
METANILPOTENT FITTING CLASSES

Dedicated to the memory of Hanna Neumann

R. A. BRYCE and JOHN COSSEY

(Received 27 June 1972)

Communicated by M. F. Newman

Hawkes showed in [10] that classes of metanilpotent groups which are both
formations and Fitting classes are saturated and subgroup closed; more, he
characterized all such classes as those local formations with a local definition
consisting of saturated formations (of nilpotent groups). In [3] we showed that
those "Fitting formations" which are subgroup closed are also saturated, without
restriction on nilpotent length; indeed such classes are, roughly speaking, recur-
sively definable as local formations using a local definition consisting of such
classes. It is natural to ask how these hypotheses may be weakened yet still produce
the same classes of groups. Already in [10] Hawkes showed that Fitting forma-
tions need be neither subgroup closed nor saturated; and in [3] we showed that a
saturated Fitting formation need not be subgroup closed (though a Fitting for-
mation of groups of nilpotent length three is saturated if and only if it is subgroup
closed).

In this paper we study Fitting classes of metanilpotent groups closed under
some additional closure operation. The work began with the feeling that a Fitting
class of metanilpotent groups is "almost" a formation in the sense that imposing
another closure condition makes it one. (Of course once such a Fitting class is a
formation it is covered by Hawkes' result above and all is known about it.) This
naive feeling is easily shown to be false—see (C) below—but is true quite often.
The results we get are these:

(A) A Fitting class of metanilpotent groups is a formation if it is either sub-
group closed or saturated.

1. We are indebted to the referee for a number of helpful comments; for the information that
Lemma 1.1 is in F. P. Lockett's Ph.D. Thesis at the University of Warwick and for the proof
given there and for reminding us that Theorem 3.1 can be derived from [10] with minor changes
and the use of our Lemma 3.5.
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286 R. A. Bryce and John Cossey [2]

(B) The smallest quotient-group closed Fitting class containing a super-
soluble group is a formation.

(C) There exists a subdirect product closed Fitting class of metanilpotent
groups that is not a formation.

(D) There exists a Fitting class of metanilpotent groups that is not subgroup,
quotient group or subdirect product, closed, nor is it saturated.

These examples — (C) and (D) — will be given in section 2. In section 1 we
give some notation and prove a useful lemma; sections 3 and 4 deal with subgroup
closure and saturation respectively; and sections 5, 6 and 7 with quotient group
closure.

1. Preliminaries

Recall that a closure operation A on the set of (isomorphism closed) classes
of finite soluble groups is a map with the properties:

and
X E AX = A2X.

A class X is called A-closed if AX £ X.

Perhaps the commonest closure operations are these; s,sn,Q,N0, Ro, E^ where

sX = {H:H ^ G for some GeX} ;

snX = {H : H is a subnormal subgroup of some Ge3£};

QX = {G/N :GeX,N < G } ;

NO3£ = {G : G = N^i-'-N^Ni subnormal in G,NteX, 1 g i g r}

K0X = {G : 3N( < G(1 ^ i ^ r), D N, = l.G/JV,e£ (1 g i g r)}
i = l

E^X = {G : 3N < G,N ^

Of course if A is one of s, sn, Q, N0, RO an A-closed class is often termed subgroup
closed, subnormal subgroup closed, quotient group closed, normal product
closed and subdirect product closed respectively. An Ê ,- closed class is termed
saturated.

If A, B are closure operations we define a closure operation {A, B} by : for all
classes X

{A,B}£ = n {9) : X <= ?), '3D is a A-closed and B-closed}.

In these terms a formation is a {Q,R0}-closed class; a saturated formation is a
{Q,Ro,E,,,}-closed class; a Fitting class is a {sn,N0}-closed class. A Fitting forma-
tion is a class which is both a formation and a Fitting class.
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[3] Metanilpotent Fitting classes 287

Denote by <5p the class of all finite p-groups, and by Sft the class of all finite
nilpotent groups.

There are several notations that will be used frequently. Suppose that A is a
group and B a group of operators on it. We denote by AB the natural splitting
extension of A by B using the implied homomorphism of B as abstract group into
autA, the group of automorphisms of A. Thus also if A is a B-module we write AB
for the natural split extension. In this context it should be noted that an abelian
normal subgroup of a group may frequently be regarded as a module for the group
and written additively if it seems to suit the occasion.

If p is a prime, a a positive integer and n is an integer prime to p we denote by
C(p", n) the (unique) group which is a splitting extension of a homocyclic group
P of exponent p" by a cycle C of order n with C acting faithfully and irreducibly
on PI<&(P).

Throughout all groups are finite and soluble.
There is one simple lemma that embodies a much used technique when dealing

with Fitting classes which we state and prove here. If will be quoted often in
the sequel.

LEMMA 1.1 Let G be a group with normal subgroups Nl,N2 such that

Nt n N2 = 1 and G/N1N2 is nilpotent.

is a Fitting class containing G/N2 then G e g if and only if GjNt e$.

PROOF. Put A = G/Nu B = G/N2 and N = iVjA^. Then g-*(gNugN2)
embeds G in A x B: write Go for its image. Now Go contains N/Nl x N/N2 so
Go is subnormal in A x B since G/N is nilpotent. If G/N^^i = 1,2) then
GoesnNo3f so G o e 5 - On the other hand since (gNu N2) = (gNu gN2)
(N^gNJ-1 for all geG we have Ax B = GoBeNog if G ,Beg ;and A x B e g
means A e % as required.

One other fact, not unrelated to (1.1), is the following useful result which we
shall use often: roughly that a Fitting class contains all relevant nilpotent groups
(see Remark 1 on p. 204 in [9]).

LEMMA 1.2 Let % be a Fitting class, G a group in g and p a prime dividing
the order of G. Then <5P ^ $ .

2. Examples

These examples are easily obtained. It seems to be well known for example,
that:

(2.1) The class of those groups whose socle is central is a Fitting class.

No reference for this fact is known to us: we first heard of it in conversation with
Dr. Brian Hartley. In any case it is easy to prove and no proof is given here. Let
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G be the class described in (2.1) and note that G is R0-closed. Hence © nift2 is an
R0-closed Fitting class of metanilpotent groups. However © n Sft2 is not a forma-
tion, Q-closure fails: SL(2,3) is in © n 5ft2, for example, but PSL(2,3) is not. This
takes care of (C).

In a recent paper Gaschvitz and Blessenohl [6] have described some unusual
Fitting classes as follows. Let p be a prime and S a subgroup of the multiplicative
group of GF(p), the field with p elements. Let G be a group and g an element of it.
In the usual way consider G to be represented on its p-chief factors by conjugation,
so that, to each p-chief factor HjK in a given chief series of G, we have associated
a matrix M(g; HjK) unique up to similarity. Define the map wG : G -> GF(p) by

wG:g^ ft del M(g; HIK).
HjK

Now let ©P(S) denote the class of all groups G such that wG(g) e S for all geG.
Then

THEOREM 2.2 (Gaschiitz-Blessenohl). ©P(S) is a Fitting class.

The case we want is p = 3 and S = 1. Then, of course, 5o = ©3(1) r \ S 3 S 2

is a Fitting class.

THEOREM 2.3 g 0 is closed under none of s, Q, R0, E^.

PROOF. The fact we use here is that a group G with |G/03(G)| = 2 is in 2fo if
and only if it has in a chief series an even number of non-central 3-chief factors
— this from Theorem 2.2.

Consider the group Gt which has O^Gi) £ C3 x C3) IGJOJCGJ)! = 2 and
z(Gi) = 1- Then Gt e g 0 but has a subgroup and a factor group isomorphic to
S3, which is not in g0- Let G2 be such that 03(G2) ^ C3 x C3 x C3, |G2/O3(G2)|
= 2 and Z(G2) = 1. Then G2 is a subdirect product of two copies of G1( but
G2 £ g0- Finally consider G3 where 03{G3) s C9 x C3> |G3/O3(G3)| = Z(G3) = 1.
Then G3/0>(G3) s G, e%0 but G3

3. Subgroup closure

THEOREM 3.1 A subgroup closed Fitting class of metanilpotent groups is
a formation.

Before embarking on the proof of this theorem it is perhaps worth noting
that Makan [13] has shown that a Fischer class of metanilpotent groups is sub-
group closed. (Recall that a Fitting class g is a Fischer class if, whenever G e 5
and H is a subgroup of G such that Hlcore0H is nilpotent, then H e 5-) Hence we
have an obvious corollary to Theorem 3.1.

COROLLARY 3.2 A Fischer class of metanilpotent groups is a formation.
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In the proof of Theorem 3.1 we use the next two lemmas, variations on some
results in [2].

LEMMA 3.3 Let % be a subgroup closed Fitting class, H a group in ̂  and p
a prime. Then the class of GF(p)H-modules

Jt = {M :MHe%}

is closed in the following sense:

(i) every submodule of a module inJl is inJt,

(ii) the tensor product of modules inJt is inJt,

and (iii) if U is a GF(j>)H-module with a submodule Vsuch that Ve Jt and U\V
is a trivial GF(p)H-module, then U e Jt.

PROOF. The details are in the proof of Theorem 1 in section 4 of [2], and are
not repeated here.

LEMMA 3.4 Let Jtbe a class of GF(p)H-modules for some group H, with the
closure properties (i), (ii), (iii) of (3.3). Then, if Jt contains a module whose
kernel in H is precisely OP(H), it contains all GF(j>)H-modules.

PROOF. First note that Jt is direct-sum closed: if M,N eJt and T is the one-
dimensional trivial GF(p)H-module, M © T and N © Te Jt by (iii), then

(M©r)®(JV©T) s M®N®M®N®T

is in Jt by (ii) whence M © N eJ? by (i). Now use the proof of Lemma 2.1 in [2]
except that where, in the proof of (2.2), the fact that every module is a homomor-
phic image of a free module is used, use that every module is a submodule of a
free module.

One final result will be needed which tells us that s-closed Fitting classes have
a measure of Q-closure.

LEMMA 3.5 / / 5 is «« s-closed Fittings class, G a group in 3 and N a central
subgroup of G, then G/N e $f-

PROOF. Consider the diagonal subgroup Go = {(g, g) : g e G} in G x G and
the (central) subgroup No — {(n,ri) : neN}. Plainly

GIN s Go/JVoes{G x G)/Wo} £ SNO{G} S g.

PROOF OF 3.1. It is sufficient to show that an {s, N0}-closed class of metanil-
potent groups is Q-closed. Suppose to the contrary that there exists an {s, N0}-
closed class 5 which is not Q-closed. Choose G e % of least order with the property
that some quotient group of G is not in ffitet N be normal in G and of greatest
order with G/N$%. Write H = G/N.
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First note that H is not nilpotent as g , being a Fitting class, contains all
relevant nilpotent groups (Lemma 1.2). Also H is monolithic since, if not, G has
normal subgroups Nl,N2 properly containing JV so that

N = Nt nN2.

But since N is maximally chosen, G/N1 and G/N2 both belong to 3 whence H,
being isomorphic to a subgroup of G/Nx x G/N2, is in g , a contradiction.

Next we see that H is co-monolithic (i.e. it has a unique maximal normal
subgroup). For, if not, H = (NlIN)(N2jN) where JVt and N2 are proper normal
subgroups of G. However Nu N2 e 3 and so, by the minimality of G, Nl/N, N2/N
e g , whence H e g , again a contradiction.

The Frattini subgroup O(G) contains JV, since if G has a maximal subgroup
U not containing JV then

G/N = [7JV/JV ^ U/C/nJVeg,

U being in 5 and G being minimal, and this is a contradiction. In fact

(3.6) JV = O(G).

For, if not, JV <O(G),O(tf) =O(G)/JV and HI<f>(H)e%. Since H is monolithic
F(H) is a p-group for some prime p, and Mo = F(H)I<S>(H) as GF(p)ff-module
has kernel precisely OP(H). Also if <rif is the monolith of H, then M0(HjaH) e g
by Lemma 1.1, so it follows from Lemmas 3.3 and 3.4 that

oHwrHloHeF.

The Krasner-Kaloujnine embedding (22.21 in [14]) then yields JF/esg = 2f> so
we must conclude that JV = O(G) and (3.6) is proved.

Since H is co-monolithic, F(H) is supplemented in H by a cyclic subgroup
of order a power of q, a prime different from p. Since F(H) = F(G)IN,F(G) has a
supplement C whose order is a power of q. Then, writing P for the Sylow p-
subgroup of F(G), PCN = G and (3.6) implies that

G = PC.

The facts that O(f/) = 1 and H is monolithic mean that F(H) is the unique
minimal normal subgroup of H, and it is not central in H. Hence a central p-
subgroup A of G must be in JV; but then by Lemma 3.5, GIAeff and
(GIA)I(N/A) $ 5 . contradicting the minimality of G, unless A = 1. It follows that
G has a non-central minimal normal p-subgroup, M say. Then MC e s 3 = 5 ,
and C does not centralize M. By Lemma 3.5, MC/CC(M) e 5 , say

where 1 / D = CjCc{M) and M faithfully and irreducibly represents D. If Do is
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the subgroup of order q in D then MD0 e 51 and, as D0-module, M = Mo © Mi
where Mo faithfully and irreducibly represents Do. Hence since MoDoe % and
M0D0 £ C(p, q) we conclude

(3.7)

We now show

(3.8) 5 contains all extensions of an elementary abelian p-group by a
q-group.

For, suppose that UT is such a group, U being an elementary abelian p-group,
normalized by the #-group T. If |T| = q then, using Maschke's Theorem, UT
= G1 x G2 where Gx is a subdirect product of copies of C(p,q) and hence is in %
by (3.7), and G2 is an elementary abelian p-group: in any event UTe$. If \T\ > q
but the exponent of T is q we write T as a normal product TtT2, where T^, T2

have orders smaller than |T|. By induction, therefore, UTU UT2e^ hence

UTe-N0{UTuUT2}cz'8.

A similar induction shows that UTe^ when the exponent of T is #* provided it
is true whenever T is cyclic of order q"; and this much will follow if C(p, q^eff.
To prove this let W = CqwrCqa_1 and let Uo be a faithful irreducible module for
it over GF(p). Now W is a normal product of groups of exponent q"~x so C/o FF e 5
by induction on a. But W has a subgroup Wo s C?_ so UoWoeg; and as Wo-
module Uo = C/j © (72 where l/x is faithful and irreducible for Wo. Hence
l^i Wo e2f! o r > t o P u t it another way, C(p, a*) e^f as required.

However (3.8) gives Heg which is a contradiction to the existence of an
s-closed Fitting class that is not Q-closed. The proof of Theorem 3.1 is therefore
complete.

4. Saturation

THEOREM 4.1 A saturated Fitting class of metanilpotent groups is a for-
mation.

The following lemma will be crucial.

LEMMA 4.2 Let H = AB be a splitting extension of the nilpotent group A
by the nilpotent group B; and suppose that Ao is a normal subgroup of H in A
with A/Ao an elementary abelian q-group. Then, if 5 is an Enclosed Fitting
class containing H, HjAoe$.

PROOF. Consider the second nilpotent product of S with a cyclic group C
of order p :

X = A\C.
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Define the homomorphism <j> : B - » a u t X by

a{b<j>) = ab, aeA, beB,

c(b<t>) = c , ceC, beB.

Form the splitting extension XB according to <j> and observe that [A0) C] is nor-
mal in it. Put Xo = Xj\_A0, C] and consider X0B. It is clear that as B-modules

[A,C]l[A0,C]sAIA0.

Also XBj[A,C] S AB x C e g ; and since [/40,C] ^ [4,C] ̂ O(X) S$(XB)
we have

However (A x AIA0)B is isomorphic to a subnormal subgroup of X0B and
therefore (A x .4/40)Be3f. However ABe'ft so Lemma 1.1 yields (AIA0)Be%.
In other words H/Aoe% as required.

PROOF OF 4.1. Suppose that, on the contrary, there is an Enclosed Fitting class
g of metanilpotent groups which is not a formation. By Theorem 3.1 therefore, 3
is not s-closed. Choose Ge$ minimal with respect to having a subgroup, H say,
not in 5 : let H be chosen minimally among such subgroups of G. Note that H is
not nilpotent by Lemma 1.2. Also H is co-monolithic since otherwise H = NlN2

for proper normal subgroups NlyN2 of H; but Nl,N2e'Q, H being minimal, and
therefore H e N O § = 5, a contradiction. It follows that H/H n F(G) is a g-power
cycle for some prime q, and hence that

(4.3) H = (HOF(G))C

where C is cyclic of q-qower order and C ^ 1.
Note that G = F(G)H, since otherwise the minimality of G and the fact that

-F(G)Hesng = 3 would mean H e g ; and (4.3) then yields

G = F(G)C.
In this set up we prove

(4.4) F(G) is a p-group for some prime p # q.

For, suppose that 17 ̂  1 is the Sylow q-subgroup of F(G), and write F(G)
= U x V where V is a q'-group. By Lemma 1.1 G/C7 e 5 and then the minimality
of G implies that HUIUe%; that is fl/tf n Ue%. However H O F(G) = (H n U)
x (H n F) and Lemma 1.2 again yields H e^, a contradiction. We conclude that
(7 = 1. Now suppose that P is the Sylow p-subgroup of F(G) for some prime p
other than q (one exists since G is not nilpotent): write F(G) = P x R. Then, by
Lemma 4.2, G/<!?(P) x R e J , or, in other words,

(4.5) (P/«>(P))Ceg.
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Since O(P) ^<&(PC) we see that PC eE^g = g. If R # 1 then PC has smaller
order than that of G, so, by minimality of G, H O PC = (H n P) eg. But Lemma
1.2 gives from this that Heg. It follows that R = 1 and (4.4) is proved.

Next we prove

(4.6) Every extension of an elementary abelian p-group by C is in g.

Put M = F(G)/<D(G). Then (4.5) tells us that MCeg. Note that M faithfully
represents C. Let Ct be a subgroup of C, and observe that, as C1-module,

M = M! 0 M2

where Mj is faithful and irreducible for Ct. By Lemma 4.2, M ^ e g . If a : C
-> Cj is the natural homomorphism of C onto Ct we may use a. to form the split
extension MtC. But

ker a g O ^ C ) and MtC/ker a ^ M ^ e g

so A^CeJJ. Note that every irreducible GF(p)C-module can be obtained up to
linear isomorphism as Mt for suitable choice of Cx. Hence if W is an arbitrary
GF(p)C-module and

0 = Wo < Wt < ••• < Wn = W

is a composition chain of it, W1Ce% (just proved);

0 ^ i < n

(using Lemma 1.1 since (Wj+i/W^Feg); and so, by induction, PfCeg. Hence
(4.6) is proved.

Finally (4.6) implies Hj<&(H nF(G))eg and so since <D(// OF(G) g $(//),
HeE^g = g. This final contradiction completes the proof of Theorem 3.1.

5. A module lemma

This section and the next two deal with Q-closed Fitting classes, though we
cannot give as complete an answer here as we have done for s-and E^-closure: at
two crucial points in the proof we have been unable to eliminate the assumption
that the groups under discussion are supersoluble. However the result of this
section is a quite general one about Q-closed Fitting classes of metanilpotent
groups. The analogy with (3.3) and (3.4) is obvious: indeed the proof we give is a
special case of our original proof of (3.4) since L. G. Kovacs' proof of that no
longer works.

LEMMA 5.1 Let H be a metanilpotent group in which 0p(H) = 1 for some
prime p. Then i/g is a Q-closed Fitting class containing H, the class of GF(p)H-
modules
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M = {U : UHe%}

contains all GF(p)H-modules.

The proof will be by induction on the length of the lower Frattini series of a
FG(p)H-module U. Note that, under the conditions imposed on H / 0p(//) is a
p'-group and therefore a GF(p)//-module is completely reducible if and only if
its kernel contains 0p(H). It follows that the terms of the lower Frattini series of a
GF(/>)tf-module U are the submodules [7(0 = [U, i0p(//)](i ^ 0) where: 1/(0)
= U, and (7(i) is the smallest submodule of U(i - 1) such that U(i - 1)/C7(i) is a
completely reducible //-module. Denote by l(U) = I the smallest integer for
which U(T) = 0 : l(U) is the Frattini length of U.

Consider the case l(U) = 1. Write Uo = 0p(//)/<5(//) as GF(p)//-module. It
follows from Lemmas 1.1 and 1.2 that Uo &Jt\ note that Uo is faithful for H/0p(H).
It follows as in the proof of Theorem 1 in section 4 of [2] that all tensor powers
Ur

0 of Uo are also in^# (since sn-closure and not s-closure is all that is needed here).
Hence using Steinberg's theorem (Satz 7.19 in Chapter VI of [12]) we conclude
that U is a direct summand of Ur

0 for some r, and so is in Ji, J( being quotient
module closed.

Suppose therefore that U is a GF(p)H-mod\ils with l(U) > 1. Since U is
finite dimensional we may write

where each Ut is co-monolithic. Let Pt be the projective cover of Ut (1 ^ i g s)
and write Nt = UtlpUt, the unique minimal factor module of Ut. Recall that
there exists a homomorphism from Pt onto Ut. It is well known (see for example
Exercise 2 on p. 426 of Curtis and Reiner [5]) that, if P is the projective cover of
the one dimensional trivial GF(p)H-module, Pt is a direct summand of P ® Nt.
Write

JV = e N,
i = i

so that P <g) N s ©; = 1 P® JV;. It follows that ®s
i = l Pt is isomorphic to a direct

summand of P ® N. But there is a homomorphism from $]= 1Pj onto St/, = Af
so we have shown:

(5.2) There exists a completely reducible module N and an onto homor-
phism

6 :P®N^U

where P is the projective cover of the one-dimensional trivial GF(p)H-module.

Next we prove
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(5.3) [P ® N, JOp(tf)] = [P, iOp(H)-] ®N,i^ 0.

The proof is by induction on i, the case i = 0 being trivial. We do the case i — 1
only, the general step being the same. Note that

P ® N/[P, 0p(tf)] ® N S (P/[P, 0p(H)]) ® N

has 0p(H) in its kernel and therefore

[P,0p(//)]®iV ^ [ P ® JV,Op(tf)].

Now observe that [P, 0p(//)] is spanned by elements of the form u(l — x)
(ueP,xe 0p(H)) and hence [P, 0p(H)] ® iV is spanned by elements of the form
M(1 - x) ® n (M e P, x e 0p(H), n £ N). But since 0p(H) ^ ker iV,

u(l - x) ® n = (M ® n)(l - x)

and the other inclusion follows.

(5.4) [P ® N, iOp(H)-]G = [C/, iOp(H)l i ^ 0.

Again the proof is by induction and we give the case i — 1 only. First

t//[P ® N, OP(H)]0 =* ((P ® N)/ker 0)/([P ® N, 0p(H)] + ker 0)/ker 6

S P ® N/([P ® N, 0p(//)] + ker 0)

which has 0p(H) in its kernel, so [t/,0p(/7)] ^ [P ® N, 0p(H)]^- Conversely

P ® N/[t/ , OP(H)]0-1 s (P ® JV/ker

which has 0p(^) in its kernel. Hence [P ® iV,0p(#)] g [U,0p(Hy]0-1 which
gives the other inclusion.

Put L = P/[P, /(C7)0p(H)]. Then, since (5.3) and (5.4) imply that

there is a homomorphism from L ® N onto 1/ induced by 0. Note that

(5.5) l(L) = l(U), L/[L,0p(tf)] is trivial and Z[L,Op(//)] = /(IT) - 1.

Finally consider the outer tensor product K = L # N as a module for
A/ x H/0p(H). Now KH is a direct sum of copies of L so

and therefore, by induction,

[K,0p(H)-]He%.
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But KHl[KH,Op{H)~\ is a direct sum of trivial H-modules and so KH is a normal
product

KH = [K,OP(H)]H • X 6 N 0 5 = g .

Also JK H / O P ( H ) is completely reducible and so, by the second paragraph of this
proof and Lemma 1.1, K(H)0p(H)e'8. But if we write

Ho = {(x,x0p(H)):xeH}

then KHoes^KH, K(HIOp(H))} <= g . However KH0 s (L ® N ) / / and so
L ® N e ^ . Since 17 is a homomorphic image of L ® N it is also in^#, as required.
This concludes the induction and with it the proof of Lemma 5.1.

6. Lifting automorphisms

The results in this section will be used in the next in our attack on Q-closed
Fitting classes. The somewhat elaborate set up which follows Lemma 6.1 below
in particular is important there. A reference for results and terminology about
varieties of groups is Neumann [13], and for projective groups in varieties
Bryant [1].

A common situation is to have an onto homomorphism v : A -> B and to
want to infer a homomorphism from a subgroup of the automorphism group of
A onto a subgroup of the automorphism group of B which "commutes" with v.
For example see Theorem 4.2.2 in [4] and section 2.7 in Higman [11] (where the
existence of the groups C(p", n) is proved or inferred by this means); section 3 in
[3]; and [16].

LEMMA 6.1 Let 93 be a locally finite variety, B a finite group in 93 and A
the projective cover of B in 93: let v : A -» B be the natural homomorphism. Then
if T is a subgroup of autB there exists a subgroup S of autA and an onto homo-
morphism n : S -> T such that

cv = v(o-/x), a e S.

PROOF. Recall from [1] that ker v ^ <&(A). Now for each x e T there exists,
by the definition of projective group, an endomorphism CT(T) of A such that

(6.2) VT = CT(T)V.

Since Aa(i) ker v = A it follows that a(x) is onto and therefore is an automor-
phism. Let S be the subgroup of autA generated by (<T(T) : T6 T}. We claim that
there is a homomorphism \i : S -* T such that

a(x)fi = T, T e T.
For, if
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is a relation among the a(x) we conclude from repeated applications of (6.2) that

vtf ' . . . r f '=v ,
and hence that

tf1 - Tf- = 1,

being onto. The existence of y, now follows from van Dyck's theorem.
Continuing the same notation we have

LEMMA 6.3 If B is a p-group then
(a) the kernel of y is a p-group

and
(b) if T is a p'-group then S contains a p'-subgroup So isomorphic to T,

and Soy = T.

PROOF. That ker y is a p-group follows from a well known result of P. Hall
(Theorem 12.2.2 in M. Hall [7]); and (b) then follows from the Schur-Zassenhaus
theorem (Theorem 15.2.2 in [7]).

We carry on this development, assuming still that B is a p-group, and T a
p'-group. Suppose that, as GF(p)T-modules, we have the direct decomposition

so that each AJ^A) is a GF(p)S0-modules as well. Now by P. Hall [8], A is a
relatively free group and we may choose a generating set X for it with a partition

X = U Xi
where ' = *

X, £ A,\<b(A), l g i ^ r .

Note that Fh the subgroup of A generated by X,, is a free group of rank \Xt\ in
var A and hence that

by 12.63 in [14] since the Frattini subgroup of a finite p-group is the $Ip-subgroup.
Hence

r.

Now T acts on each Ai/Q>(A) as a group Tt of operators. It follows from
Lemma 6.3, since Ft is the projective cover of Atj<S>(A) in var Ft, that there exists a
group of operators Sf on Ft and an isomorphism nt : St s Tf such that

<7Vj = v,(<7/ij), CTSS,-, 1 ^ i ^ r

where Vj|Fj (1 ^ i g r). Extend the action of each S; to all of A by
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xcFf = x, xeX\Xt, <T,GSf.

Since the elements of different St, Sj commute in their action on A we see that

(6.4) there exists a homomorphism £ : T" -* zutA (where T' is the r-fold direct
power of T) such that

(T,T,--,T)£V = VT, xeT.

Finally in this development put To for the diagonal subgroup

{(T ,T , - ,T ) :xet}

of T and form the splitting extension AT0 from f. Then (6.4) yields that

(6.5) v extends to a homomorphism of AT0 onto BT.

We find it convenient to finish this section with a result of a quite different
nature. With each finite p-group P associate the ordered pair £(P) = (c, a) where
c is the class of P and px is the exponent of yc(P), the last non-trivial term of the
lower central series of P.

LEMMA 6.6 Let P be a finite non-abelian p-group and M a subgroup of P
such that the index of M n<I>(P) in M is at most p. Then in the lexicographic
ordering of ordered pairs,

PROOF. If M has smaller class than does P we are done, so suppose that M
and P have the same class c greater than 1. Now Af<I>(P) is generated byO(P) and
at most one element x e M\<&(P). Every commutator of weight c in elements of
MQ>(P) can be written as a product of commutators of weight c in the generating
set consisting of x, commutators in P and pth powers of elements of P. But c is at
least 2 so one of the entries in each such non-trivial commutator is not x, nor is it a
commutator and so must be a pth power of an element of P. It follows that
VC(MO(P)) is generated by pth powers of elements of yc(P) and hence has exponent
strictly less than the exponent of ye(P). The same is therefore true of M.

7. Q-closure

We prove here the result (B) of the Introduction and get it as a corollary of
this theorem.

THEOREM 7.1. Let p,q be primes such that q divides p—l. Then a Q-closed
Fitting class containing C(p,q) contains S P S , -

COROLLARY 7.2. The smallest Q-closed Fitting class containing a supersoluble
group is a formation.
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The single most difficult step in the proof of Theorem 7.1 has proved to be
the next lemma. Accordingly its proof is deferred until later.

LEMMA 7.3. A Q-closed Fitting class which contains C(p"~l,q) for some
a = 1 contains C(p",q) where p is prime and q \p — 1.

Modulo this result the proof divides naturally into the two parts of an induc-
tion. We bend the usual varietal notation and write 23n for the class of (finite)
groups of exponent dividing n. Throughout 5 denotes a Q-closed Fitting class.

(I) / / p, q are primes such that q divides p — 1 and C(p, q)e$ then

(II) / / Sp339*-i s 5 then Sp » , . £ 5, a > 1.

Clearly it suffices to prove (I) and (II) in order to prove Theorem 7.1.

PROOF OF (I). Consider first the case of a group G = UT where U is a normal
p-subgroup of G and \T\ = q. We show by induction on £([/) that Geff. We
begin the induction by considering the case when U is abelian. In this case it
follows from a result of Taunt [15] that U is an unrefinable direct product of
normal homocyclic subgroups of G, say

U = Ui x ••• x Us.

Since q divides p — 1 each Ut is cyclic and so UtT s C(pp, q) for some positive
integer fi, or U{T s Utx T.In any case, using Lemma 7.3, t / .Teg (1 g i ^ s).
Repeated application of Lemma 1.1 then gives Ge f̂-

Suppose therefore that the class of U is at least 2. Let V be the projective
cover of U in var [/: note that then £(F) = £([/) since [/, K generate the same
variety. Since q divides p— 1, C//O([/) as GF(p)T-module is a direct sum of one
dimensional submodules. It follows from (6.4) that a free generating set
{*i, *2> ••» •*/•} f°r V ar |d groups of operators Slt ••-, Sr of V, each of order q, may
be chosen such that

V, = <4>(K),xf> admits S,, I ^ i ^ r.

Now Lemma 6.6 ensures that <̂ (K,) < £([/) and hence, by induction,

But by construction FSj is a normal product of KjS; and F each of which is in
so VSt e g. Hence from (6.4) and (6.5) (using the notation there)

Fr0esnN0 {VS,-A ^ i ^ } c g .
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However (6.5) then yields that G e Q g = 5 and so the inductive step is complete
and with it the proof that U T e g whenever \T\ = q.

The proof of (I) is completed by noting that if G = UT where U is a normal
p-subgroup of G and T has exponent q, we may assume T is not cyclic; hence that
T is a normal product, TXT2 say, and hence that G is a normal product (t/7\)
(UT2) so, by induction on \T\, G e g .

PROOF OF (II). For exactly the same reason as in the last paragraph it is suf-
ficient to show that G e g whenever G = UT with U a normal p-subgroup and T
a cyclic group of order q".

Let W — CqwrCq«-i and identify T with a cyclic subgroup of order q" in W
Since the regular GF(p)W-module restricted to T gives a direct sum of regular
GF(p)r-modules, it follows that, for some direct power M of the regular GF(p)-
module of W.

(7/O(t/) is a direct summand of MT.

Now write A for the projective cover of M (regarded as an elementary abelian
p-group) in var U. By Lemma 6.3 there is an isomorphism of W into auL4: form
the splitting extension AW and note that, since W is a normal product of groups
of exponent dividing q""1, AW e g . It follows that

But Aj<^A) as T-module decomposes

AI<b(A) = AJ<b(A)®A2l<b(A)

where Atl<b(A) ^ L//O(C/). If To is defined as in section 6 then (6.5) demands that
AT0 and AT being of the same order are in fact isomorphic. However the
normal closure of F2 in A admits To and intersects F t trivially, so

Finally, Fl is the projective cover of U in var U so another application of
(6.5) yields that UTeQ{F1T0} c g f a s required.

PROOF OF LEMMA 7.3. The crux of the proof lies in the construction of a cer-
tain p-group. Let A,B be cyclic of order p", p"" 1 respectively, generated by a,b
say. Then the wreath product W = A v/r B has an automorphism a of order q such
that

aa = as, bo = bs

where s has order q modulo p": note that s ^ l(mod p""1) ; and C = 5<(<7> =
C ( p a - 1 , <?). Let M t be the base group of W regarded as Zp«C-module.

Consider the submodule of Mt defined by
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Modulo M2 the submodules p"~1M1 and [ M ^ O " " 1 — 1)B] are isomorphic; for,
the first is simply <p""1a> and the second is ([a,(p*~l - l)b]>; B is in the
kernel of each; and

= s

since s ^ 0 (mod p) and s5"1 = 1 (mod p). It follows that if

then 1/ + M2IM2 is a submodule ofM1/M2, call it M3/M2 say. Put M = MJM3;
for convenience we use a instead of its coset a + M3 in Af.

(7.5) £t?ery element of MB\MBP has order exactly p'~l.

For, if xeMB\MBP, x = b'm for some meM and f such that p ^ t . Now

since p/f' t. But m = a"d for some integer u and some d e [Af, B], and so

= 1.

Plainly x can have no smaller order.

(7.6) There exists b0 e MB\MBP with the properties

(i) boa = b%

(ii) (bo,b} = MB.

In fact we prove by induction on ie{l,---,p"} that if Nt = [M, iB] there
exists yt e MB\MB" and satisfying (i) and (ii) but modulo Nt.

If i = 1, j>! = fca will do. For 1 ^ i g p* consider (y,, Nt} modulo ATJ+1: it
is an abelian p-group of type (a — 1,1) on which a acts. It follows from Taunt
[15] again that there exists y,+1 e <y»,N,> of order p*~l with

modulo Nl+1 and with (yhNty = <yf+i,JVI> modulo Nt+l. This means in parti-
cular that yi+l $MBP; and also that
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<yi+u b, NtyNi+! = <>>„ b, N(}Ni+1

whence <j>f+i,b>./Vj = <>",•,fc>JV, = MB by induction. Since JV, <;O(MB),
(.yt+u by = MB. The induction is therefore complete, and b0 = yp. is the element
we want to satisfy (7.6).

(7.7) MCeg.

But 5o = Oo>» and let 33 be the variety generated by MB. Write

* = £„*»«
the IB-product of Bo and B (see 18.31 in [14]). We need the facts that Bo Pi [Bo, B]
= B n [Bo, B] = 1 and that [Bo, B] is an elementary abelian p-group.

Define automorphisms a0, ov of R by:

bQa0 — b%, bo0 = b,

boPi = b0, b<7i = b*.

Then B0<cr0> s C ^ ' S ^ e g and hence, by Lemma 5.1,

Similarly [BQ, B]B<o-1>6 3f. But R(aoy is a normal product of [Bo, B]B <ao> and
/?, both of which are in g, so J?<ffo> eg , and of course R<CT1> e g similarly. If we
put a' = trot?!, therefore, we conclude that

Let v : R -* MB the natural homomorphism given by

bov = b0, bv = ft.

It is a simple matter to check that va ~ a'v, so ker v admits a', and hence a' I-XJ
extends v to a homomorphism of/?<<r'> onto MC. Therefore MCeg as required
in (7.7).

Finally we observe that W = A wr B has an automorphism T given by

ax = a, bx = £>s.
Since

and

M3 admits T SO T acts on MB. Put £> = B<T> S

(7.8) M D e g .
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For i e {0, ••-, a} define D-submodules Ut of M by

U0 = [x,Bl

and

Now l/0I> e 5 by Lemma 5.1; and since for i 2; 1 UtD is a normal product of C7
and Ui-iD it follows by induction that t / .Deg for all i e {0, - , « } . But Ua = M
so (7.8) is proved.

It is clear that, as automorphisms of MB, at = TO- and hence if x = or"1,

MB<x>esBN0{MC,MD} e g .

However 6/ = b so M<#>esn3f = 5 ; a n d as <y>-module over Zp«,

M = <a>©[M,B] .

Since ax = aax'1 = a" we conclude that C(p",q) s <a><x>£Qg = 5- The
proof of Lemma 7.3 is now complete.

PROOF OF COROLLARY 7.2. Let A be a supersoluble group: it is then certainly
metanilpotent, even nilpotent by abelian. The proof relies on finding a suitable
Q-closed Fitting class containing A. This is accomplished as follows. Let p, q be
different primes and %(p, q) the class of all groups B with the property that every
^-element of B centralizes every p-chief factor of B. It is easy to check that 3f(p, q)
is a Q-closed Fitting formation.

Suppose that 5 is the smallest Q-closed Fitting class containing A and suppose
that it is not s-closed: choose a group G e 5 of least order with respect to having a
subgroup H not in 5- Suppose that H is chosen minimally. Much as in the proof
of Theorem 4.1 we conclude that F(G) is a p-group for some prime p complemented
by a g-power cycle for a prime q # q. It follows that G ^(p,q). In other words
A has a p-chief factor with a ^-element acting non-trivially on it. The supersolu-
bility of A then means that q divides p — 1. But C(p, q) is a factor group of a nor-
mal subgroup of G and therefore lies in g , whence He % by Theorem 7.1, a
contradiction, so 5 is s-closed. Finally 5 is a formation by Theorem 3.1, and the
proof of Corollary 7.2 is complete.
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