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PARTITIONED GROUPS AND THE ADDITIVE
STRUCTURE OF CENTRALIZER NEAR-RINGS
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If G is a finite group and A is a group of automorphisms of G, the "centralizer" near-
ring C(A, G) consists of the identity-preserving maps from G to itself which commute
with the action of A. The main concern of this paper will be with the additive structure
of C(A, G) in the case that this near-ring is semisimple.

As was shown by C. J. Maxson and K. C. Smith [6], C(A, G) is semisimple precisely
when the double centralizers CG(CA(x)), xeG # , partition G. Since it is these double
centralizers that determine the additive structure of the simple components of C(A, G),
our problem is a purely group theoretic one.

Partitioned groups have been studied in considerable depth by several authors and, to
a large extent, are classified. However, not all partitions of a group arise from a group
of automorphisms in the manner described above (the dihedral groups of order An, for
example, have a central involution fixed by every automorphism), and the classification
does not seem to point to any obvious distinguishing features of those that do. Indeed,
a definite shortcoming of the present paper is the fact that we have found no effective
way of exploiting the special nature of these partitions so as to avoid invoking the
deepest part of the classification, namely Suzuki's result on partitioned groups with
trivial Fitting subgroup [8]. On the positive side however, although our interest is not
so much with the structure of G as that of the double centralizers, Suzuki's theorem
provides a complete description of the pairs {A, G) for which F(G) = 1 and C(A, G) is
semisimple (Theorem 2.2).

The case that G has non-trivial centre requires no such deep results. Here we show
that if the partition is non-trivial, then either G has prime exponent or it contains an
abelian normal subgroup of prime index. (Contrast this with the obvious fact that any
p-group all of whose elements of order not equal to p lie in a proper subgroup admits a
non-trivial partition.) In the latter situation, the structure of G and the action of A can
be pinned down fairly precisely.

The final case, when G has trivial centre but non-trivial Fitting subgroup, is less
satisfactorily treated here but at least it can be asserted (using results of Baer and Kegel)
that G is Frobenius with a Frobenius kernel which is either abelian or of prime
exponent (Lemma 4.2).

As for the semisimple near-ring C(A, G), we conclude from these results that if C(A, G)
is not simple, then as additive groups, each of its simple components is either abelian, of
prime exponent, or is a direct product of copies of a subgroup H of G (where H is either
a Frobenius group or a Frobenius complement). (Theorem 5.1.)
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1. Preliminaries

All groups will be assumed to be finite and notation corresponds to that of
Gorenstein's book [3].

First we summarize the results of Maxson and Smith which motivated this
investigation.

Lemma 1.1 [6]. Let G be a finite group and /4^AutG.

(a) C(A, G) is simple if and only if all centralizers CA(x), xeG*, are conjugate in A.

(b) C(A, G) is semisimple if and only if for all x,ytG*, either

CG(CA(x)) n CG(CA(y)) = 1 or CA(x) = CA(y).

(c) The action of A on G* induces an action on the set of double centralizers
CG(CA(x)), xeG. If x1,x2,...,xkeG such that {CG(CA(Xi)):l g>i^k} is a complete
set of orbit representatives, then

where G, = QKC^x,)) and ^i=N/,(Cy4(xi))/Cx(x1.) = Ary4(G,)/C/1(Gi). Moreover, each
Ai acts semiregularly on Gf so that the C(Ah G,) are simple.

Remark. It is immediate from statement (c) above and a theorem of Thompson
(Theorem 10.2.1 of [3]) that if A,£l, then G, (and hence, the additive group of the
component C(/4,-,G,)) is nilpotent. One of the main objectives here will be to obtain the
more precise statement that if At =f= 1 (and k > 1), then the additive group of C(At, G,) is
either abelian or of prime exponent.

Since statement (b) of the lemma characterizes semisimplicity of C(A,G) purely in
terms of the action of A, we shall omit reference to C{A,G) throughout most of the
argument and instead simply refer to the action of A on G* as "partitive" when the
double centralizers partition G. We shall call (A, G) a partitive pair.

The two major characterizations of partitioned groups which we shall use are:

Lemma 1.2 [8]. If G is a finite partitioned group and F(G) = 1, then G~PGL2(p"),
PSL2(p") (where p is prime and p"^4) or Sz(22n + 1).

Lemma 1.3 [5]. Suppose G is a finite partitioned group with F(G) =£ l but Z(G) = 1.
Then either G is Frobenius or G is isomorphic to the symmetric group S4.

The next fact is a trivial consequence of partitivity but it will be used continually
throughout the paper.

Lemma 1.4. If (A, G) is a partitive pair and A is not semiregular on G*, then

(a) CA{x)±lfor allxeG*.

(b) If x,yeG* with CA(x)^CA{y), then CA(x) = CA{y). In particular, if x"±\, then
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As the first application of Lemma 1.4, we eliminate the singular case G = SA from
Lemma 1.3.

Lemma 1.5. Suppose (A,G) is a partitive pair with F(G)^=1 but Z(G) = 1. Then G is a
Frobenius group.

Proof. If not, then by Lemma 1.3, G^S^. so Aut G = I n n G ^ G and we may identify
A as a subgroup of G. Now CG(x) = <x> if x is any 3-cycle so since A is certainly not
semiregular on G#, (x} = CA(x) by Lemma 1.4 (a). Hence AA^A. On the other hand, if
x = (1234), then (14)(23)eCA(x2) but (14)(23) does not centralize x, contradicting Lemma
1.4 (b).

Lemma 1.6. Suppose (A, G) is a partitive pair and H and K are non-trivial A-invariant
subgroups of G with G = HK and HnK=l. Then A is semiregular on G*.

Proof. If hsH* and keK*, then for aeCA(hk), we have h~1h'L = kk-'eH nK = l so
CA(hk) = CA(h) n CA(k). By Lemma 1.4(b), CA(h) = CA(k) so since h and k are arbitrary,
the result follows.

If p is a prime, let HP(G) be the Hughes subgroup generated by all elements of G of
order other than p. The following simple lemma is an adaptation of a basic tool in the
characterization of partitioned groups:

Lemma 1.7. Let (A, G) be a partitive pair and assume xeG*.

(a) If x has composite order, CG(x) ^ CG(CA(x)).

(b) If x has prime order p, Hp(CG(x)) g, CG(CA(x)).

Proof. Let yeCG(x) so (xy)M = xM and (xy)M = yM. If \x\±\y\ then Lemma 1.4(b)
yields that CA(xy) = CA(x) or CA(y) so CA(x) = CA(y) and yeCG(CA(x)). If |x| = |j>| and
p\ \x\, we can replace x by x" or y by yp in this argument and obtain the same conclusion
unless |x |=p = |_y|. The result follows.

2. The case f{G) = 1

In this section, we obtain precise information about both A and G in the case that A
is partitive on G* and G has no non-trivial abelian normal subgroups. As mentioned
previously, the conclusion is a corollary of Suzuki's theorem (Lemma 1.2).

Lemma 2.1. Suppose G is a finite non-solvable group with a group of automorphisms A
acting partitively on G*. If A contains Inn(G), then G^SL2(2")for some n^.2.

Proof. Let x be an involution in G. If yeCG{x) with |y|=/=2, then by Lemma 1.7, y
and x belong to the same component of the induced partition. Therefore
yeCG{CA{x))^Z(CG(x)) (since lnn(G)^A). If z is any involution in CG(x), then \yz\£2
so yz (and hence z) lies in Z(CG(x)). Thus, CG(x) is abelian. On the other hand, if no
such y exists, CG{x) is an elementary abelian 2-group.

Now Suzuki's classification [7] together with the Feit-Thompson theorem yield that
G = HxZ where H~SL2(2"), n ^ 2 and Z is abelian of odd order. Since H = G' and Z
= Z(G), Lemma 1.6 implies Z = l (else A is semiregular on G*, contradicting Inn(G)g/4).

Note that since the centralizers of non-identity elements in SL2(2") are abelian, the
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inner automorphism group of SL2(2") is actually partitive on SL2{2")# so no stronger
conclusion about G is possible. On the other hand, without the assumption that
Inn(G)55/4, Lemma 2.1 is false. (For a counterexample, let G be a non-solvable
Frobenius group with kernel K and complement H, and let A be the group of inner
automorphisms induced by KZ(H).)

Theorem 2.2. Let G be a finite group and A be a non-trivial group of automorphisms of
G acting partitively on G*. If F(G) = l, then G^SL2{2") for some n^2 and Inn(G)^A.
In fact, if n=^3, then Inn(G) = A.

Proof. Since G has trivial centre, we may identify G with Inn(G) (so both A and G
may be thought of as subgroups of Aut(G)). In view of Lemma 1.2, G is isomorphic to
one of PGL2(q), PSL2(q), or Sz(q) for an appropriate prime power q. Hence, G admits a
group of "field" automorphisms Fo induced by the action of the Galois group of GF(q).

If G is PGL2(q) or Sz(q), the semidirect product F0G is all of Aut(G). If G is PSL2(q),
we may identify G as the commutator subgroup of PGL2(q) and then, every
automorphism of G is the restriction of an automorphism of PGL2(q). If q is a power of
the prime p, G has an F0-invariant Sylow p-subgroup Po whose centre may be identified
with GF(q) in such a way that the action of Fo on Z(P0) is isomorphic to the action of
the Galois group on GF(q). In particular, Fo is faithful on Z(P0). iVAm(G)(P0) is
transitive on Z(P0)* =Q1(P0)*. Finally, CG(x) = P0 for every xeZ(P0)* so Po is a T.I.
set. (These facts and several others to be used in the argument may be found in [1], [2]
and [9].)

We claim first that if P is any Sylow p-subgroup of G, then AnP±\.
Suppose Ar\P = \. P is conjugate in G to Po so some conjugate F of Fo normalizes

P. Let xeCZ(P)(F)#. From the structure of Aut(G) and the fact that CG(x) = P, we obtain
CAm(G)(x) = FP. Since CA(x) nP = A n P = l, it follows that Cx(x) = <<ry> for some oeF
and ye P.

If G^Sz(q), P = H2(P) so by Lemma 1.7, CA(P) = CA{x) = <<ry> SO oeCF(Z(P)) = l and
CA(x) = (y}^An P = l. But then partitivity implies A is semiregular on G*, an
impossibility. Thus, we may assume G is isomorphic to PGL2(q) or PSL2(q).

If \a\ = m, then

(<ry)m = amy"m'i. ..yay=y"m'1. ..yayeAnP=l.

Since the action of F on P = Z(P) is isomorphic to the action of the Galois group on
GF(q), Hilbert's Theorem 90 yields that y = z~"z for some zeP. Therefore, ay = az so
CG(C^(x)) is conjugate in G to CG{a) and hence is isomorphic to PGL2(p

k) or PSL2(p
k)

for some k (where GF(pk) is the fixed field of the Galois automorphism corresponding
to a). Then CG(CA(x)) contains a maximal cyclic subgroup of order (pk + l)/d =fc 1 (where
d=l if CG(a)^PGL2(p

k) and d = 2 otherwise). But by Lemma 1.4(b), such a subgroup
must be a maximal cyclic subgroup of G and so has order q ± 1 or (q ± l)/2 according as
G^PGL2(q) or G^PSL2{q). It follows that pk + l=q-l or (<z-l)/2 and hence, that
either G^PSL2{A) with CG(CA(x))^PGL2(2) or G^PSL2(9) with CG(CA(x))^PGL2(3).

Now NA(CA(x))/CA(x) acts semiregularly on CG(CA(x)) which is not nilpotent, so by
Theorem 10.2.1 of [3], NA(CA(x)) = CA(x). Since \CA(x)\ = \a\ = 2, it follows that CA(x) is a
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Sylow 2-subgroup of A. Let y be an element of order 5 in G so CG(,y) = <.y>. If IĈ OOl
were even, it would contain a conjugate of CA{x) by Sylow's theorem and so, by
partitivity, would, in fact, be conjugate to CA(x) in A. But then y e CG(CA(y)) =; CG(CA{x)),
a contradiction since neither PGL2(2) nor PGL2(3) has order divisible by 5. Thus,
\CA(y)\ is odd so, since |AutG:G| = 4, CA(y)^G. Then 1 =£ CA(y) £j CG{y) = <y> so ye A.
Since G is simple, it is generated by its elements of order 5 and so, G^A. This
contradicts the assumption that AnP=l and hence, the claim that A n P =/= 1 for every
Sylow p-subgroup P of G is proved.

Let H=AnG. (A/CA(H),H) is a partitive pair and A/CA(H), identified as a subgroup
of Aut(H), contains Inn(H). By Lemma 2.1, either H is solvable or #~SL2(2m) for
some m^2. Also, we have shown that H intersects every Sylow p-subgroup of G non-
trivially so, since the Sylow p-subgroups of G are T.I. sets, H contains precisely the same
number of Sylow p-subgroups as G.

If G^Sz(q), G (and hence H) has qz + \ Sylow 2-subgroups. Since SL2(2
m) has 2m + l

Sylow 2-subgroups and

\SL2(q
2)\ = q2tf ~ V(q2 +1) > q2(q ~ 1)(<Z2 +1) = \Sz(q)\,

H must be solvable. Since q2 +1 is a Hall divisor of |Sz(g)|, H contains a subgroup of
order q2 +1. But Sz(q) contains no such subgroup, a contradiction.

G is, therefore, isomorphic to PGL2{q) or PSL2(q), q = p"^4, and in particular, G and
H each have q +1 Sylow p-subgroups.

If p =£ 2, then no solvable subgroup of PSL2(q) can intersect non-trivially every Sylow
p-subgroup of PSL2(q) so if H is solvable, p = 2 and G =* SL2(2"). In this case, H must be
dihedral of order 2(2"+ 1). But if x is any element of order 2" + l in G = SL2(2"),
CAutG(x) = <x> so Hn <x> = / l n <x> = Cx(x). Since partivity implies Cx(x)^=l, H must
intersect non-trivially every cyclic subgroup of order 2" +1 in G. Because H has a
unique such subgroup, this is absurd.

We are now reduced to the case that H~SL2(2
m) for some m^2. If p=£2, any

involution x in H (and in fact, in G) is contained in a self-centralizing cyclic p'-subgroup
<)>> of G and, by partitivity, CA(x) = CA(y). Then C^x) ^ CG(_y) = <y> and so CH(x) is
cyclic. This contradicts m~2.1. Thus, p = 2 so, since H and G have the same number of
Sylow 2-subgroups, m = n and G = H as required.

Finally, we argue that if n^3 , G = A Since G^SL2(2"), Aut(G) = F0G where Fo is the
group of field automorphisms. Since G^A, A = BG where B = Ar\F0. If B^ l ,
CG(B)c^SL2(2

m) for some proper divisor m of n. Let xeCG(B) of order 2m + 1 (so x^l ) .
Now xe(ji) where yeG has order 2" + l so by Lemma 1.4, CA(x) = CA(y). Since
B^CA(x), yeCG(B)^SL2(2

m) so <x> = <y>. Thus 2m + l = 2 " - l so n = 2 and m=l.
Therefore, if n ̂  3, B = 1 so/4 = Gas required. This completes the proof of Theorem 2.2.

Of course, if the near-ring C(A, G) is semisimple and if F(G) = 1, we can now specify
precisely the simple components of C(A, G). However, since we eventually want to
suppress any assumptions about the structure of G, we content ourselves with the
following observation:

Corollary 23. / / C(A, G) is simple and F(G) = 1, then C(A, G) has precisely three simple
components, all of which are abelian as additive groups.
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Proof. Theorem 2.2 states that G^A in this case so CG(CA{x))^Z{CG{x)) for all
xeG*. By Lemma l.l(c), every simple component is abelian. In fact, since GsSL2(2")
and G^A, the subgroups CG(CA(x)), xeG* are each either Sylow 2-subgroups of G or
else cyclic of order 2" —1 or 2" + 1, and there is one conjugacy class of each type in G.
Thus, Lemma 1.1 (c) implies that there are exactly three simple components.

3. The case Z{G) ± 1

Lemma 3.1. Let (A,G) be a partitive pair and assume A is not semiregular on G*.
Suppose N is an A-invariant normal subgroup of G and xeG* such that N^CG(CA(x)). If
CG(N)^N then N is abelian and, for any geG\CG(CA(N)), CA(N) is transitive on the
coset gN.

Proof. Let g e G\CG(CA(N)) with g of prime order p. (Such an element exists for,
if heG\CG(CA(N)), then <Jz> n CG(CA(N)) = 1 by Lemma 1.4(b).) Let G0 = <JV,g> and
A0 = CA(G0/N).

Since CG(N) = Z(N), the Three Subgroups lemma [3, Theorem 2.2.3] implies
CA(N)^CA(G/Z(N)) so if neN*, CA(n) = CA(N)^CA(G/Z(N))^A0. On the other hand,
XheGo\N then G0 = <JV,/i> so CA(h)^CA(G0/N) = A0. It follows that if A0 = A0/CA(G0)
then (Ao, Go) is a partitive pair and AQ is not semiregular on G*. In order to prove N is
abelian, therefore, we may assume G = G0 and A = A0.

Now since CA(N)^CA(G/Z(N)), the map oo->[g,a]=g~ V defines a homomorphism
from CA(N) into Z(N) and, in fact, it is a monomorphism since G = <iV,g>. Since
A/CA(N) is semiregular on N*, (\A:CA(N)\,\N\) = 1 and hence (|>4:C^(JV)|,(C îV)!) = 1. By
the Schur-Zassenhaus theorem, A = CA(N)B for some subgroup B with CA(N)nB = l.

Since CA(g)nCA(N) = CA(G) = l, \CA(g)\ divides \B\ SO CA{f) = CA(gf ^ B for some
a e A. Since A = CA(G/N), the coset g*N is ^-invariant so, because N acts transitively on
£°W by right multiplication and (|Ar|,|B|) = l, a result of Glauberman [4, (13.8)] yields
that B<^CA(g*n) for some neN*. Thus CA(gx)=B = CA(gan), proving that CA(g) is
conjugate in A to B. The same argument applies to every element of G\N (and, hence,
to every element of gN).

Suppose CA(g) = CA(gn) for some neN. Then CA(g)^CA(n) so, since g£CG(CA(N)), we
have n = l . Hence, each element of gN has as its centralizer in A a distinct conjugate of
B. In particular, |JV| = |giV| is bounded by \A:NA(B)\g\CA(N)\.

But now |JV|^|C^(JV)|^|Z(JV)| so N is abelian. Moreover we have shown that if
geG\CG(CA(N)) is of prime order, the homomorphism CA(N)->Z(N) = N is actually an
epimorphism from which it follows that CA(N) is transitive on gN. If g is any element of
G\CG(CA(N)), then for some k, g* has prime order and, since <#> n CG(CA(N)) = l,
gkeG\CG(CA(N)). Thus, the map o»-»[g*,a] from CA(N) to N is surjective. But the map

»«] n a s kernel

so it must also be surjective. Therefore, CA(N) is transitive on gN regardless of the order
of g and the proof of the lemma is complete.
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Lemma 3.2. Let V be an abelian group and H be a group of operators on V. If X%
let l = £ t e J t x (considered as an endomorphism of V). Assume H admits a partition n (so
n is a collection of subgroups with each non-identity element of H contained in a unique
member ofn) and that X = 0for each Xen. If H=0, then \ii\ = l mod(exp V).

Proof.

0 = H = I+ £ (£-J)=/- |n | / = (l-|s|) JinEnd V

so the result follows.

Theorem 3.3. Suppose (A,G) is a partitive pair with A not semiregular on G*. If
then either G has exponent p for some prime p or the following hold:

(a) Z(G) has exponent pfor some prime p,

(b) Hp(G) is abelian of index p in G,

(c) CAM(G)(HP(G)) ^AS CAut(G)(G/tfp(G)),

(d) CA(Hp(G)) is a normal Hall subgroup of A isomorphic to Hp(G),

(e) CA(HP(G)) acts transitively on the set of subgroups of G of order p outside HP(G).

Proof. If Z(G) contained an element x of composite order, Lemma 1.7 would imply
G = CG(CA(x)) so CA(x) = l, contradicting the assumption that A is not semiregular on
G*. Thus, Z(G) has prime exponent p for some p. For any xeZ(G)*, Hp(G)^Ca(CA(x))
by Lemma 1.7(b) so by Lemma 3.1, if G is not of exponent p, HP(G) is abelian and
CA(HP(G)) is transitive on each coset gHp(G) where geG\CG(CA(Hp(G))).

Let G = G/HP(G) so G has exponent p and acts by conjugation on HP(G). Suppose
\G:Hp(G)\>p so G contains a subgroup H of order p2. If x e G then for any ueHp(G),
uu*uxl...uiP ' = 1 so, in the notation of Lemma 3.2, x = 0. Moreover, if /? = <x,|>>, then
R=xy = 0. Since H is partitioned by its p + 1 subgroups of order p, Lemma 3.2 yields
that Q\p(Hp(G))=p, contradicting the assumption that G does not have exponent p.
Thus, |G:Hp(G)| = p. Moreover, it follows that CG(CA(Hp(G))) = Hp(G) so CA(HP(G)) is
transitive on gHp(G) for every geG\Hp(G) and hence, transitive on the set of subgroups
of order p in G outside HP(G).

As in the proof of Lemma 3.1, if geG\Hp(G), the map CA(Hp(G))^>Hp(G) (defined by
<x->[g,a]) is bijective. It is still injective when extended to CAutG(Hp(G)) (since G =
</Jp(G),g» and so CA u t G(Hp(G))gA A/CA(HP(G)) is semiregular on HP(G)* so since
CA(Hp(G))^Hp(G), CA(HP(G)) is a normal Hall subgroup of A. If B is a complement for
CA(HP(G)) in A, B centralizes some element of gHp(G) by Glauberman's lemma, so B
(and hence A) is contained in CAalG(G/Hp(G)). This completes the proof.

The theorem suggests a recipe for constructing examples. Let H be an abelian group
which admits an automorphism a of order m, say, such that fc1+<7- •• +0"1 ' = 1 for every
heH. Assume H also admits a fixed-point-free automorphism a of prime order such
that <x<r = GOL. If G = H<<r>, then a extends to an automorphism of G (which fixes a). For
each heH, define f}h to be the automorphism which fixes H and maps a to ha. If
B-{ph:heH), then B is a subgroup of AutG which is normalized by a, so we may let
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A = B(CL). It is then easily checked that (A,G) is a partitive pair. If H is a 2-group of
exponent at least 4 which admits a fixed-point-free automorphism of prime order (such
as Z4 x Z4) and if a is the automorphism which inverts H, then (J4, G) is one of the
exceptional cases described in Theorem 3.3. On the other hand, if p is an odd prime, H
is a 2-dimensional space over GF(p),

with respect to some basis, then we obtain a partitive pair in which G is non-abelian of
exponent p. If a = <r, we obtain a partitive pair in which G is a Frobenius group, a
situation to be discussed in the next section.

Corollary 3.4. Suppose G is a finite group, A^AutG and C(A, G) is semisimple but not
simple. IfZ(G)j= 1, then either

(a) (C(A,G), +) has prime exponent, or
(b) C(A,G)^C{A,H)@C{1,K) where H = Hp(G), A = A/CA(H), and K is a subgroup

of order p in G outside H. In this case, C(A, G) is abelian.

Proof. This is a direct consequence of Theorem 3.3. and Lemma 1.1. There are only
two components in the second case since A is transitive on subgroups of order p in
G outside H. Moreover, |//| = |/4:CX(K)| by transitivity so, since CA(H)^H,
A = CA(H)CA(K). Since NA(K) n CA(H) ̂  CA(K), it follows that NA(K)/CA(K) = 1.

4. The Case F(G)±1 =

In this case, G is Frobenius by Lemma 1.5 so we may write G = FK where F = F(G),
the Frobenius kernel (and the Fitting subgroup of G), and K is a complement for F
(which acts semiregularly on F*).

Lemma 4.1 K^CG(CA(x)) for every xeK*. Moreover, if xeK* and
NA(CA(x))/CA(x)±l, then K = CG(CA(x)) and K is cyclic of odd order.

Proof. Let xeK*. If cteCA(x) then xeKnK" so since K is a T.I. set and K" is
conjugate in G to K, <xeNA(K). Thus, CA(x) ^ NA(K) so NA(K)/CA(K) acts partitively on
K*. K, being a Frobenius complement has non-trivial centre, so Theorem 3.3 applies to
the pair (NA(K)/CA(K), K). Since K cannot itself contain a Frobenius group (as may be
easily seen from [3, Theorem 3.4.4]), we conclude that either NA(K)/CA{K) = 1 or K is
nilpotent. Since CA(x) ̂  NA(K), the first case immediately yields K ^ CG(CA(x)). In the
second case, each Sylow subgroup of K contains a unique subgroup of prime order [3,
Theorem 10.3.1] and hence, Lemma 1.4 implies K^CG(CA(x)).

If NA(CA(x))/CA(x)=fcl, then since this group acts semiregularly on CG(CA{x))*,
Theorem 10.2.1 of [3] implies CG(CA{x)) is nilpotent. Since K is semiregular on F*,
Cp(CA(x)) = l so since K^CG(CA(x)), we must have K = CG(CA(x)). As in the preceding
paragraph, each Sylow subgroup of K has a unique subgroup of prime order so if |X|
were even, then taking u to be the unique involution in K, we get NA(CA(x)) =
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NA(K) ^ CA(u) = CA(x), a contradiction. Thus, \K\ is odd so by [3, Theorem 10.3.1], it
is cyclic.

Lemma 4.2. If F is not of prime exponent then the following are satisfied:

(a) F is abelian and F = CG(CA(x))for every xeF*.

(b) A contains the inner automorphisms induced by F (and hence, is transitive on the
set of Frobenius complements).

(c) NA(K)/CA(K) = l.

Proof. Assume F is not of prime exponent and let H = HP(F) =/= 1 (where p divides
\Z(F)\). UzeZ(F)#, H^Hp(CG(z)) by Lemma 1.7.

Suppose F^CG(CA(z)). Then A/CA(F) is not semiregular on F* so Theorem 3.3
implies that H is abelian of index p in F. Let G = G/H = [F]K where F = F/H~ZP and
K~K. Now G is Frobenius and so is partitioned by F and the p conjugates of K in G.
Considering the action of G on H, we conclude from Lemma 3.2 that the exponent of H
divides p, a contradiction. Thus, F^CG(CA(z)).

By Lemma 3.1, F is abelian so, identifying G as a subgroup of AutG, F^CA u t G(F) . By
the Three Subgroups lemma, [G,CAutG(F)]^CG(F) = F. If aeCAutG(F), then K" = Kf for
s o m e / E F SO af ~* eNAutG(K) n CAutG(F). Hence, [ G , a / " ' ] | F n X = l so a = / e F .
This proves that CAutG(F)^F so CAulG(F) = F. In particular, CA(F) = AnF. Now by
Lemma 3.1, AnF is transitive on the coset xF for any xeG\CG(CA(F)). Since Cf{x) = l
for any such x, it follows that \A n F| = |xF| = |F| SO, in fact, F^A. Then
CG(CA(z)) g CG(F) = F so CeCC^z)) = F.

Finally, if xe /C # , CA(x) = CA(K) by Lemma 4.1 so CA(x)nF = l. Since /I is transitive
on xF, \A:CA(x)\ = \F\ so A = FCA(x) = FCA(K). Hence, iVA(K) = NF{iC)Cx(A:) = CA(X),
completing the proof of (c) and the lemma.

Note that Lemma 4.2 and Corollary 3.4 imply that if C(A, G) is semisimple but not
simple and F(G) is non-trivial but not of prime exponent, then

C(A,G)^C(A,F(G))®C{l,K) where A = A/CA(F(G)).

When NA(CA(x))/CA(x) = 1 for any XBK*, we cannot say much more about K than
that it is a Frobenius complement. This is unfortunate but not surprising, at least when
F is abelian since, if G = FK is any Frobenius group with abelian kernel, the group
A = FZ(K) obviously acts partitively o n G * by conjugation.

5. Epilogue

Summarizing the results of Sections 2, 3 and 4 in a form which is free of hypothesis
about the structure of A or G, we obtain the following:

Theorem 5.1. If G is a finite group, A ^ Aut G and C(A, G) is semisimple but not
simple, then the additive group of each simple component of C(A, G) is either

(a) of prime exponent

(b) abelian, or
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(c) a direct sum of copies of a subgroup H of G which is either a Frobenius group with
kernel of prime exponent or else a Frobenius complement.

The last case arises when G = FK, a Frobenius group with kernel F, and the component
in question is of the form C(l,H) where H = CG(CA(x)), xeK*.
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