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ON A CLASS OF POLYNOMIALS ASSOCIATED WITH
THE SUBGRAPHS OF A GRAPH AM) ITS APPLICATION TO

CHROMATIC AND DICHROMATIC POLYNOMIALS

E.J. FARRELL

Let G be a graph. With every connected subgraph of G , let us

associate a weight W , and

cover) C of G , a weight

associate a weight W , and with every spanning subgraph (or

where a. {i = 1, 2, ..., n) are the components of C . The

subgraph polynomial of G is

where the summation is taken over all the spanning subgraphs in

G .

The basic properties of subgraph polynomials are given,

expressions for the subgraph polynomials of multigraphs and

pseudographs are derived, and the chromatic and dichromatic

polynomials are shown to be special cases of the subgraph

polynomial.

1. Introduction

The graphs considered here will be finite and undirected. Let G be
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344 E.J. FarrelI

such a graph. With every connected subgraph a of G , let us associate

an indeterminante or weight w . With every spanning subgraph (cover) H

of G , let us associate the weight

w{E) = IT " •
a

The subgraph polynomial of G is

I w(H) ,

where the summation is taken over all covers H in G .

In this paper we will initially assign weights to connected subgraphs

according to the number of edges that they contain. Thus a connected

subgraph with n edges will be assigned a weight W . Hence the subgraph

polynomial of G will be a polynomial in the variables U , u , U_, ... ,

and so on. If we denote the subgraph polynomial of G by S(G; w) , then

we will have

S(G; W) ^lAw^wl2 ... w* ,

where A is the number of spanning subgraphs of G , consisting of iQ

nodes, i edges, ip trees with two edges, and so on, and

w = (wn, w. , wo, ...) is a general weight vector. If we put w. = w for

all i , then the resulting polynomial S(G; w) in the variable w , will

be called the simple subgraph polynomial of G . In this case, the

coefficient of w will be the number of spanning subgraphs of G with k

components. We note that the subgraph polynomial of a graph is a special

kind of F-polynomial (see FarrelI [/]).

We will give some of the basic properties of subgraph polynomials and

deduce an algorithm for finding the polynomials. We will then derive

expressions for the subgraph polynomials of pseudographs and multigraphs.

We will show that the chromatic and dichromatic polynomials of a graph are

special cases of its subgraph polynomial, when the weights are

appropriately chosen. We refer the reader to Harary [2] for the basic

definitions in graph theory.
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2. The fundamental algorithm for subgraph polynomials

Let G be a graph. We can put the covers of G into two classes;

(i) those containing a given edge xy , and

(ii) those not containing xy , where x and y are nodes in

V(G) .

The covers which do not contain xy will be covers of the graph G'

obtained from G by deleting xy . The covers containing xy will be

covers of the graph G* obtained from G by incorporating xy ; that is

distinguishing xy in some way and requiring it to belong to every cover

of G (for example, we can colour xy ). Thus we have the fundamental

theorem for subgraph polynomials.

THEOREM 1. S{G; W) = S{G'; W) + S(G*; W) .

Since any subgraph of G can be part of a cover, there are no

restrictions on the edges which can be added to an incorporated subgraph.

In addition to this, we are interested only in the number of edges in the

incorporated subgraph (in this application). Therefore it is unnecessary

to keep these subgraphs in their original forms, in a practical application

of Theorem 1. We could instead "shrink" them to compound nodes, and keep

an account of the number of edges in the compound nodes.

Identification of the nodes at the ends of the incorporated edge (in

the sense described in Read [3]) will accomplish the shrinking process.

Thus we can delete edges and identify nodes, just as we do for chromatic

polynomials (see [3]). The only difference in this case is that we cannot

ignore loops, for obvious reasons. Loops must be treated as ordinary

edges. In order to keep an account of the number of edges in the compound

nodes, we can assign numbers to these nodes, representing the number of

edges in the incorporated subgraphs. Ordinary nodes can be given the

number 0 . If two nodes with associated numbers m and n are

identified, then the compound node formed by identifying them will receive

an associated number m + n + 1 .

The fundamental algorithm for subgraph polynomials (or the reduction

process, for brevity) consists of repeated applications of Theorem 1, until

empty graphs result. Weights can then be assigned to these final empty

graphs, and the polynomial written down. Of course, the incorporation
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process will vary according to the criteria used for assigning weights.

Notice that if the simple subgraph polynomial is required, then the

incorporation process could be simple node identification. This

simplification is independent of the original criteria used for assigning

weights.

The following is a useful corollary of the fundamental theorem. x(ff)

denotes the number of connected spanning subgraphs of G .

COROLLARY 1.1. Let G be a graph containing an edge xy } G' the

graph obtained from G by deleting xy and G* the graph obtained from

G by identifying nodes x and y . Then

x(G) = T(G')

Below is an illustration of the fundamental algorithm for subgraph

polynomials.

The resulting polynomial is

S(G; w) = wQ + 5vfyx + °wow2 + 2uQw3 + 2w^ + 8w + 5 ^ + w^ .

3. Basic properties of subgraph polynomials

We can write the simple subgraph polynomial of G as

p-1 .

S(G; w) = I a-uP"* ,
k K

where p is the number of nodes in G and a, is the number of subgraph

covers with p - k components. We will now prove the following lemma.

LEMMA 1 (The Cutnode Theorem). Let G be a graph consisting of two

blocks D and E with one common cutnode. Then

S(G; w) = W~XS(D; w)S(E; w) .

Proof. Let x be the node which is common to D and E . Consider

a cover with cardinality k . The components must be subgraphs belonging

to D only, to E only and a subgraph of D and E "joined" together at

node x . Thus two covers with cardinalities m and n in D and E

respectively, yield a cover of G with cardinality m + n ~ 1 .

If we give a weight w to each component of each cover, then the
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covers of D and E will receive weights of W and W respectively.

However the resulting cover of G will receive a weight of w ~ This

will be true for all m and n . Hence the result follows. //

This lemma can be easily extended to a graph containing several

blocks.

THEOREM 2. Let G be a graph consisting of n blocks

, B2, ..., Bn . Then

i w) = w-{n-X) fjs{B-, w) .

The following result can be easily proved.

THEOREM 3 (The Component Theorem). Let G be a graph consisting of

components C' C C . Then

S{G; W) =YJS[C; w) .
i=l n'

The following theorem shows that there are no "gaps" in S(G; w) .

THEOREM 4. The smallest exponent of w in S(G; w) is the number

of components in G } and all larger powers of w , up to tf , must occur

in S(G; w) with nonzero coefficients.

Proof. Clearly G is a cover of itself and no cover of G can have

less components than G itself. Therefore the first part of the theorem

follows.

The set of nodes of G is a cover of G and therefore uf will be

the highest power of W in S{G; w) . Finally, any cover of G with

cardinality r (r t p) can be transformed to a cover of G with r + 1

components by removing edges. Therefore the second part of the theorem

follows. //

It is clear that the number of subgraphs in a graph G with q edges

is 2" . Also, a spanning subgraph of G is a cover with cardinality 1 .

Thus S{G; w) has the following properties.
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PROPERTY 1. The sum of the coefficients of S(G; w) is 2^ .

PROPERTY 2. The coefficient of w in S(G; w) and the coefficient

of w in S(G; w) are equal to the number of spanning subgraphs in G .

P-l _ ,. P-l
PROPERTY 3. If S(G; w) =

k K k K

any other F-polynomial of G (see [/]), then a. 2 b. for all i .

4. Subgraph polynomials of pseudographs and multigraphs

We will obtain expressions for the subgraph polynomials of pseudo-

graphs and multigraphs. These results can be useful for deducing some well

known properties of chromatic and dichromatic polynomials.

The following notations will be used. G will represent a graph

obtained from the graph G by attaching n loops to one of its nodes -

say node x . G*[r] will be the graph obtained from G by replacing

node x by a compound node "containing r edges" (that is, a compound

node representing a subgraph consisting of r incorporated edges). Note

that G*[r] will still have n loops attached to the compound node x .

For brevity, we will use G itself for S(G; w) when it would lead to no

confusion.

In the following theorem we give an expression for the subgraph

polynomial of G

THEOREM 5. Gn = G + (l+G*)
n - l , where {G*)r = G*[r] .

Proof by induction on n . When n = 1 , the statement becomes

Gx = G + G*[l] .

This is obviously true, as can be seen by applying the reduction process to

G by deleting the loop. Let us assume that the statement holds for

n = k . Then

(1) Gk = G + (1+G*)
k - 1 .
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Let us apply the reduction process to G,+1 by deleting one of the

loops. This yields

(2) Gk+1 = Gk + G*

It follows from equation (l) with G, replaced by G£[l] » that

G*[l] = k

with

implying

{G*[e]f = G*[r+s]

k V
(3) G*[l] = C*[l] + C*[fc+1] + £ r . )ff«[r] .

« r=2 r " 1

By substituting the expression given in (l) for G, and the expression for
K

given in

Gk+1
 =

=

_

(3),

G +

G +

G +

we obtain

(k+DC*[l.

1 [ r )<•

from

I + G'

(2),

r=2

Hence the statement holds for n = k + 1 , when it is assumed for n = k .

Also it is true for n = 1 . By the Principle of Induction, it holds for

all n . II

Clearly if in G node x (the node to which the n loops are

attached) is a compound node containing an incorporated subgraph with

edges, then Theorem 5 becomes

Thus we get the following lemma.

LEMMA 2. G*[i] = (G*)t'(l+G*)n , with (G*)r = G*[r] .
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We will denote by M the multigraph obtained from a graph G by

joining two non adjacent nodes x and y by n edges. Applying the

reduction process to M by deleting one of the edges joining x to y ,

we get

Mn ' Mn-l

By applying the reduction process in the same manner to the graph M . ,

we get

M , = M n + G* o[n-1 n-2 n-2

If the process is continued on the graphs M , M , and so on, we will

get

Mn-2 = Mn-3 + Gn-3[l]

Ml = G

Hence we get

(5) Mn = G+ I GLk[l] .

By substituting for G* . [l] , using Lemma 2, we get

Mv, = G + 1 G*(l+G*)n-k .
n k=l

Thus we get the following theorem.

THEOREM 6. Mn = G + G*[(2+G
Jt)n-(l+G*)n] , î itft {G*f = G*[r]

5. Application to chromatic polynomials

We can write the subgraph polynomial of G as

(6) S(G; W) =
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where <Z7,(z-n> i-. i ) is the number of covers with cardinality k

and containing iQ isolated nodes, i edges, and so on, and the second

summation is taken over all solutions of £ i = k .
r

Let us assign weights to the connected subgraphs as follows. If the

subgraph contains r edges it will be given a weight (-1) X . Then

equation (6) becomes

(T) S(G; A) = | I aM i ..., i )(-l)n\k ,
k=l (i) q

where n = Y, **£„ • Since subgraphs with the same number of edges will
r=l

receive the same weight, we can replace a, (•£., i , ..., i ) by aAn)

the number of covers with cardinality k and containing n edges. Thus

equation (T) becomes

p \h

k=l \n k
(n)

k=l K

where

dk = I (-D\(n) .

Whitney [4] has shown that d, is the coefficient of the fcth power

of the variable in the chromatic polynomial of the graph. (A proof is also

given in [3].) This implies the following theorem.

THEOREM 7. The polynomial obtained from S{G\ w) by putting

w = (-1) X j is the chromatic polynomial of G .

6. Application to dichromatic polynomials

Let us assign weights to the subgraph covers of a graph G , as

follows. If a component contains n nodes and e edges, then it will be
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given a weight W . Then the general subgraph polynomial of G
ft j6

weighted by both nodes and edges is

n. .
(8) S{G; W) = Z T T w i y ,

where the summation is taken over all subgraph covers of G .

Let us now assign special weights to components by putting

e-n+1
wn,e = **

Then equation (8) becomes

( 9 ) D[G; ( X , y)) = £ x ky k ,

where 6, is the number of components in the kth cover and

Y = <7r, - Pj, + 6j, , where p, and q~ are the number of nodes and edges

respectively in the kth cover of G . The summation is taken over all

the subgraph covers of G .

Clearly YT, and Pr, - <S. are respectively the cycle rank and

coboundary rank of the cover (see Tutte [4]). It follows therefore, that

D[p; (X, y)) is precisely the dichromatic polynomial of G , defined in

[4]. Hence we have the following theorem.

THEOREM 8. The polynomial obtained from S(G; w) (equation (8)) by

putting w = xy } ie the dichromatic polynomial of G .
n ,e

7. Discussion

We have introduced the subgraph polynomial and have shown that it is a

generalization of both the chromatic and dichromatic polynomials. It might

be interesting to investigate the extent to which the subgraph polynomial

of a graph characterizes a graph. We have found that it is difficult to

obtain two different graphs with the same subgraph polynomial even when the

weights simply depend on the number of edges in the covers. Perhaps these

polynomials might shed some light on the isomorphism problem. It might

also be interesting to look at subgraph polynomials of graphs in which
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certain components must occur in all subgraph covers.
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