3-a+1*]
Nl

1/9

N=l

oo

N=l N = l

Since u0 6 A°(C(/)) and

(5.1.2) < 29-

£ / ' for 0 < a < 3,

1/9

< OO.
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If 1 < 1 < oo, then, because u0 £ A°(C(I)) and h/N3~a+*\ £ /« for

0 < a < 3 and by the Minkowski inequality,

(5.1.1)

KN=1

If q = oo and 0 < a < 3, then

^ sup[Na(CECN(u0, C(I)) + C/N3)}
N

^ sup[NaECN(uo, C(I))} + snp[C/N3-a] < oo.
TV N

This shows that u(-, t) G APqa(C(It)) for 0 < a < 3. D

Corollary 5.1 follows immediately from Theorem 5.1 and the characterisation of
the spaces A°(C(It)) in terms of Besov-type spaces.
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