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ON UNRAMIFIED CYCLIC EXTENSIONS OF DEGREE !
OF ALGEBRAIC NUMBER FIELDS OF DEGREE !

YOSHITAKA ODAI

Introduction

Let I be an odd prime number and let K be an algebraic number
field of degree /. Let M denote the genus field of K, i.e., the maximal
extension of K which is a composite of an absolute abelian number field
with K and is unramified at all the finite primes of K. In [4] Ishida has
explicitly constructed M. Therefore it is of some interest to investigate
unramified cyclic extensions of K of degree [, which are not contained
in M. In the preceding paper [6] we have obtained some results about
this problem in the case that K is a pure cubic field. The purpose of
this paper is to extend those results.

Let Q denote the field of rational numbers and let Z be the ring of
rational integers. Let { be a primitive /-th root of unity. Let & = Q(0)
and L = K(). In Section 1 we see how an unramified cyclic extension
N of K of degree [ is obtained from an element « of L. Here « satisfies
some conditions, one of which is that there exists an ideal A of L such
that («) = ¥'. In Section 2, assuming that L is a ramified Galois extension
of k, we give a criterion for N to be contained in M by means of « (see
Theorem 1). In Section 3, assuming that [/ is regular, we define F, (resp.
F,) as the composite of all those IV, for which 2 are ambigious over k
(resp. principal) (see Definition). Theorem 2 proves that F, = F,M. In
Section 4 Fj is investigated and Theorem 4 gives infinitely many examples
of N not contained in M.

Norations. G = Gal(L/K) is a cyclic group of order I — 1. Let ¢
be a generator of G and let 7 be the element of Z/IZ such that { = e
Let Z/lZ[G] denote the group ring of G over Z/lZ. We define

l—‘z Py .
e, = — ) fid for1<i<iI-—1.
7=0
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Then ¢, are mutually orthogonal idempotent elements of Z/IZ[G]. For a
Z|lZ[G]-module A, let

A(l) = A% = {a%; ac A},

then A() ={acA; a"=a} ={acA; o =a’"} and A = [[iz} A(i) (direct
product). We take r (resp. e,) as an element of Z (resp. Z[G]) congruent
to 7 (resp. é;) modulo I. For an algebraic number field F, let F'* (resp. E;)
denote its multiplicative group (resp. its unit group).

§1. Preliminaries

In this section, let K be an algebraic number field (not necessarily
of degree [) such that K N £ = Q. The main idea of this section is due
to G. Gras [1].

Let o be the set of all the cyclic extensions of K of degree [ and
let # be the set of all the cyclic extensions of L of degree I, which are
abelian over K. We note that any element of ¥ is written in the form

L(v a), where acL*. For 1 <2<, let
Po={t, -, tye{l, -, 1 —1}; >, r'“ =0 (mod 1)}.

Let us define that (¢, ---,t) and (&, - - -, t;) are equivalent if ¢, — t{ = - --
=1t —ti(mod ! — 1) and let T; be a complete system of representatives
of the equivalence classes. For () = (¢, ---,t)e P, we can take I'(f) e

Z[G] such that e,->71_ 7% = I['(t) since e;r = e,r (mod IZ[G]). Let Tr,x
denote the trace map from L to K.

LemMa 1. For L(Wa)e &, let

A 0 if T, is empty,
T 13 wery Trp x(a”™®) otherwise,

a,=—A, a=—-2A+ 2itaA;,) for2<2LZ1
Let x be a root of f(X)=X"+ >\t ,aX"*=0. Let p be the mapping
L(W'«) — K(x). Then p is a bijection of & onto X .

Proof. Let N’ = L(*¥a). N’ is a cyclic extension of K of degree
Il —1). Let N be a unique subfield of N’, of degree ! over K. Then
the mapping N’ — N is clearly a bijection of .# onto . Therefore it
suffices to show that N = K(x). The generator r of G can be extended
to be a generator of Gal(N'/N). Let v be the generator of Gal (N’/L)
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such that Wa =Wa L
1st step. Let y = Try, (W a) = >zt i/ ™. Assume that ye K. Then
y=yfor1<j<l—1, e,
ety = Sl for 1<j<1—1.

This implies that the matrix ({° — 1),.;;<,.; is not regular. It is a
contradiction. Therefore ye K and N = K(y).

2nd step. We see from Kummer theory that «*~" e L*!, which implies
that a® = a (mod L*Y). Since L(*va®) = L(W/ «), we have that N = K(2)
where z = Try,,(*Va®) (cf. 1st step). Let B, = Try(2) for 1 <2< 1 If
B, = A, we see from Newton relations for elementary symmetric forms
that the minimal polynomial of z over K is f(X). This implies N = K(x).
Therefore it suffices to show that B, = A,.

3rd step.

B, = X} (S0 WarTy
= Zéel chm“)"«/c—\fzsm ,

where (f) runs over {1, ---,I] — 1} and R(¢) = > i, r', S@) = > i7" As
UL M =1 or 0 according as R(?) = 0 (mod /) or not, we have that

B 0 if P, is empty,
e 12 wer, Vo™ = 12 wer Trx'/;v(l\/‘?a_lsm) otherwise.

It follows from e,;S(¢) = [I'(¢) that
(fa Y = (@®) and  (War ') = (@f Oy,
Noting that {** = {, we have that
L/at " = gl
This implies B, = A, and completes the proof of the lemma.

Let o°° (resp. #°) be the set of all the elements of % (resp. %)
which are unramified over K (resp. L).

CoroLLARY. The restriction of p on ¥° is a bijection of £° onto X °.

Proof. Let N'e & and N = p(N’)e . Then N’/L and N/K are cyclic
extensions of degree I. As [L: K] =1 — 1, we see that N/K is unramified
if and only if N’/L is unramified.
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ExamprLE. Let T denote Tr, .
In the case I = 3: If we take r = —1 and ¢, = —1 + 7, then

f(X)=X?—-3X — T(a').
In the case I =5: If we take r =2 and ¢, = —1 + 2¢ + 7* — 2¢°, then

f(X) = X* — 10X* — 5T(a™**)X*
-+ (5 _ 5T(a-1—r+fz+zs))X _ T(a~2~r+21'2+r3).

§2. Criterion to be contained in the genus field

Hereafter we assume that K is an algebraic number field of degree
1 such that L is a Galois extension of k. (Then L/k is a cyclic extension
of degree l.) Let ¢ be a generator of Gal(L/k). Then L is a Galois
extension of @, in fact, Gal (L/Q) is generated by ¢ and r.

Let M’ denote the genus field of L over k, i.e., the maximal extension
of L which is a composite of an abelian extension of k with L and is
unramified at all the finite primes of L.

LEmMA 2. Let L('W«) and K(x) be as in Lemma 1. If L is ramified
over k, then we have that

LWa)c M & K(x)C M.

Proof. Let N’ =L(+/a) and N = K(x). Assume that N’ c M’
Then, as N’ is abelian over K and over k, we see that N’ is a Galois
extension of Q. Moreover, since L is ramified over k, then Gal(N’/k) ~
(Z]lZ). If K is not Galois over Q, then an application of Lemma 2 in
[5] to Gal (IN’/Q) proves that NC M. If K is cyclic over Q, then so is
L. We see from Kummer theory that N’ is abelian over @, which implies
that N C M. The converse is clear.

THEOREM 1. Let K be an algebraic number field such that KNk = Q.
Let « be an element of L* satisfying the following conditions:
0. aelL*,
I «"e L*,
II. (i) There exists an ideal % of L such that («) = U,
(ii) « is a I-th power residue modulo (1 — {).

Let x be as in Lemma 1. Then K(x) is an unramified cyclic extension of
K of degree 1. Conversely any unramified cyclic extension of K of degree
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l is obtained as above.
Moreover, if K is an algebraic number field of degree 1 such that L
is a ramified Galois extension of k, we obtain that K(x) ¢ M if and only if
III.  «°'e L*.

Proof. The first assertion follows from Lemma 1, its corollary and
the ramification theory in Kummer extensions (cf. [3] Ia Satz 9). The
secnod assertion follows at once from Lemma 2 and the fact that

Liva) ¢ M’ & L(*y/a) is not abelian over k & a’~' ¢ L*.

§3. The fields F, and F,

In this section, let [ be a regular odd prime number and let K be
an algebraic number field of degree [/ such that L is a Galois extension
of k. Then L is ramified over k.

Let # = {cecthe ideal class group of L; ¢ = 1} and let »#, denote
the identity subgroup {1} of . Let 2, (resp. #,) denote the Sylow
l-subgroup of the group of ambiguous ideal classes (resp. ideal classes
represented by ambigious ideals) of L over k. As the class number of &
is not divisible by I, we see easily that

HoyC HC Hy C .

So these are Z/IZ[G]-modules. Let N be an unramified cyclic extension
of K of degree [. By Theorem 1, N is obtained from « e L* such that
(@) = A where A is an ideal of L. The condition I of the theorem
implies that the ideal class c1() represented by % belongs to #(1). We
see from Lemma 1 that c1(¥) is uniquely determined. For ie {0, 1, 2}, we
say that N is associated with #,; if c1(X) e s,(1).

DeFINITION. For i€ {0, 1,2}, F, is defined as the composite of all the

unramified cyclic extensions of K of degree I, which are associated with
H

Remark. We see that F, is the same as the composite of all the

unramified cyclic extensions of K of degree I, which are obtained from
the units of L.

To investigate F, (i = 0, 1, 2), we first consider the genus field M of
K. Let p,, ---,p, be all the rational primes congruent to 1 modulo ! and
totally ramified in K. Then (p,) = pi**"'7* for 1 <i <s, where p, are
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prime ideals of k. Let A denote the class number of k. We write
pf = (z;) for 1 <i<s, where r, € k.

Lemma 3. Let U={ack*; (0,1 -0 =1} and U ={acU; a=1
(mod (1 — &)Y}, Then:

(i) For any aec U, there exists a rational integer m such that (al™)*
e U'U

(1) Let p be as in Lemma 1 and put p(L) = K. Let us take m; so
that z2e U'U* for 1 < i < s; then

M- M, o(L(*/T)) if L(*W/ ©)/L is unramified,
B {Mo otherwise,

where M, = i o(L(V7%2). (If s = 0, we define M, = K).

Proof. (i) Let V= U/U'U'. Visa Z/lZ[G]-module. Letr=1—¢;
then {1 — n'},c,;- is a Z[lZ-basis of V. As (1 — a)*¢ U’'U?, we have
that dimg,, V(@) =1 for 1<i<l—1. As {*=¢, V(1) is generated by
¢. This completes the proof of (i).

(ii) Let &, = k(v/7%) and L, = L(*v/z%). Let F(p,) (resp. F(I?) denote
a unique subfield, of degree I, of the p,-th (resp. [*th) cyclotomic field.
As 722 e U'UY, only the prime ideals above p, are ramified in k,/k. As k,
is a cyclic extension of @ of degree I(I — 1), we see that k, = kF(p,).
Therefore o(L)) = KF(p,). Similarly, if L(*4/C)/L is unramified, we see
that o(L(v/C)) = KF(I?). Therefore Theorem of [4] completes the proof
of (ii).

THEOREM 2. Let I be a regular odd prime number and let K be an
algebraic number field of degree I such that L is a Galois extension of k.
Let notations be as above. Then we have that

F,=FM.
In particular, if #,1) = #,(1), then
Fz = FoM.

Proof. Let %, ---,, be all the prime ideals of L, which arel(totally)
ramified over k. As (h,]) = 1, we have

oy = (cl(B1), - - -, cl(BY)) .

We write
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By = (z)) for 1 <i<t, where n}¢ek*.
Let z;, (1 £ i< s) be as in Lemma 3. Then ([ — 1)s < ¢t and we can take
n,=rny for i =as+ b, where a =0, ---,l —2and b=1,---,5s.

For i > (I — 1)s, observing the decomposition groups of the prime ideals
B! of kB over @, we see that there exist divisers d(i) = — 1 of / — 1 such
that #;*“~'e E,. To obtain F,, we may consider only « e L* such that
() = A and cl(A) e #(1). Then

13
a = ¢ [[ (z}*)*® (mod L*') where ¢¢ E, and a(i) e Z.
i=1

Here

{ngel = (z%)" (mod L*") for i=as+b<({ — 1s,
e E,L¥ for i > (I — 1)s, because e € (+*® — 1, )Z[G].

Therefore
w=¢ [] (#)9 (mod L*)) where ¢ ¢ E, and b(i) € Z.
i=1

Then Lemma 3 proves that F, = F,M. It is clear that #,(1) = #(1) =
F, = F,. The proof is complete.

CorOLLARY. Let notations and assumptions be as in Theorem 2.

(i) In the case that K is cyclic: Let f be the conductor of K. If
f = 1* or there exists a prime divisor p #+ 1 of f such that p = 1 (mod [°),
then F, = F,M.

(i) In the case that K is not cyclic: If K is totally real, then F, =
F.M.

Proof. Let N denote the norm map from L to k. Let A = #)F,
and B = (E, N NL*)/NE,. For cl(N)c #,, there exists a« € L* such that
A~! = («). Let ¢ be the mapping cl(A) (mod #,) ~ Na(mod NE,). It is
well known that ¢ is a group isomorphism of A onto B. Both A and B

are Z/lZ|Gl-modules. As k is Galois over @, we can write cor™' = ¢”"
where xe{l,---,1 —1}. Then A(l) ~ B(l — x), because ¢(a°) = (d(a))"”"
for ¢e A. Let B* = (E,.N\NL*)NE,/NE, and B,, = (W,NNL*)NE,/NE,,
where k* is the maximal real subfield of 2 and W, is the group of roots of
unity in k. Then B = B* X B,, (direct product). Since the elements of

E,. are invariant by ¢“ " we see that B* = [], ... B(i) (direct product)
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and B, = B(1).

(i) x=1—1. Namely A(1) = B(Q1) = B, = (W, N NL*)/(W, N NE,).
It is clear that {e NE, if f = [*. Using the properties of Hilbert norm
residue symbols (cf. [3] II Section 11) in k, we see that { ¢ NL* if there
exists a prime divisor p =1 of f such that p % 1 (mod ¥). Therefore
A1) = {1}.

(i) If K is totally real, then ¢~ 'c® """ = z¢-92 je,, x is even. Hence
l—xisodd. ! — x+1as Kisnot cyclic. Therefore A(1) = B(l — x) = {1}.

§4. The field F,
In this section [/ is not necessarily regular. The definition of F, in

Section 3 is still valid.

THEOREM 3. Let K be a totally real algebraic number field of degree
l such that L is a ramified Galois extension of k. Then

FFc M.

Proof. Let k* (resp. L*) be the maximal real subfield of %k (resp. L).
As L* = Kk*, L* is totally real when K is totally real. Then it follows
that E,/E. ~ (W.E,)/(W.E..) (as Z/lZ[Gal(L/Q)]-modules) where W, is
the group of roots of unity in L (cf. Theorem 4.12 of [9]). For ee E,.,
noting that ¢ is invariant by z“~"?, we have that

e LM s=>ee L¥ ==> e e L,

On the other hand W57, We~' e L*!, since W, is generared by — or —'/C .
Therefore W, E,. has no elements satisfying the conditions I and III of
Theorem 1, and so does E,. The proof is complete by Remark just follow-
ing Definition in Section 3.

Next we consider the case that K is not totally real.

Lemma 4. Let H be a cyclic group of order I and let ¢ be a generator
of H. Let g(o) be the element of Z[H] such that 1 —¢)*'=14+0 + ---
+ o' + Ig(s). Then g(o) is invertible in Z[H].

Proof. We see that the ring homomorphism
Z[H]>f(@) —> fQQ) X f(©) e Z X Z[£] (direct product)

is injective, because (X — DNX*' + X2 4+ ... + 1) = (X' — 1) in Z[X].
We note that g(1) = —land gQ) =1 - O/l = [[isiA + 4+ -+ T7)7N
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Let g0) =121+ + -+ ) -1+ —-DNA +0 + - +0vY)
e Z[H]; then g’'(1) = g(1)™* and g’({) = g(©)~". This proves g’(¢) = g(o)~".
Let K be a pure algebraic number field of degree [, i.e., K = Q(*+#/m)

where m = 1 is a [-th power-free natural number. Then it is well known
that L is a ramified Galois extension of k.

TuEOREM 4. Let K = Q(*+'m) where m + 1 is a I-th power-free natural
number written as

D'+ d with D,de Z, D> 0, d|D', d #+ *1, I|D, lrd.

Let o be the generator of Gal(L/k) such that 'yYm’ ='y/m-{. We define n =
.y — D)~ and

where a(i) is a rational integer congruent to 3. ,j~' modulo l. Then ¢, is
a unit of L satisfying the conditions 0, I, II and III of Theorem 1. There-
fore we have

g M.

Proof. We note that Gal(L/Q) is generated by ¢ and r with the
relations ¢! = ¢!"* = 1, 9 = zo”. Let E, be the subgroup of E, generated by
E, and the conjugates of E,. Then E, D E} (cf. [8]). Let ¢ = (*+m — D)Y/d,
then fe E; (cf. [2]). As 5’ = 6'"°, we have that e E, and ¢ ¢ E,.

1st step. We note that m = d(D'd~! + 1) where D'd~'e Z. Therefore
d is l-th power-free and (d, D'd~* + 1) = 1. D'd~' + 1 # +1 follows from
l|D. We see that

d,Dd '+ 1) =1 withd+# +1, D'd™' +1+ +1
=>deK' =—0eEx—0¢E\"°.

Let g(o) be as in Lemma 4; then 64 ¢ E}~° follows from this lemma. As
g(1) = —1, we have that

@ 0 = (W — D) = d(Wm — D) = e,
Therefore »'~'*¢ E, and 5%~ "'"* ¢ E,, which implies that

@ s BBy =y e T BBy = (Z]LZ)
We define
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&=Ly Tt T CE,L.

The equation (1) implies 7*'* =6 (mod (5,7’ - - -, 7" *>&"), since " =40
(mod &Y). As 6¢ E!, we see from (2) that

6)) ENEY,=¢6 and &/6 =~ (Z]1Z) .

2nd step. We shall prove that ¢, satisfies the conditions I, II and
III (0 follows from III). The condition III: Since 7' = »~'-7=""7'"* and
a(l —2) =1 (mod l), we see that ¢'e &\&'. Therefore (3) implies that
¢, satisfies III. The condition I: For je (Z/1Z)*, we define

et it =1

J— 1+eo+
NGy =79

where j/ is a positive rational integer congruent to j modulo /. This
definition does not depend on the choice of j’ because 7'*7**7'™' =1,
As (Z]1Z)* = (), it is clear that

E = ays Ny = s Nist-ny)

Since 77 = 7'~ ""7*, we have that y.,° = 5;. Therefore we see from (3)
that

-2 .
{ee &; ¢ satisfies L} = (¢, )6'  where ¢ = [IO ney
If # =, then r'"'"¢ (mod!l) =7"* =j~'. Hence
-1 . )
& = H (771+a--~+a.7"1)b(]) (mod é"l)
j=1
where b(j) is a rational integer congruent to j~*' modulo I,
EE eaen B(L=1))at d &Y
= 1) e+ - at mo <
e (
= —a(i)el — (F-1.)-1 ol
= _UI 7 = (¢ (mod &Y.

Therefore (" 'c, satisfies I, and so does ¢ as &~" = 1. The condition II:
Clearly e, satisfies 1I(i). We note that Iym as I|D and l/d. Then 5 =
Wm —D)eWm — DY) =¢" (mod(1 —¢)) because (Wm,1 - =1
and (1 —Q)'| D' —1). Hence ¢ = [[I210*® =1 (mod (1 — {)") because

120(i) = 1 (mod /). Therefore ¢, satisfies II(ii). The proof of the theorem
is complete.
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Remark. For a fixed I, there exist infinitely many pure algebraic
number fields of degree I, satisfying the assumption of Theorem 4. For
example, let D = 2ID', d =2 with D'e Z, > 0; then it is known that
D' + d is [-th power-free for infinitely many D’ (cf. [7]).

ExampLE. Let f(X) be as in Example of Section 1. Let ;1 denote v/ m.
(1) In the case [ = 3: We can take
& =Ly (cf. [6]).
For « = ¢, we have
f(X) = X° — 3X — d"¥((9D° + 12D°d + 2d*) + (—18D° — 12D*d)u + 9D* ).
For example, let D =6 and d = 2; then m = 218 = 2-109 and
f(X) = X* — 3X — 106274 + 35208 — 2916/ .

(2) In the case I =5: We can take

~02+43

50=C7]a

For « = ¢, we have

f(X) = X° — 10X°
—5d(u— D)5 > [2il[8,J]I6, K] ~ (x — Dy)X*

i,J,kEZ,
i42j+4k=2

+{5—5d(u—DYG_ > 18 ill4,ll12, Al — (« — DF)X

1,5,k€

25+3j +4k=1
—d e — D)6 > [14,1](2, 116, k] — (x — D)*),

i, kEZ/DZ
2i+3j +4k=3

where

! o
(n,i] = ™ (—D)yig  for neZ, >0 and i Z/5Z.
SOEIET Jtn — !

For example, let D = 10 and d = 2; then m = 100002 = 2-3-7-2381 and

f(X) = X° — 10X°
+ (214851250061249942499980 — 7812953131906269875000 1
— 2734462500653125000000 > — 78125468730624975000 1°
+ 21485000003500000000 /) X*
+ (— 6103955090097800313125937395000015
— 610378418345705492203375041750000
— 488294531251561134375000000 1
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+ 12207617196230505390610000050000 £:°

+ 4883050784218754125000000 »*) X
+ 305189818922084520832602335793971812998499996
— 76283873703595536971241635306983563294 75000 2«
— 763153085778873923150280657848341250000000 4/*
+ 305206910252698725568190329921282625025000 2*
— 45779296903685893553409505874946800000000 ¢ .
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