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Abstract. Using uniformization of Riemann surfaces by Fuchsian groups and
the equisymmetric stratification of the branch locus of the moduli space of surfaces of
genus 4, we prove its connectedness. As a consequence, one can deform a surface of
genus 4 with automorphisms, i.e. symmetric, to any other symmetric genus 4 surface
through a path consisting entirely of symmetric surfaces.
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1. Introduction. Two closed Riemann surfaces X, Y of genus g are called
equisymmetric if their automorphism groups determine conjugate finite subgroups
in the modular group of genus g.

Harvey [9] alluded to the existence of the equisymmetric stratification of the
moduli space Mg of Riemann surfaces of genus g, each strata consists in the points
of the moduli space corresponding to equisymmetric surfaces. The branch locus Bg

of Mg is formed by the strata corresponding to surfaces of genus g admitting non-
trivial automorphisms (or admitting other automorphisms that are the identity and
the hyperelliptic involution if g = 2). Broughton [5] showed that the equisymmetric
stratification is indeed a stratification ofMg by irreducible algebraic subvarieties whose
interior, if it is non-empty, is a smooth, connected, locally closed algebraic subvariety
of Mg, Zariski dense in the stratum. In this way we can equip the moduli space with a
structure of complex of groups.

It is well known that B1 consists of two points and B2 is not connected, since R.
Kulkarni (see [11]) showed that the curve w2 = z5 − 1 is isolated in B2, i.e. this single
surface is a connected component of B2. More precisely B2 has exactly two connected
components (see [1]). On the contrary the branch locus B3 is connected (see also [1]).
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Now we focus our attention to the case of genus 4. Each equisymmetric stratum
of M4 corresponds with a conjugacy class of finite subgroups of the modular group
represented as the full group of automorphisms of some compact Riemann surfaces
of genus 4. Using the list of finite maximal signatures for Fuchsian groups in [15], we
find in [7] such classes of full groups of automorphisms (related results are presented
in [3] and [4])

In this paper we shall show the connectedness of the branch locus of the moduli
space of genus 4 by means of its equisymmetric stratification. Moreover, we show that
the stratum formed by the surfaces X4 admitting an involution τ such that X4/〈τ 〉 is
an orbifold with two cone points and underlying topological space a surface of genus
2 intersects to several equisymmetric strata that cover all the branch loci, i.e. such
stratum plays a rôle similar to a spine for the connectedness of the branch loci.

The results of this work have been announced in [1].

2. Riemann surfaces and Fuchsian groups. Given a Fuchsian group �, the
algebraic structure of � and the geometric structure of the orbifold D/� are given
by the signature of �

s(�) = (g; m1, . . . , mr). (1)

The group with the signature (1) has a canonical presentation given by generators

(a) xi, i = 1, . . . , r (elliptic transformations)
(b) ai, bi, i = 1, . . . g (hyperbolic translations)

and relations

(1) xmi
i = 1, i = 1, . . . , r,

(2) x1 . . . xra1b1a−1
1 b−1

1 . . . agbga−1
g b−1

g = 1.
(2)

Given a subgroup �′ of index N in a Fuchsian group �, one can calculate the
signature of �′ by

THEOREM 1. ([14]) Let � be a Fuchsian group with signature (1) and canonical
presentation (2). Then � contains a subgroup �′ of index N with signature

s(�′) = (h; m′
11, m′

12, . . . , m′
1s1

, . . . , m′
r1, . . . , m′

rsr
),

if and only if there exists a transitive permutation representation θ : � → �N satisfying
the following conditions:

(1) The permutation θ (xi) has precisely si cycles of lengths less than mi, the lengths
of these cycles being mi/m′

i1, . . . , mi/m′
isi

.
(2) The Riemann–Hurwitz formula

μ(�′)/μ(�) = N.

where μ(�) and μ(�′) are the hyperbolic areas of the surfaces D/� and D/�′.

Given a Riemann surface X = D/�, withD the unit disc and � a surface Fuchsian
group, a finite group G is a group of automorphisms of X if and only if there exists a
Fuchsian group � and an epimorphism θ : � → G with ker(θ ) = �.

We shall use the following terminology.
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DEFINITION 2. A closed Riemann surface X which can be realized as a p-sheeted
covering of the Riemann sphere is said to be p-gonal, and such a covering will be called
a p-gonal morphism. When p = 2, the surface will be called hyperelliptic.

Let � be a Fuchsian group with signature (1). Then the Teichmüller space T(�) of
� is homeomorphic to a complex ball of dimension d(�) = 3g − 3 + r (see [13]). Let
�′ ≤ � be Fuchsian groups, the inclusion mapping α : � → �′ induces an embedding
T(α) : T(�) → T(�′) defined by [r] 	→ [rα]. See [13] and [15]. The modular group
Mod(�) of � is the quotient Mod(�) = Aut(�)/Inn(�). The moduli space of � is the
quotient M(�) = T(�)/Mod(�) endowed with the quotient topology.

DEFINITION 3. As an application of Nielsen realisation theorem, one can identify
the branch locus of the action of Mod(�) on T(�) as the set Bg = {X ∈ Mg : Aut(X) �=
1d}, for g ≥ 3.

A Fuchsian group � such that there does not exist any other Fuchsian group
containing it with finite index is called a finite maximal Fuchsian group. To decide
whether a given finite group can be the full group of automorphism of some compact
Riemann surface, we will need all pairs of signatures s(�) and s(�′) for some Fuchsian
groups � and �′ such that �′ ≤ � and d(�) = d(�′). The full list of such pairs of
signatures was obtained by Singerman in [15].

An (effective and orientable) action of a finite group G on a Riemann surface X is
a representation ε : G → Aut(X). Two actions ε and ε′ of G on a Riemann surface X
are (weakly) topologically equivalent if there is an w ∈ Aut(G) and an h ∈ Hom+(X)
such that ε′(g) = hεw(g)h−1. The equisymmetric strata are in correspondence with
topological equivalence classes of orientation preserving actions of a finite group G on
a surface X . See [5]. Let MG denote the stratum of surfaces with full automorphism

group the conjugacy class of the finite group G in the modular group and let MG

denote the set of surfaces such that the automorphisms group contains a subgroup in
the class defined by G.

We have the following theorem.

THEOREM 4. ([5]) Let Mg be the moduli space of Riemann surfaces of genus g, G
a finite subgroup of the corresponding modular group Modg. Then

(1) MG
is a closed, irreducible algebraic subvariety of Mg.

(2)MG, if it is non-empty, is a smooth, connected, locally closed algebraic subvariety
of Mg, Zariski dense in MG

.

Each stratum corresponds with a finite subgroup of the modular group represented
as the full group of automorphisms of some compact Riemann surface. To find such
full automorphisms groups, we need to use the list of finite maximal signatures for
Fuchsian groups in [15].

Each action of a finite group G on a surface X4 is determined by an epimorphism
θ : � → G from a Fuchsian group � such that ker(θ ) = �, where X4 = D/� and � is a
surface Fuchsian group. The condition � to be a surface Fuchsian group imposes that
the order of the image under θ of an elliptic generator xi of � is the same as the order
of xi. Two epimorphisms θ1, θ2 : � → G define two topologically equivalent actions of
G on X if and only if there exist automorphisms φ : � → �, w : G → G such that
θ2 = w ◦ θ1 ◦ φ−1. See [6, Proposition 2.2] and [16, Proposition 2.2].
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Let B be the subgroup of Aut(�) induced by orientation preserving
homeomorphisms of the orbifold D/�. Then two different epimorphisms θ1, θ2 : � →
G define the same class of G-actions if and only if they lie in the same B × Aut(G)-class.

3. The connectedness of the branch locus in the moduli space of Riemann surfaces
of genus 4. The equisymetric stratification given in [7] provides the structure of the
branch locus of the moduli space M4. In order to establish the connectedness of the
branch locus, we can consider a covering using some of the connected strata.

THEOREM 5. The branch locus is contained in

M2,0 ⋃
M2,1 ⋃

M2,2 ⋃
M3,01 ⋃

M3,02 ⋃
M3,1 ⋃

M5,1

where Mp,i
or Mp,0i

are the equisymmetric strata determined by classes of group actions
of prime order p.

Proof. Since every finite group G contains an element of prime order p, where
p divides the order of |G|, by Theorem 4, the branch locus is the union of closed
subvarieties Mp,i

, determined by a class of actions of a cyclic group of prime order p.
By [7, Theorem 2] (see also [3] and [11]), these subvarieties are the following:

(a) M2,2
, M2,1

and M2,0
corresponding to epimorphisms θ : � → C2 with

signatures s(�1) = (2; 2, 2), s(�2) = (1; 2, 6..., 2) and s(�3) = (0; 2, 10..., 2) respectively.
Observe that the Fuchsian groups �3 provide the hyperelliptic locus.

(b) M3,2
, M3,1

, M3,01
and M3,02

corresponding to epimorphisms θ : � → C3 =
〈a : a3 = 1〉: one class for the non-maximal groups with signature s(�1) = (2; −), one
class for the signature s(�2) = (1; 3, 3, 3) and two classes for s(�3) = (0; 3, 3, 3, 3, 3, 3)
respectively. The last two classes of epimorphisms θ : �3 → C3 are defined by θ01(x2i) =
a and θ01(x2i−1) = a−1, 1 ≤ i ≤ 3, and θ02(xi) = a, 1 ≤ i ≤ 6, yielding the cyclic trigonal
locus.

(c) The cyclic pentagonal locus. M5,1
, M5,2

and M5,3
correponding to

epimorphisms θ : � → C5 = 〈a : a5 = 1〉, with s(�) = (0; 5, 5, 5, 5). One subvariety
is provided by epimorphisms θ1(x1) = θ1(x2) = θ1(x3) = a, θ1(x4) = a2. The second
one is given by epimorphisms θ2(x1) = a, θ2(x2) = a2, θ2(x3) = a3 and θ2(x4) = a4.
The third subvariety is given by θ3(x1) = θ3(x3) = a and θ3(x2) = θ3(x4) = a4. The
groups � here inducing the strata M5,i are non-maximal.

Then we have that the branch loci is contained in

2⋃

i=0

M2,i
2⋃

i=1

M3,0i
2⋃

i=1

M3,i
3⋃

i=1

M5,i
.

Now we shall show that we can delete of the above union the strata M3,2, M5,2

and M5,3.
Each surface in M3,2 is uniformized by the kernel of an epimorphism θ : �1 →

C3 = 〈a : a3 = 1〉, with s(�1) = (2; −). Since the signature s(�1) is not maximal, the
group �1 is contained in a group � with signature (0; 2, 6..., 2). Now the epimorphism θ

can be extended to an epimorphism θ ′ : � → D3 = 〈a, s : a3 = s2 = (sa)2 = 1〉 defined
as θ (x1) = s, θ (x2) = sa, θ (x3) = s, θ (x4) = s and θ (x5) = s, in such a way that ker θ =
ker θ ′. Applying Theorem 1 to ker θ = ker θ ′ ≤ θ−1(〈s〉) and using the representation
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ω : � → �3 given by the action of � via θ ′ on the 〈s〉-cosets of D3, we see that
ω(xi) = (a, b)(c), so the signature of θ−1(〈s〉) is (1; 2, 6..., 2). We have obtained that every

surface in this stratum has an involution with six fixed points. Thus M3,2 ⊂ M2,1
.

In the same way, for the stratum M5,2 we can construct the epimorphisms θ2 :
� → D5 = 〈a, s : a5 = s2 = (sa)2 = 1〉 defined by θ2(x1) = s, θ2(x2) = sa, θ2(x3) = a
and θ2(x4) = a3, with s(�) = (0; 2, 2, 5, 5). Applying Theorem 1, using the action on

the 〈s〉-cosets of D5, we see that s(θ−1
2 (〈s〉)) = (2; 2, 2). Thus M5,2 ⊂ M2,2

.
Observe that epimorphisms θ2 are extensions of epimorphisms θ2 in part (c).

Again for the stratum M5,3, we can consider the epimorphisms θ3 : � → D10 =
〈a, s : a10 = s2 = sa2 = 1〉 defined by θ3(x1) = a5, θ3(x2) = sa5 and θ3(x3) = sa2, with
s(�) = (0; 2, 2, 2, 5). Applying Theorem 1, using the action on the 〈a5〉- and 〈s〉-
cosets, we see that s(θ−1

3 (〈a5〉)) = (0; 2, 10..., 2) and s(θ−1
3 (〈s〉)) = (2; 2, 2). Thus M5,3 ⊂

M2,0 ⋂
M2,2

. �
REMARK 1. At the end of the above proof we have established that M5,3 ⊂

M2,0 ⋂
M2,2

, this fact will be used in the proof of Theorem 7.
Notice that the epimorphisms θ3 are extensions of epimorphisms ϕ : � → D5,

with s(�) = (0; 2, 2, 5, 5), defined as ϕ(x1) = s, ϕ(x2) = s, ϕ(x3) = a and ϕ(x4) = a−1.
Observe that epimorphisms ϕ are extensions of epimorphisms θ3 in part (c).

Now we shall study how the strata in Theorem 5 intersect between them. From
now onwards, we will use the notation and numbering as in [7, Theorem 2]. First, we
have the following inclusions for cyclic trigonal surfaces (see [10, Theorem 7]).

THEOREM 6. There exist the following inclusions for strata containing cyclic trigonal
Riemann surfaces of genus 4:

(1) The stratum MC6×C2 belongs to M3,02 ⋂
M2,2 ⋂

M2,1
.

(2) The stratum MD6 belongs to M3,01 ⋂
M2,2

.
(3) The trigonal, pentagonal surface T4 with Aut(T4) = C15 belongs to

M3,02 ⋂
M5,1

.
(4) The stratum MD3×C3 formed by the cyclic trigonal surfaces uniformized by

the kernel of an epimorphism from maximal Fuchsian groups with signature
(0; 2, 2, 3, 3) and Aut(X) = D3 × C3 is contained in M3,02 ⋂

M3,2 ⋂
M3,1

.
(5) The stratum MD3×D3 formed by the cyclic trigonal surfaces uniformized by

the kernel of an epimorphism from maximal Fuchsian groups with signature
(0; 2, 2, 2, 3) and Aut(X) = D3 × D3 is in M3,01 ⋂

M3,2
.

Proof. (1) The surfaces in the stratum MC6×C2 are uniformized by the kernel of the
epimorphisms θ : � → C6 × C2 = 〈a, s : a6 = s2 = [a, s] = 1〉, θ (x1) = s, θ (x2) = sa3

and θ (x3) = a2, where s(�) = (0; 2, 2, 3, 6). Applying Theorem 1 using the action
on the 〈a2〉-, 〈a3〉- and 〈s〉-cosets, we obtain the required inclusion MC6×C2 ⊂
M3,02 ⋂

M2,2 ⋂
M2,1

.
(2) The surfaces in the stratum MD6 are uniformized by the kernel of the

epimorphisms θ : � → D6 = 〈a, s : a6 = s2 = (sa)2 = 1〉 defined by θ (x1) = s, θ (x2) =
sa3 and θ (x3) = a2, and also in this case, s(�) = (0; 2, 2, 3, 6). Applying Theorem 1 to

the 〈a2〉-, 〈a3〉- and 〈s〉-cosets, we obtain the required inclusion MD6 ⊂ M3,01 ⋂
M2,2

.
(3) The surface T4 is determined by the epimorphism θ : � → C15 = 〈a : a15 =

1〉 defined by θ (x1) = a5, θ (x2) = a3 and s(�) = (0; 3, 5, 15). Now θ (x1) leaves five
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〈a3〉-cosets fixed and θ (x3) acts on the 〈a3〉-cosets as a 5-cycle. In the same way θ (x2)
acts as the identity and θ (x3) acts as a 3-cycle on the 〈a5〉-cosets. Moreover θ restricts
to the epimorphism ϕ : �3 = θ−1(〈a5〉) → C3 with ϕ(yi) = a5, 1 ≤ i ≤ 5, and φ : �5 =
θ−1(〈a3〉) → C5 with φ(z1) = φ(z2) = φ(z3) = a3. By Theorem 1, the groups �3 and �5

have signatures s(�3) = (0; 3, 3, 3, 3, 3, 3) and s(�5) = (0; 5, 5, 5, 5) respectively. Then

T4 ⊂ M3,02 ⋂
M5,1

.
(4) The stratum MD3×C3 is determined by the epimorphisms θ1 : � → C3 ×

D3 = 〈b : b3 = 1〉 × 〈a, s : a3 = s2 = (sa)2 = 1〉 with maximal Fuchsian groups � with
signature s(�) = (0; 2, 2, 3, 3). The epimorphisms θ1 : �4 → C3 × D3 are defined by
θ1(x1) = s, θ1(x2) = sa, θ1(x3) = a−1b and θ1(x4) = b−1. Now θ1(x3) produces two
3-cycles when acting on the 〈b〉- or 〈a〉-cosets and θ1(x3) leaves three fixed points
when acting on the 〈ab〉- or 〈a2b〉-cosets. Again θ1(x4) leaves six fixed points when
acting on the 〈b〉-cosets and no fixed points on the 〈a〉-, 〈ab〉- or 〈a2b〉-cosets. By
Theorem 1, we have s(θ−1

1 (〈a〉)) = (2; −), s(θ−1
1 (〈ab〉)) = s(θ−1

1 (〈a2b〉)) = (1; 3, 3, 3) and
s(θ−1

1 (〈b〉)) = (0; 3, 3, 3, 3, 3, 3). Furthermore the order three action determined by
D/�4 → D/θ−1

1 (〈b〉) has the same rotation angles for all the fixed points, since b2 is

central in C3 × D3. Therefore MD3×C3 ⊂ M3,02 ⋂
M3,2 ⋂

M3,1
.

(5) The stratum MD3×D3 is determined by epimorphism θ : � → D3 × D3 =
〈a, s : a3 = s2 = (sa)2 = 1〉 × 〈b, t : b3 = t2 = (tb)2 = 1〉 defined by θ (x1) = s, θ (x2) =
tb, θ (x3) = sta and θ (x4) = a2b, with s(�) = (0; 2, 2, 2, 3). The action of θ (x4) = a2b
on the (〈ab〉)- and (〈a2b〉)-cosets leaves six fixed points in both cases. The action
of θ (x4) = a2b on the (〈a〉)- and (〈b〉)-cosets leaves no fixed points. According
to Theorem 1, s(θ−1

1 (〈a〉)) = s(θ−1
1 (〈b〉)) = (2; −) and s(θ−1

1 (〈ab〉)) = s(θ−1
1 (〈a2b〉)) =

(0; 3, 3, 3, 3, 3, 3), in the last case, the rotation angles for half of set of the fixed
points is of angle 2π/3 and for the other half is −2π/3. Therefore MD3×D3 ⊂
M3,01 ⋂

M3,2
. �

The stratum MD3×D3 in part 5 of Theorem 6 was studied in [8]: the family of cyclic
trigonal Riemann surfaces of genus 4 admitting two trigonal morphisms.

As a consequence of Theorems 5 and 6 we have the following.

THEOREM 7. The branch locus of the moduli space of Riemann surfaces of genus 4 is
connected. Moreover the subvariety M2,2

has non-empty intersection with all the other
subvarieties of the branch locus determined by symmetry classes of cyclic groups of order
of a prime integer.

Proof. By Remark 1 and Theorem 6, the branch locus of the moduli space of

Riemann surfaces is connected. The subvariety M2,2
has non-empty intersection with

the subvarieties M2,0
, M2,1

, M3,01
and M3,02

. The subvariety M3,02
has non-empty

intersection with M3,1
and M5,1

.
We show now that M2,2

has non-empty intersection with M3,1
and M5,1

.
To do that, consider first the stratum MA4 in [7, Theorem 2] determined by

Fuchsian groups with signature s(�2) = (0; 2, 3, 3, 3) and epimorphisms θ : �2 →
A4 = 〈a, s|a3 = s2 = (as)3 = 1〉 defined as θ (x1) = s, θ (x2) = a, θ (x3) = as and θ (x4) =
sas. By Theorem 1, any element of order 3 in A4 leaves just one coset fixed when acting
on the 〈a〉, 〈sa〉, 〈as〉 or the 〈sas〉 cosets, since all of them are conjugated. Then θ−1(C3)

has signature (1; 3, 3, 3) and the corresponding surfaces belong to M3,1
. On the other

hand s(θ−1(〈s〉)) = (2; 2, 2). So MA4 ⊂ M3,1 ⋂
M2,2

.
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Finally, consider the surface Q4 = MC10 in [7, Theorem 2] determined by Fuchsian
group with signature s(�) = (0; 5, 10, 10) and epimorphisms θ : � → C10, θ (x1) = a2,
θ (x2) = a and θ (x2) = a7. Applying Theorem 1 to the 〈a2〉- and 〈a5〉-cosets we see
that s(θ−1(〈a5〉)) = (2; 2, 2) and s(θ−1(〈a2〉)) = (0; 5, 5, 5, 5), where the three stabilizers

induced by x1 and x2 rotate the same angle. Thus Q4 ⊂ M5,1 ⋂
M2,2

. An algebraic
equation for the Riemann surface Q4 is given in [17]. �

The surface U4 in [7, Theorem 2] is known as Bring’s curve and is the only cyclic
pentagonal surface in M4 admitting several, indeed six, pentagonal morphisms. The
Bring’s curve U4 is determined by the “natural” epimorphism θ : � → �5, with s(�) =
(0; 2, 4, 5). Again U4 ⊂ M5,2 ⋂

M3,2
.

Kulkarni [12] showed the existence of isolated points in the branch locus of Mg

if and only if 2g + 1 is a prime integer, not 7. In [2] it is shown that the branch
locus in genus 7 is connected, and the branch loci in genera 5 and 6 are connected
except for the existence of one isolated point in each case. Bartolini and Izquierdo [2]
also showed that for every genus g, all the strata of the branch locus determined by
actions of C2 and C3 belong to the same connected component. These strata have large
dimension.
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