BLOWING-UP AND WHITNEY (a)-REGULARITY

ΒY

TZEE-CHAR KUO, DAVID J. A. TROTMAN AND LI PEI XIN

ABSTRACT. When a pair of adjacent C^1 strata (X, Y) is Whitney (*a*)-regular at a point $0 \in Y \cap \overline{X}$, there is, up to homeomorphism, just one germ at 0 of intersections $S \cap X$ where S is a Lipschitz transversal to Y at 0 (S is the graph of a Lipschitz map from $(T_0Y)^{\perp}$ to T_0Y , C^1 off 0). The proof uses a blowing-up construction and a strong form of Verdier's (*w*)-regularity.

The first author showed in 1978 ([2]) that whenever a pair of adjacent C^{∞} strata (X, Y) is Whitney (*a*)-regular at a point $0 \in Y \cap \overline{X}$, there is, up to homeomorphism, just one germ at 0 of intersections $S \cap X$ where S is a C^{∞} transversal to Y, $0 \in S$. In 1985 the second author ([3]) proved the corresponding C^1 statement: X, Y and the transversals may be of class C^1 . Here we further improve the conclusion by including all Lipschitz transversals (defined as graphs of Lipschitz maps from Y^{\perp} to Y, C^1 off 0). The proofs use a natural "blowing up" construction involving the map which defines a given transversal, a strong form of Verdier's (w)-regularity, and the Thom-Mather-Verdier isotopy theorem ([4]).

We are grateful to L. C. Wilson for his comments, and especially for the idea used in the proof of Theorem 2.

Let $(x_1, \ldots, x_k, y_1, \ldots, y_d)$ be coordinates for $\mathbf{R}^k \times \mathbf{R}^d$. Let $\varphi : (\mathbf{R}^k, 0) \to (\mathbf{R}^d, 0)$ be a continuous map, of class C^1 on $\mathbf{R}^k - \{0\}$, such that $\varphi_i^{-1}(0) = 0, 1 \leq i \leq d$. Define

$$\pi_{\varphi}: \mathbf{R}^k \times \mathbf{R}^d \longrightarrow \mathbf{R}^k \times \mathbf{R}^d$$
 by $(x, u) \longmapsto (x, u_1 \varphi_1(x), \dots, u_d \varphi_d(x))$

which is of class C^1 on $\mathbf{R}^k \times \mathbf{R}^d - (0 \times \mathbf{R}^d)$. There is an inverse β_{φ} of class C^1 defined for $x \neq 0$, by

$$\beta_{\varphi}(x,y) = (x, y_1 \varphi_1(x)^{-1}, \dots, y_d \varphi_d(x)^{-1}).$$

We shall call π_{φ} the φ -blowing-up of $\mathbf{R}^k \times \mathbf{R}^d$.

EXAMPLE 1. Let $\varphi(x) = x$. Then $\pi_{\varphi} : \mathbf{R} \times \mathbf{R}^d \to \mathbf{R} \times \mathbf{R}^d$ coincides with the blowing-up in the usual sense.

EXAMPLE 2. Let k = 2, d = 1, $\varphi(x_1, x_2) = (x_1^2 + x_2^2)^{1/2}$. Then $\pi_{\varphi}(x_1, x_2, y) = (x_1, x_2, \sqrt{x_1^2 + x_2^2}y)$ is not a blowing-up in the usual sense.

Received by the editors March 28, 1988.

AMS Subject classification: 58A35.

[©] Canadian Mathematical Society 1988.

Recall that a C^1 submanifold M in \mathbb{R}^n is Whitney (*a*)-regular over a C^1 submanifold N at $q \in \overline{M} \cap N$ if $d(T_qN, T_pM) \to 0$ as $p \in M$ tends to q. Here, for linear subspaces A, B, letting π_B stands for the orthogonal projection onto B,

$$d(A,B) = \sup ||a - \pi_B(a)||, a \in A, ||a|| = 1.$$

Also recall that (M, N) is Verdier (w)-regular at $q_0 \in N$ if there exists a constant C > 0 and a neighbourhood U of q_0 such that

$$d(T_qN, T_pM) < C ||p-q||, \text{ for all } p \in U \cap M, q \in U \cap N.$$

DEFINITION. The pair (\mathbf{M}, \mathbf{N}) is differentiably regular at q_0 if for all $\epsilon > 0$ there exists a neighbourhood U of q_0 such that

$$d(T_qN,T_pM) < \epsilon ||p-q||, \text{ for all } p \in U \cap M, q \in U \cap N.$$

Of course, a differentiably regular pair is (w)-regular.

THEOREM 1. Let $X \subset \mathbf{R}^k \times \mathbf{R}^d - (0 \times \mathbf{R}^d)$ be a C^1 submanifold, $0 \in \overline{X}$, such that $(X, 0 \times \mathbf{R}^d)$ is Whitney (a)-regular at 0. Let $\varphi : (U, 0) \to (\mathbf{R}^d, 0)$ be a Lipschitz map, defined on a neighbourhood U of 0 in \mathbf{R}^k , of class C^1 on $U - \{0\}$, and such that $\varphi_i^{-1}(0) = 0, 1 \leq i \leq d$. Then $(\beta_{\varphi}(X), 0 \times \mathbf{R}^d)$ is differentiably regular (at each point of $0 \times \mathbf{R}^d)$.

LEMMA. Let $\varphi : (\mathbf{R}^k, 0) \to (\mathbf{R}^d, 0)$ be continuous and of class C^1 on $\mathbf{R}^k - \{0\}$. Then φ is Lipschitz (at 0) if and only if $\|\varphi(x)\| \|x\|^{-1}$ and $\|\partial \varphi_i/\partial x_j(x)\|$, $1 \leq i \leq d$, $1 \leq j \leq k$, are bounded for x in some neighbourhood of 0 in \mathbf{R}^k .

The "if" part is a version of the Mean Value Theorem as in the account of [1]; "only if" follows from the definition of derivative.

PROOF OF THEOREM 1. The entries of the Jacobian matrix, B, of β_{φ} are given by

$$b_{ij} = \delta_{ij}$$
, if $1 \leq i, j \leq k$; $b_{ij} = 0$ if $1 \leq i \leq k, k+1 \leq j \leq k+d$;

$$b_{k+i,j} = -y_i \frac{\partial \varphi_i}{\partial x_j} \varphi_i(x)^{-2} \text{ if } 1 \leq i \leq d, 1 \leq j \leq k; \\ b_{k+i,k+j} = \delta_{ij} \varphi_i(x)^{-1}, \text{ if } 1 \leq i,j \leq d.$$

By the Lemma, $\|\varphi(x)\| \|x\|^{-1}$ and $\|\partial \varphi_i / \partial x_j\|$, $1 \le i \le d$, $1 \le j \le k$, are bounded by a constant M in a neighbourhood U of 0 in \mathbb{R}^k . By Whitney (*a*)-regularity of $(X, 0 \times \mathbb{R}^d)$ at 0, for each point (x, y) in the intersection of X and some neighbourhood of 0, the tangent space to X contains d vectors of the form

$$w_i = \frac{\partial}{\partial y_i} + \sum_{j=1}^k e_{ij}(x, y) \left[\frac{\partial}{\partial x_j} + \sum_{s \neq i} \frac{y_s}{\varphi_s} \frac{\partial \varphi_s}{\partial x_j} \frac{\partial}{\partial y_s} \right], 1 \leq i \leq d,$$

where $||(e_{i1}, ..., e_{ik})|| \to 0$ as $(x, y) \to (0, 0)$.

Now, take a fixed $u_0 \in \mathbf{R}^d$. A quick calculation shows that

$$d\beta_{\varphi}(w_i) = \sum_{j=1}^k e_{ij} \frac{\partial}{\partial x_j} + \frac{1}{\lambda_i(x,y)} \frac{\partial}{\partial y_i}$$

where

$$\lambda_i(x,y)^{-1} = -\varphi_i(x)^{-2} y_i \sum_{j=1}^k e_{ij} \frac{\partial \varphi_i}{\partial x_j} + \varphi_i(x)^{-1}.$$

Then

$$d\beta_{\varphi}(\lambda_i w_i) - \frac{\partial}{\partial y_i} = \lambda_i \sum_{j=1}^k e_{ij} \frac{\partial}{\partial x_j}$$

To prove Theorem 1 it remains to show that whenever (x, y) and $(y_1\varphi_1(x)^{-1}, \ldots, y_d\varphi_d(x)^{-1})$ are sufficiently close to (0, 0) and u_0 respectively, we have

$$|\lambda_i(x,y)| < 2M ||x||.$$

But

$$|\lambda_i(x, y)| \|x\|^{-1} = |\varphi_i(x)| \|x\|^{-1} \left[1 - \varphi_i(x)^{-1} y_i \sum_{j=1}^k e_{ij} \frac{\partial \varphi_i}{\partial x_j} \right]$$

and

$$|\varphi_i(x)| ||x||^{-1} < M, \left|\frac{\partial \varphi_i}{\partial x_i}\right| < M, \text{ for } x \in U.$$

Moreover, $|\varphi_i(x)^{-1}y_i|$ is close to $|(u_0)_i|$. Hence Theorem 1 follows.

NOTATION. Write X_{φ} for the germ at 0 of $X \cap \{(x, \varphi(x)) : x \in \mathbf{R}^k\}$, and X_0 for the germ at 0 of $X \cap \{(x, 0) : x \in \mathbf{R}^k\}$, for maps $\varphi : (\mathbf{R}^k, 0) \to (\mathbf{R}^d, 0)$.

COROLLARY. Let $X \subset \mathbf{R}^{k+d} - (0 \times \mathbf{R}^d)$ be a C^1 submanifold such that $0 \times \mathbf{R}^d = \bar{X} - X$ near 0, and $(X, 0 \times \mathbf{R}^d)$ is (a)-regular at 0. Let $\varphi : (\mathbf{R}^k, 0) \to (\mathbf{R}^d, 0)$ be C^1 off 0 and Lipschitz near 0 and such that for each $i, 1 \leq i \leq d$, $\varphi_i^{-1}(0) = 0$. Then X_0 and X_{φ} are homeomorphic.

PROOF. By Theorem 1, $(\beta_{\varphi}(X), 0 \times \mathbf{R}^d)$ is differentiably regular. After applying a C^1 diffeomorphism to \mathbf{R}^{k+d} , preserving $\mathbf{R}^k \times 0$ and tangent to the identity at $0 \times \mathbf{R}^d$, we may assume that X is a C^∞ submanifold (use the techniques of Smoothing Theorem 3.2 in [3]). Then $\beta_{\varphi}(X)$ will also be of class C^∞ and we may apply Verdier's isotopy theorem ([4]) to show that the germ at (0,0) of $\beta_{\varphi}(X) \cap (\mathbf{R}^k \times 0)$ is homeomorphic with the germ at $(0,1,\ldots,1)$ of $\beta_{\varphi}(X) \cap (\mathbf{R}^k \times (1,1,\ldots,1))$. But these germs are respectively homeomorphic with $X \cap (\mathbf{R}^k \times 0) = X_0$ and $X \cap \{(x,\varphi(x))\} = X_{\varphi}$ by applying π_{φ} . This proves the Corollary.

[December

DEFINITION. The graph of a map $\varphi : (\mathbf{R}^k, 0) \to (\mathbf{R}^d, 0)$ which is C^1 on $\mathbf{R}^k - \{0\}$ and Lipschitz near 0 will be called a Lipschitz transversal to $0 \times \mathbf{R}^d$ at 0. We say the pair $(X, 0 \times \mathbf{R}^d)$ has homeomorphic Lipschitz transversals at 0, and write (h^{Lip}) , when for each pair of Lipschitz transversals to $0 \times \mathbf{R}^d$ at 0, defined by maps φ and ψ , the germs X_{φ} and X_{ψ} are homeomorphic.

THEOREM 2. Let $X \subset \mathbf{R}^{k+d} - 0 \times \mathbf{R}^d$ be a C^1 submanifold such that $0 \times \mathbf{R}^d = \bar{X} - X$ near 0, and $(X, 0 \times \mathbf{R}^d)$ is (a)-regular at 0. Then $(X, 0 \times \mathbf{R}^d)$ verifies (h^{Lip}) at 0.

PROOF. Let $\varphi_1 : (\mathbf{R}^k, 0) \to (\mathbf{R}^d, 0)$ be of class C^1 on $\mathbf{R}^k - \{0\}$ and Lipschitz near 0. Then there exists $\kappa > 0$ such that

$$\|\varphi_1(x)\| < \kappa \|x\|$$
 for all $x \neq 0$.

Let $\psi_{\kappa}(x, y) = (x, y - \kappa ||x||)$. Then $\psi_{\kappa} : (\mathbf{R}^{k+d}, 0) \to (\mathbf{R}^{k+d}, 0)$ is a bilipschitz homeomorphism. It is easy to check that, when X is (a)-regular over $0 \times \mathbf{R}^d$ at 0, $\psi_{\kappa}(X)$ is also (a)-regular over $0 \times \mathbf{R}^d$ at 0, by calculating the effect of $d\psi_{\kappa}$ on vectors $\Sigma \alpha_i(x, y)(\partial/\partial x_i) + \Sigma \beta_j(x, y)(\partial/\partial y_j)$ on $T_{(x,y)}\mathbf{R}^{k+d}$ such that $\lim ||\alpha|| ||\beta||^{-1} = 0$, as $(x, y) \to (0, 0)$. Now the map φ defined by

$$\varphi(x) = \varphi_1(x) - \kappa \|x\|$$

is C^1 off 0 and Lipschitz with constant 2κ , and moreover the graph of φ is disjoint from $\mathbf{R}^k \times 0$. Thus φ satisfies the hypothesis of the Corollary, and the germs $(\psi_{\kappa}(X))_{\varphi}$ and $(\psi_{\kappa}(X))_0$ are homeomorphic.

Let $\omega_{\kappa}(x) = (\kappa ||x||, \dots, \kappa ||x||) \in \mathbf{R}^d$. Then $X_{\omega_{\kappa}} = \psi_{\kappa}^{-1}((\psi_{\kappa}(X))_0)$, so that $(\psi_{\kappa}(X))_0$ and $X_{\omega_{\kappa}}$ are homeomorphic.

Apply the Corollary to ω_{κ} . Then the germs $X_{\omega_{\kappa}}$ and X_0 are homeomorphic. Now use the fact that $\psi_{\kappa}(X_{\varphi_1}) = (\psi_{\kappa}(X))_{\varphi}$ to deduce that the germs X_{φ_1} and $(\psi_{\kappa}(X))_{\varphi}$ are homeomorphic. We obtain finally that X_{φ_1} and X_0 are homeomorphic, so proving Theorem 2.

REFERENCES

1. H. Cartan, Differential Calculus, Hermann, Paris, 1971.

2. T.-C. Kuo, On Thom-Whitney stratification theory, Math. Ann. 234 (1978), 97-107.

3. D. J. A. Trotman, *Transverse transversals and homeomorphic transversals*, Topology **24** (1985), 25–39.

4. J.-L. Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Inventiones Math. 36 (1976), 265–312.

Department of Pure Mathematics University of Sydney Sydny, NSW 2006, Australia Mathematics Institute Academia Sinica Beijing, China

Université de Paris-Sud, Mathématiques Bâtement 425 91405, Orsay Cedex, France

https://doi.org/10.4153/CMB-1989-070-x Published online by Cambridge University Press