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Abstract

In this paper we prove a number of results on Cauchy transforms of generalized type given by Borel
measures supported on the class of analytic functions mapping the unit disc into the unit disk. We also
give a BMOA characterization using these families.
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1. Introduction

Let A = {z € C : \z\ < 1} , T = {x : \x\ = 1} and let Jt denote the sets of
complex-valued Borel measures on Y.

For z 6 A and a > 0 , let Fa denote the family of functions / for which there
exists a measure /x € M such that

(1.1) /(z) =
—z:— d/x(x) for a > 0;

flog-—l—dn(x)+f(0) for a = 0.
Jr l-xz

These families are known as families of Cauchy transforms and have been well studied
in [4, 3, 8, 10].

The class Fa is a Banach space with respect to the norm

(12) II f II = { i n f i l ^ f o r a > 0 ;

inf|NI + | / (0) | for a = 0,
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where n varies over all measures in ^f for which (1.1) holds and where \\ii\\ denotes
the total variation norm of /x.

It is known from [5, 6] that

• Fa c Fp, whenever 0 < a < /}.
• Fa is Mobius invariant for a > 0.
• / e Fa if and only if/ ' € F1+a .
• II/'IIFH. <* | | / | | f a for some * > 0 .

We now define generalized families of Cauchy transforms by extending T and M'.
We extend r to B, the set of analytic selfmaps (f> mapping the open unit disc A into
itself and such that 0(0) = 0. We also extend M to jY', the sets of complex-valued
Borel measures on B. B is equipped with the topology of uniform convergence on
compact subsets. Here J( is equivalent to the subset of Jf consisting of all those
measures supported on the set {xz '• \x\ — 1}.

For z € A and a > 0 , let Aa denote the family of functions / for which there
exists a measure /x € ^Y such that

/ dn((t>) for a > 0;

/ lo8 I ITT d ^ + / <°) for a = °-
JB l

d.3)

The class Aa is a Banach space with respect to the norm

(1.4) II/IU = in

|inf||/x|| +1/(0) | for « = 0,

where /x varies over all measures in Jf.
Clearly the classes Fa are subsets of Aa when the measures /x in (1.3) are in M.

Furthermore, for/ e Fa, \\f \\Fa > ||/ \\Aa. It is also known from [1] that for a > 1,
Fa = A a .

We show in this paper that for 0 < or < /8,

(1.5) A . C A , and ||/IU, < l l / lk-

This generalizes similar results for Fa (see [7, 9]).
We also show that Ao = BMOA and that the norm || • Ĥ ,, is equivalent to well

known BMO norms. Furthermore, we show that, for all n > 1 and a > 0

llz"lk<*

where the constant k is independent of n and a.
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2. The classes Aa

359

In this section we establish for 0 < a < f$ the relationship between Aa and Ap as
well as their respective norms.

THEOREM 2.1. 7/0 < a < /3, then Aa C A? and | | / ||A, < | | / ||A..

PROOF. Note that since Aa = Fa for a > 1, [1], and for 0 < a < p, Fa c Ffi and
11/ II F, < 11/ II F. [7], then all we have to prove is the case 0 < a < p < 1.

(i) Le t / e A s , where 0 < a < /J, then we can write

(2.1) f(z) =
1

Since 1/(1 — z)a e Fa C Fp, we can write

(2.2)

and

(2.3)

1

(1 - zY

l

=T7 dv(x)

1
= 1.

Now by replacing z in (2.2) by \j/ (z) and putting the result in (2.1) we get

(2.4) f(z)= f f n _\ , ^ dv(x) dvW).

Suppose without loss of generality that v is a positive measure and let

Then by (2.1)

converges locally uniformly to

Let 7?n(i/0 = 5Zt=, VkfJ-dr), then

(i -
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where ||?7n|| < |M|||/x|| for all n. Hence by compactness, there exists a measure a
such that

which shows that / € AB. Furthermore, ||a|| < ||v||||/x||. Consequently,

11/IU, < Ikll < llMlllMI for all n.

However, since /x and v are arbitrary measures that give (2.1) and (2.2), then

L, <
Hence by (2.3)

II/IU, <ll/lk-

(ii) Now let / € i40. We want to show that f e Aa for any a > 0. By the
definition,

(2.6) / (z) = [ log t * ^ dn(<i>) + f (0).
JB 1 - 0 ( Z )

Since log(l — z)~' € Fo c Fa see [5], then

1 f 1
/ — = — dv(x),

l )

where y depends only on a. Hence (2.6) becomes

(2.7) fU)= f [ 1 dv{x)dii{4>) + /(0),

where the integral in (2.7) looks exactly like the one in (2.3) with a replacing p. Hence
using an argument similar to the one in (i) we get that

(2-8) / (z) = [ [ l—— do{f) + f (0)
JBJr (1 ~ f(z))a

which shows that/ € Aa. Furthermore, \\a\\ < ||v||||/z|| and hence

(2.9) ||/ |U. < inf{||Mlll + 1/ (0)1 = ||/ |U0. D
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3. Characterization of Ao

It is known from [2, page 248] that <f> € BMO if and only if there exist functions
(pi and <t>2 in L°° such that

where both ||0i||oo and Halloo are less than C||0||», C is a constant and || ||, is the
classical BMO norm.

Consequently / € BMOA if and only if there are analytic functions f\ and / 2 such
that

(3.1) f=fi+fi + a

where HRe / J^ < Cand Hlm/zlU < C. If we define on BMOA the norm

(3.2) ||/II* = inf{|| Re/ , I L + 11^/21100:/ =f1+f2 + a),

then by [2], the norms ||/ ||* and ||/ ||. are equivalent.
Now we have the following proposition which establishes a set equality between

Ao and BMOA and thus gives a BMOA characterization using generalized families of
Cauchy transforms.

THEOREM 3.1. Ao = BMOA.

PROOF. Suppose that/ e Ao, then according to (1.3) there exists a measure /x e JV

such that

(3.3) f(z)= / log — - d(i(4>) + / (0).
JB l — <p(z)

Assume without loss of generality that ix is a probability measure. Then / is subor-
dinate to log(l - z)~l + f (0) and consequently by (3.1) / € BMOA. The proof of
the other inclusion follows from (3.1) and subordination. •

THEOREM 3.2. The norms || • ||, and \\ • \\Ao are equivalent, that is, there exist positive
constants C\ and c2 such that

PROOF. Suppose/ e BMOA, then/ can be decomposed as in (3.1). Let dt denote
|| Re/iHoo and d2 denote || Im /2||oo- Then

(3.5) " - - • • *
ld\ 2
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and

(3.6)
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2d2

< —
~ 2

for all z € A. Consequently, by subordination

(3.7) if i (z) = ^ Hog 1 _ 1 - log * j + if

(3.8) /2(z)

for all z e A and 0,

(3.9)

and hence

= ^ flog - log

x (0)

+/2(0)

- Therefore,

-
7T

-
7T

which gives the right inequality in (3.4).
Next, we show that the inequality (3.14) holds. Let us write / as in (1.2) and

assume without loss of generality that \x is a positive measure. Then

(3.11)

where c > 1. Thus

(3.12)

and since

(3.13)

we have

(3.14) | | / | | . <

Um/(z)|

|Im/(z)|

Illm/IU:

*.l|lm/||.<

<c\\fi\\,

<c||/|U0

> Him/H.

*2ll/U = -11/HA.,

where cx = l/k2 and the left inequality in (3.14) follows from [2, page 235].

THEOREM3.3. \\Z"\\A. < kforn > 1.

•

PROOF. It is enough to show that ||z"L0 < k for n > 1. Since we have shown
that || • ||. and || • Ik are equivalent, let us approximate ||z"||.. It is known (see [2,
page 240]) that

(3.15) \\g\\l * sup [f
J J

vg\2d-\z\2W(z)\dA,
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where ^(z) = (z + Zo)/(1 + Zoz) is a Mobius transformation. Replace g in (3.15) by
z" and \z\ by r to get

• / /
\V{zn)\2{\-r2M\z)\dA

A

h1
Jo

/

I /.2ir

r2"-2(l-r)rf/-, because/ |^r'(z)| </0 < 2TT
0

which gives us the desired result and completes the proof. •

The following corollary is a direct consequence of the previous theorem.

COROLLARY 3.4. If f(z) = Z ^ o
a « z " is analytic and ifJ2T=i \a»\ < °°' then

f eAaforalla > 0.

PROOF. It is sufficient to prove t h a t / € Ao since Ao c Aa. To show t h a t / e Ao

all we have to show is that the norm \\f (z) || Ao is bounded.

0 0

y^a
n=Q

n <

Ao

0 0

D
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