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Abstract

SNP addresses are a pathogen typing method based on whole-genome sequences (WGSs),
assigning groups at seven different levels of genetic similarity. Public health surveillance uses it
for several gastro-intestinal infections; this work trialled its use in veterinary surveillance for
salmonella outbreak detection. Comparisons were made between temporal and spatio-temporal
cluster detection models that either defined cases by their SNP address or by phage type, using
historical data sets. Clusters of SNP incidents were effectively detected by both methods, but
spatio-temporal models consistently detected these clusters earlier than the corresponding
temporal models. Unlike phage type, SNP addresses appeared spatially and temporally limited,
which facilitated the differentiation of novel, stable, or expanding clusters in spatio-temporal
models. Furthermore, these models flagged spatio-temporal clusters containing only two to
three cases at first detection, compared with a median of seven cases in phage-type models. The
large number of SNP addresses will require automated methods to implement these detection
models routinely. Further work is required to explore how temporal changes and different host
species may impact the sensitivity and specificity of cluster detection. In conclusion, given
validation with more sequencing data, SNP addresses are likely to be a valuable addition to early
warning systems in veterinary surveillance.

Introduction

Non-typhoidal salmonella (NTS) remains one of the most significant causes of foodborne
disease worldwide. In Europe, it is second only to Campylobacter as a cause of gastro-intestinal
infection and an important cause of foodborne outbreaks [1]. Whilst some of the approxi-
mately 2,600 serovars are host-adapted and cause extra-intestinal disseminated infections,
most have a broad host range and circulate in multiple vertebrate species, causing localised
gastroenteritis in hosts, but rarely invasive disease [2]. Salmonella enterica serovar Typhimur-
ium (S. Typhimurium) has traditionally been considered the archetypal broad host range
serovar, although a growing body of evidence, initially from sero-, bio-, and phage typing, and
now frommolecular methods, indicates that the Typhimurium serovar couldmore correctly be
considered as a collection of pathovariants that differ significantly in their degree of host
adaptation [3]. Some pathovariants appear to have become host-adapted to wild avian species
by a convergent evolutionary process akin to that seen in other host-adapted serovars, such as
S. Typhi and S. Choleraesuis [4]. However, these appear to have evolved as a distinct phylo-
genetic clade from a common ancestor, and the majority of variants associated with known
livestock epidemics in the last 30 years have evolved as separate lineages from a basal ancestral
broad host range variant. These include the definitive phage types (DT)104, U288 and the most
recent monophasic S. Typhimurium (S. 4, [5],12:i:-) sequence type (ST) 34, representing
successive waves of dominant clones that have accounted for up to 60% of human infections
for several years before a new strain arises [4]. S. TyphimuriumDT104 is estimated to have first
arisen around the middle of the twentieth century, acquiring multiple drug resistance genes in
the 1970s and disseminating widely throughout Europe and subsequently Asia and the
Americas in the 1980s and 1990s [5]. The epidemic of human infections with DT104 appeared
to peak in the late 1990s in England,Wales, and Ireland, although it was somewhat later in other
countries, including Scotland [6]. Although now overtaken by themonophasic S. Typhimurium
ST34, which emerged in pig populations and spread globally [7], likely due to enhanced
resistance to heavy metals over other variants [8, 9], DT104 continues to circulate in animal
populations, causing sporadic outbreaks in both animals and humans. A zoonotic outbreak in
2016, first identified in sheep, cattle, and horses in Anglesey, North Wales [10], presented the
basis for this study.
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Advances in typing technologies are transforming surveillance
and outbreak investigations in animal and human health. In
addition to providing valuable information about the population
structure of salmonella, whole-genome sequence (WGS) data are
becoming more widely used in epidemiology, providing high
levels of sensitivity and specificity for detecting clusters of
gastro-intestinal infections [11–13] and source attribution for
foodborne pathogens [14–17]. The UK Health Security Agency
(UKHSA; formerly Public Health England) first adopted WGS
typing of salmonella in April 2014, and routinely from 2015, using
multi-locus sequence typing (MLST) to assign isolates to a
sequence type [18]. This was complemented by a method that
introduced a strain-level nomenclature, known as the SNP
address, based on single-nucleotide polymorphisms (SNPs)
across the whole genome, providing fine-level typing [19]. The
method uses hierarchical single-linkage clustering on a matrix of
pairwise SNP differences relative to a reference genome. Cluster-
ing is performed at seven descending levels of SNP difference
(250, 100, 50, 25, 10, 5, and 0 SNPs) to generate a seven-integer
code, where each integer identifies the group membership at the
corresponding level [20]. UKHSA now routinely uses the SNP
address as the primary method to prospectively monitor for
clusters of cases of gastro-intestinal disease that are microbio-
logically linked, with automated methods that extract 5-SNP-level
single-linkage clusters to assess for outbreak investigation
[19]. The 5-SNP threshold has been demonstrated to give a high
likelihood that cases relate to a common source, whilst analysis at
the 10-SNP threshold may be useful to uncover wider epidemio-
logical links [21].

The Animal and Plant Health Agency (APHA) began trialling
the UKHSA SnapperDB software [20, 22] to assign SNP
addresses to strains in 2018, as part of joint One Health activities,
and now regularly implements it as an additional tool for char-
acterising salmonella for surveillance and outbreak response.
Salmonella surveillance in animals differs by several important
aspects from that in human health, including active surveillance
through the National Control Programmes; dealing with mul-
tiple animal species with different host-adapted salmonellae; and
the fact that salmonella infections may persist for prolonged
periods on livestock holdings, resulting in diagnostic samples
from single premises being received at intervals of potentially
months or years. Bearing this in mind, this study was undertaken
with a view to exploring the use of the SNP address in outbreak
detection in UK veterinary surveillance. In 2016, there was a
human outbreak of S. Typhimurium DT104 (designated t5:459),
where veterinary salmonella isolates identified through normal
surveillance were sequenced and had SNP addresses generated
at UKHSA and confirmed to cluster genetically with each other
and with human isolates. Veterinary investigations verified epi-
demiological links between several premises from which isolates
originated. APHA was subsequently able to define its own
SNP address for the outbreak and generate a phylogeny from
further current and historic sequenced isolates to place the
outbreak strain within the context of the population of UK
S. Typhimurium isolates from animal species. This study exam-
ines how two readily available early detection models functioned
when applied to incidents defined by SNP address, to help
adapt or develop early detection systems for the near future.
The t5:459 outbreak was used to examine the timeliness of
cluster detection using the SNP address in comparison with
the phage-type definition.

Methods

Sample selection for sequencing and SNP address generation

Under the Zoonoses (Amendment) (England) Order 2021, labora-
tory isolations of salmonella fromBritish livestockmust be reported
to APHA, generally followed by the submission of samples to
APHA laboratories. However, only a small subset was sequenced
each year on a risk basis; additional isolates were sequenced for
specific research projects or during outbreaks. Three previous
projects generated sequencing data that were suitable for this
research, with all sequencing carried out between 2015 and 2019.
Project RDOZO347, described by Mellor [23], contributed
406 sequences, investigated the historical context of DT104, and
sequenced isolates from 1992 to 2016. Isolate sources included
livestock, companion animal, and environmental samples and were
either DT104 or a related phage type (including DT104b, U302,
DT120, and DT12 isolates). Most isolates with a known sequence
type were ST19, plus five ST34 isolates.

Sequence data for a further 39 isolates (collected from 2014 to
2017) were generated under APHA’s SE553 Project [24], and a
further 55 sequences were taken from the CR2000F project (2017 to
2019). These projects focused on generating sequencing data for
isolates known or suspected to have a link to the t5:459 outbreak;
the internal project reports contain sensitive information and are
not in the public domain. Ninety isolates were DT104/ST19; two
isolates were U302/ST19; and of two further DT104 isolates, one
was ST34 and one was not typable. Isolates encompassed all sources
as above, but with a heavy bias towards cattle and sheep, the main
species implicated in the outbreak (Supplementary Figure S1).

DNA extraction and sequencing

Genomic DNA of all isolates was extracted with the KingFisher
MagMAX™ CORE instrument and the MagMAX™ CORE Nucleic
Acid Purification Kit (Thermo Fisher Scientific, UK) from 270 μL
of overnight cultures in LB broth, following the manufacturer’s
instruction. DNA concentrations were normalised before sequen-
cing library generation with the Nextera XT Kit following the
manufacturer’s instructions (Illumina UK). Libraries were normal-
ised and pooled before running on an Illumina MiSeq or NextSeq
instrument to generate 150 base pair paired-end reads. Sequencing
data were demultiplexed, and sequencing adapters were removed
with bcl2fastq software (Illumina UK) to generate per-sample raw
data fastq files.

Sequencing data analyses

Sequenced isolates were analysed with an APHA in-house in silico
serotyping pipeline [25] to confirm the serovar. Essentially, the
Salmonella bioinformatics pipeline (publication in preparation)
runs the following tools: fastp, FASTQC, KmerID, and Quast
(quality control software); Shovill (genome assembly); SeqSero,
MOST, and SISTR (serotype determination); and SRST2 for each
sample. The combined outputs from these tools generated sequen-
cing quality metrics, a genome assembly (and the associated met-
rics), 7-gene MLST profile, and an assigned serotype according to
three different tools. Finally, a consensus serotype Typhimurium
was assigned based on the output from the three approaches. SNP
address generation was performed at the clonal/eBURST group
level using SnapperDB [20]. A pairwise distance matrix of SNP
distances was calculated and used to generate an isolate-level
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hierarchical clustering nomenclature – the SNP Address – using
S. Typhimurium AE006468 as the reference genome. The seven
levels of the SNP address were then used to create a simplified
pairwise matrix and dendrogram (Figure 1).

Data processing

To obtain location data and produce the data set of phage-type
isolates, all records of S. Typhimurium serovars identified between
1 January 2002 and 30 September 2019 were extracted from the
APHA salmonella database (25,335 records). Before 2002, location
data were not routinely collected, and thus, sequenced isolates from
1992 to 2001 were excluded from most analyses (exceptions are
noted below.) The data fields queried from the database were the
date of sample collection, the location where the sample was
obtained, the species or source from which the sample was col-
lected, and the reason for sample submission and phage type.
Location data were one or more of the following: business name,
address, postcode, grid reference, or, for agricultural premises only,
the holding reference number. Records were sequentially removed

from the data set if they were missing phage type (n = 9,845), date
(n = 32), were duplicate records (n = 3,080), or did not contain
sufficient location data to establish the postcode or the postcode
was not within the mainland UK (n = 2,534). Among sequenced
isolates (n = 500), all had complete data for phage type and date, but
82were removed at the location data step; of which, all but twowere
collected before 2003.

An online tool (https://gridreferencefinder.com/postcodeBatch
Converter/) generated an approximate latitude and longitude for
each record using the postcode centroid. Unique identifiers were
created for each premises to differentiate those that shared post-
codes. Where postcode sharing was due to the simultaneous pres-
ence of multiple premises within a small area, coordinates were
manually adjusted to the true location of each premise to avoid
overlap. Premises that sequentially shared a location due to a
change in ownership or use were counted as separate premises.
Overall, 3,269 postcodes and 3,349 premises were identified.

Data were next aggregated to the case level. Sixty per cent of
premises had only one isolate (range 1–409). Our definition of a
‘case’ was similar to the definition of ‘incident’ used in salmonella

Figure 1. Dendrogram of SNP addresses from 329 incidents. The outbreak clade, which shares SNP address with the t5:459 human outbreak strain, is shown in red.
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surveillance [26] as either the first and subsequent isolations of a
particular definitive phage type from an animal, group of animal, or
environment on a premises (DT cases; n = 4,165), or as the first and
subsequent isolations of a particular 5-SNP address (SNP cases;
n = 329). However, unlike the usual definition of an incident, no
constraints were placed on the time elapsed between isolates
belonging to the 5-SNP group or phage type to count them as the
same case, due to the sporadic nature of available genetic data. For
all subsequent related isolates, the time since the first detection of
the DT or SNP case on the premises was calculated. At this stage,
premises where animals were not permanently kept (e.g. abattoirs,
butchers, laboratories, and referral veterinary clinics) were identi-
fied with multiple submissions. These could not be classified as
single cases, as the animals tested would likely have originated from
a variety of sources, but could potentially trigger apparent spatial
clusters; therefore, it was decided to remove these records from the
data set entirely (n = 56, including two sequenced isolates). Similar
premises with only a single submission were retained, as removal of
all such records would remove a larger proportion of companion
animal isolates compared with the tiny fraction of livestock samples
collected from such premises, and companion animal isolates were
already relatively low. Although this means that the spatial data for
these samples are not necessarily the same as that of the animal
source, nevertheless it can give an indication of epidemiologically
linked premises.

Sources were grouped into nine categories: cattle, sheep, horses,
pigs, and domestic carnivores (incorporating cats, dogs, and fer-
rets); chickens, turkeys, and other avian species (incorporating
ducks, quails, psittacines, and groups of mixed avian species); and
Other (incorporating environmental samples, reptiles and amphib-
ians, and samples where the source was defined as ‘Other’ in the
original database).

Defining outcomes of interest

Based on UKHSA’s previous published work [21] and preliminary
examination of the data set, it was decided to test outcomes defined
by both the 5-SNP and 10-SNP clustering thresholds on the data set
of sequenced isolates. A 12-month rolling average was calculated,
for each threshold level, of the proportion of cases contributed by
each SNP group. As a comparator, analyses run using the whole
cleaned data set of phage types also used two levels of outcome.
Firstly, cases were defined as belonging to the DT104 group if they
comprised any DT104, DT104 variant, or U302 phage type; sec-
ondly, analyses were run separately for DT104 and U302 phage
types only.

Statistical methods

The Farrington method [27] is a log-linear model that calculates an
expected value of cases for the current time period based on
historical data, and a threshold above which an observed count is
declared to be unusual. It can adjust for overdispersion, seasonality,
secular trends, and past outbreaks and is currently used in the
APHA Early Detection System (EDS) [28] to detect potential
salmonella outbreaks using serotype, phage type, and antimicrobial
resistance patterns. Models were run in R using the farrintonFlex-
ible function from the package ‘surveillance’ [29], using 5 years of
historical data, with a half-window of 1 month. A two-thirds power
transformation was included to adjust for overdispersion where
there were low counts of cases. Themodel has a default threshold of
no alarm if there were fewer than five cases in 4 weeks. Given the

very low numbers of any given SNP address overall, the model was
run both using the default threshold and a lower threshold of no
alarm if there were fewer than three cases in 12 weeks. Farrington
models for the SNP cases included pre-2002 cases, due to the overall
low number of isolates with sequence data. For the phage-type
models, only the cleaned post-2002 data were used, as it was not
possible to determine isolates originating from the same case
without accompanying location data.

SaTScan™ [30] is free software that includes a prospective space–
time permutation scan statistic, designed to scan a defined geo-
graphical area to detect outbreaks of any scale or location that are
still in existence at the end of the scan period [31].We elected to use
a Bernoulli model, where cases and controls are defined, and which
searched for circular spatial clusters where the expected risk of
being a case was significantly greater within the cluster than outside
of it. Although the software can conduct a prospective scan using
only cases, it was felt that it was important to consider the under-
lying population, as the sample collectionwas geographically biased
due to the outbreak investigation contributing isolates over and
above those arising from routine passive surveillance. For models
using the sequenced data, cases were defined as the SNP group of
interest and controls as any other SNP group. Only sequenced
isolates from 2002 onwards were used, which could be matched
with location data in the cleaned data set. For the phage-type
models, controls were any phage type other than DT104 (including
variants) and U302. To simulate the kind of regular scanning that
would be undertaken as part of routine surveillance, sequential data
sets were created for each quarter (3 months) from March 2003 to
September 2019 containing data on all cases and controls up to that
time point, and the models were applied to each data set in turn.
Space–time clusters identified by each model were scrutinised with
respect to the cases allocated to that cluster, to determine whether
they were novel or had been detected by previous models. To be
defined as a new space–time cluster, at least 50% of the cluster cases
had to have not been allocated to any space–time cluster in any
earlier model. Space–time clusters were allocated an identifying
letter: Those with spatial overlap, but no temporal continuity with
an earlier cluster – that is the space–time cluster was not detected by
sequential models, but had one or more intervening quarters where
it was absent – were allocated the same letter with a subsequent
number to differentiate them (such as β and β:1). Clusters were also
mapped and tabulated, to cross-check their distributions in space
and time and to compare the detection and p-values across the
different models. To test for associations between sample source
and cluster inclusion at any point, chi-squared tests were used, or
Fisher’s exact test, if categories contained five or fewer expected
observations.

Results

Descriptive analysis of sequenced isolates

SNP isolates came from 310 premises, 247 with a single isolate and
63 premises with between two and nine isolates. On 39 premises,
the additional isolates were deemed to belong to the same case,
regardless of whether cases were classified by phage type or SNP
address. Eight premises with sequenced isolates were identified as
having two or more DT types (Supplementary Table S1), although
on seven of these, the isolates of different phage types were allocated
to the same SNP-5 group. There were 17 premises with additional
isolates that clustered only above the 5-SNP threshold and were
thus defined as havingmultiple SNP cases (Table 1). On only one of
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Table 1. Premises where two or more isolates were sequenced and more than one SNP case identified

Host Phage type Number of isolates SNP addressa Days between sample collection SNP clustering threshold

1 1.2.2.2.1117.1261.2336

Cattle 104 1 1.2.2.2.1117.1912.2244 806 ≤10

1 1.2.2.2.1117.1912.2307 83 ≤5

1 1.2.2.2.450.1195.2294

Cattle 104 1 1.2.2.2.450.1195.2294 71 0

1 1.2.2.2.7.7.29 1,839 ≤25

Cattle 104 1 1.2.2.2.450.1195.2286

1 1.2.2.2.450.1204.1252 668 ≤10

Cattle 104 1 1.2.2.2.571.610.1331

1 1.2.2.2.398.424.440 2 ≤25

1 1.2.2.649.1132.1282.1367

Pig 104 2 1.2.2.649.1132.1282.x 119 ≤5

1 1.2.2.649.1132.1231.1285 0 ≤10

Pig 104 1 1.2.2.2.1128.1226.1281

1 1.2.2.2.1128.1226.1373 523 ≤5

2 1.2.2.2.1739.2038.x 1,192 ≤25

3 1.2.2.2.1726.2020.x 806 ≤25

Pig 104 1 1.2.2.2.1111.1205.1253

1 1.2.2.2.5.976.1299 61 ≤25

Pig 104 1 1.4.44.84.1121.2019.2445

1 1.4.44.84.1121.2032.2464 0 ≤10

2 1.2.2.649.1735.2033.x

Pig 104 1 1.2.2.932.1736.2035.2485 0 ≤50

1 1.2.2.932.1736.2035.2467 226 ≤5

Pig 104 1 1.2.496.928.1729.2049.2495

1 1.2.496.928.1729.2023.2453 0 ≤10

Horse 104 1 1.2.2.2.1692.1972.2361

1 1.2.2.2.1683.1961.2346 405 ≤25

1 1.7.28.55.73.254.2506

Horse 104 1 1.2.2.2.1111.1205.1394 1 ≤250

1 1.7.28.55.73.254.1396 6b ≤5

Chicken 104 1 1.2.2.676.1186.1300.1375

1 1.2.2.2.1204.1324.1421 0 ≤50

Chicken 104 1 1.2.2.2.1141.1242.1297

1 1.2.2.2.1128.1226.1281 7 ≤25

Turkey U302 1 1.2.2.635.1090.1174.1209

104b 1 1.2.2.635.1219.1346.1449 0 ≤25

1 1.2.2.2.77.2034.2466

Quail 104 1 1.2.2.2.77.81.82 16 ≤10

1 1.2.2.2.77.334.2474 49 ≤10

2 1.2.2.2.77.334.x 231 ≤5

Non-livestock premises 104 1 1.2.2.668.1174.1285.1357

1 1.2.2.2.5.20.1412 7 ≤50

aMultiple isolates collected on the same day with ≤5 SNP differences have the 0 SNP groups represented as ‘x’.
bThe number of days elapsed is between this and the most closely related previous sample, that is the first one from this case. An identical isolate was found on linked premises 329 days later.
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these premises were the isolates also differentiated by phage typing.
A comparison of genetic distance versus time interval between all
intra-premises isolate pairs confirmed a tendency for the median
time difference to increase with higher thresholds of SNP cluster-
ing, up to the 25-SNP level (Supplementary Table S2). However, on
six livestock and one non-livestock-keeping premises, isolates that
clustered only above the 10-SNP threshold were collected within a
week of each other (Table 1). Conversely, although 85% of isolate
pairs (n = 132/156) falling within the same 5-SNP or 0-SNP cluster
were collected less than three months apart, there were seven
incidents, where isolates in the same 0- or 5-SNP cluster could be
identified more than six months after the original sample was
collected, and two incidents, in cattle and sheep, where isolates in
the same 5-SNP cluster were identified on the same estate over two
years later. Also, in cattle, two isolates in the same 5-SNP cluster
were found on two neighbouring farms over three years apart.

Selection of strains to trial detection methods

Figure 1 shows a dendrogram of the first detected isolates from all
cases with SNP data, clustered by the seven levels of SNP address.
The t5:459 outbreak cluster (SNP-5 group 7) is highlighted and falls
within the largest 25-SNP cluster, which comprised 76% (n = 249)
of incidents. Within this group, there were 74 different 10-SNP
clusters and 107 5-SNP clusters. The t5:459 outbreak cluster com-
prised 72 isolates from 53 SNP cases. The field epidemiological
investigations at the time of the outbreak linked the first reported
case in humans to a case of salmonellosis in cattle in April 2014.
However, this data set shows an isolate from a sheep in Anglesey,
collected inMarch 2012, within the same 5-SNP cluster, suggesting
that this strain had been circulating in animals for at least two years.

Using a twelve-month rolling average, four 10-SNP clusters
were identified that contained at least five cases and had contrib-
uted at least 20% of cases in the previous 12 months (Figure 2). Six
5-SNP clusters, including the 2016 outbreak cluster, also met the
above criteria and were all subgroups of the identified 10-SNP
clusters. Three were located within the same 10-SNP cluster
(SNP-10 group 5), along with twelve other 5-SNP groups each of
one or two isolates. SNP-5 group 1,195 containedmore than 50% of
the cases within its SNP-10 group 450 supergroup, as did SNP-5
group 221 with respect to SNP-10 group 88. In contrast, the t5:459
outbreak group did not cluster with any other incidents within the
10-SNP threshold.

A total of nine SNP groups were selected to use as case defin-
itions for all cluster detection models, six at the 5-SNP level and
three at the 10-SNP level. For the SNP-5 group 7 (t5:459 outbreak)
strain,models at the 10-SNP level included no additional cases, they
were identical to 5-SNP level models and are not shown. Three
additional case definitions were used for SaTScan models only, as
they either had fewer than five incidents and therefore would not
meet the default alarm threshold for Farrington models, or the
5-SNP and 10-SNP groups contained identical incidents. The full
list of case definitions is shown in Table 2.

Farrington models

Figure 3 shows the months where the number of cases was in
exceedance of the threshold calculated by the Farrington models.
Except for SNP-10 group 88 and its subgroup SNP-5 group 221, the
other ten models raised at least one alarm during the study period.
All alarms raised at the default threshold (five cases in four weeks)
were also included at the low threshold of three cases in twelve

weeks, and whilst this threshold decrease resulted in only one or
two additional alarms in the phage-type models, there were
between 1 and 8 additional alarms (median 3) in the SNP models,
excluding those where no alarms were raised.

There was some overlap between alarms raised by the 10-SNP
models and those run on their 5-SNP sub-cluster(s), and between
the DT104 group and phage types DT104 and U302, but in no case
was there complete agreement. SNP-5 group 20 and SNP-5 group
976 raised one and two additional alarms, respectively, that did not
appear in their supergroup, SNP-10 group 5. Both SNP-10 group
5 and group 450 raised alarms that did not correspond with any
seen in their modelled subgroups. Phage-type models at the sub-
group level also raised alarms that were not observed at the super-
group level and vice versa.

For the t5:459 outbreak, the earliest alarm was raised in January
2016 by the low threshold SNP model. The default threshold U302
phage-typemodel raised an alarm twomonths later, and the default
threshold SNP model, DT104 phage type, and the DT104 group
models each raised an alarm five months after that. No other
concordance between the phage type and SNP group models could
be confidently identified. The closest alarms were in November and
December 2006 in the DT104 groupmodel, followed by an alarm in
January 2007 by the SNP-10 group 5 (low threshold) model. The
23 phage-type incidents in November were predominantly in pigs,
cattle, and turkeys and widely dispersed across the whole of Great
Britain; likewise, the three incidents in the SNP model were in
different species and widely dispersed. A second pair of alerts close
in time was raised by the SNP-5 group 976 model in July 2006
followed by one in the U302 phage-type model in September of the
same year. However, it seems unlikely that these are related, as no
sequencedU302 isolates (n = 35) were in the SNP-5 group 976 or its
supergroup, SNP-10 group 5.

SaTScan

A total of twelve SNP addresses were used as the case definition in
the Bernoulli models, with controls defined as any other SNP
addresses. Space–time clusters were detected at both the 5-SNP
(n = 16) and 10-SNP (n = 10) level models. All SaTScanmodels run
on SNP cases identified statistical case clusters earlier than their
corresponding Farrington models. In addition, the 5-SNP level
addresses within the SNP10 group 450 supergroup, which could
not be used in Farrington models, as there were fewer than three
isolates, recorded detectable clusters in SaTScanmodels.When first
detected, seven of the clusters identified in the 5-SNP models were
deemed statistically significant (p-value <0.05), whereas none of the
SNP-10 clusters were, though one had a p-value of 0.051 at first
detection (Table 3 and Supplementary Table S3). Both the min-
imum number and median number of cases in a cluster at first
detection were 2 for the SNP-5 models and 3 for the SNP-10
models, although there was more variation observed between the
different SNP sets than there was between SNP-5 and SNP-10 levels
belonging to the same set. Space–time clusters tended to remain
relatively consistent over subsequent sequential models, with some
shifts in radius and location, and the occasional appearance of a
clearly distinct secondary cluster (Figure 4).

Models run on the DT104 group data detected 35 distinct
clusters, with between two and eight detected at every time interval
(Supplementary Tables S4 and S5). The minimum number of cases
in a cluster at first detection was 5, and the median was 7. Only one
cluster had a p-value of <0.05 at first detection – although this
cluster was, more accurately, a continuation of an earlier cluster
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that split into two distinct foci. Longitudinal tracking of clusters
showed that some remained stable over time, whereas others
appeared only transiently, shifted in size and location, merged, or
even split and recombined (Figure 5). Six clusters presented a
p-value of <0.05 at some point in their lifespan, though this could
be up to two years after the first detection.

The t5:459 outbreak was initially detected, after just two cases
in Anglesey, in June 2014 by the SNP-5 level model (SNP-5
cluster A). The earliest detection by the DT104 group models
was in March 2016, although a transient cluster centred on the
Llŷn peninsula was detected in June 2012, which included the
earliest known case in a sheep on Anglesey with the outbreak SNP

Figure 2. Twelve-month rolling averages of the proportion of cases contributed by different SNP groups, with breakdowns of the 10-SNP clusters contributing at least five incidents
overall, and 20% or more of all cases in any 12-month period. All cases within SNP-10 group 7 belonged to the same subgroup (SNP-5 group 7).
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address. None of the other cases in this cluster had any sequence
information.

The animal source of the sample appeared to influence its
likelihood of being included in a cluster for the SNP-5 level
(Fisher’s exact test: p < 0.0005), the SNP-10 level (Fisher’s exact

test: p < 0.0005), and the phage type (chi-squared statistic: 38.7,
df = 8, p < 0.0001) models. For all models, cattle and pigs contrib-
uted strongly to the test statistic, with cattle incidents being more
likely and pig incidents less likely to be included in clusters
(Supplementary Table S6). Sheep and turkeys were also more likely

Figure 3.Monthly alarms raised by Farringtonmodels with a five-year run-in period for different case definitions. The defaultmodel threshold suppressed alarms if therewere fewer
than five cases in 4 weeks. The low threshold models suppressed alarms if there were fewer than three cases in 12 weeks. The total number of cases for eachmodel is shown on the
left (n). Greyed-out areas show where there are no predictions (run-in period or earlier).

Table 2. Case definitions for models

Grouping method Supergroup Subgroup(s)

Number of cases
between 2002

and 2019
Maximum proportion of 12-month

rolling average
Farrington
models

SaTScan
models

Phage type DT104 group 1,261 0.49 √ √

DT104 832 0.34 √

U302 278 0.2 √

SNP SNP-10 group 7 53 0.86 Identical to subgroup

SNP-5 group 7 53 0.86 √ √

SNP-10 group 5 54 0.7 √ √

SNP-5 group 20 10 0.23 √ √

SNP-5 group 976 23 0.25 √ √

SNP-5 group 1,163 8 0.27 √ √

SNP-10 group 450 18 0.35 √ √

SNP-5 group 1,195 13 0.31 √ √

SNP-10 group 88 17 0.26 √ √

SNP-5 group 221 9 0.2 √ √

SNP-5 group 1,223 4 0.13 √

SNP-10 group 1,088 3 0.13 Identical to subgroup

SNP-5 group 1,170 3 0.13 √

SNP-10 group 398 6 0.18 Identical to subgroup

SNP-5 group 424 6 0.18 √
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Table 3. SaTScan detection of space–time clusters of cases with sequenced isolates between March 2003 and September 2019

Case definition Cluster ID

Status at first detection

ObservationsDate
Number
of cases Radius (km) Species (n)

Relative riska

(P-value)

SNP-5 group 7 A June 2014 2 13.73 Cattle (1)
Sheep (1)

Infinity (0.005) The cluster persisted until the end of the study
period and eventually contained 43 cases.
The cluster increased in size and the centre
drifted eastwards and then southwards as
new cases occurred

B Sept 2016 5 19.92 Dog (4)
Cat (1)

26.8 (>0.001) The first five cases occurred within a 6-week
period. Two further cases (one in sheep and
one in cattle) were included in this cluster
one year later, but subsequently reassigned
to cluster A

SNP-10 group 5 C Mar 2003 3 122.01 Cattle (2)
Horse (1)

Infinity (0.198) The predominant cluster starts in the
southwest of England and south Wales, then
moves to mid-Wales, and eventually into the
Welsh borders and west of England. There is
broad overlap with clusters identified by the
SNP-5 group 976 models, but many other
SNP-5 groups are included in this cluster

Cluster D largely corresponds with cluster M
(SNP-5 group 1,163) but also incorporates a
SNP-5 group 20 case

Clusters E to I only appear transiently. Clusters
E and H incorporate a mixture of SNP-5
groups, cluster G is dominated by SNP-5
group 976 with a single SNP-5 group 20 case,
and clusters F and I only contain SNP-5 group
976 cases

D Sept 2003 3 84.94 Cattle (3) 2.17 (0.944)

E Dec 2006 3 35.79 Cattle (1)
Turkey (2)

2.46 (0.998)

F Sep 2007 3 14.20 Cattle (3) 2.58 (0.995)

G June 2010 6 77.81 Cattle (5)
Turkey (1)

2.50 (0.989)

H Sept 2011 5 164.08 Cattle (2)
Sheep (1)
Chicken (1)
Turkey (1)

3.09 (0.908)

I Mar 2012 3 10.16 Cattle (2)
Sheep (1)

3.78 (0.972)

SNP-5 group 20 J Dec 2006 2 183.75 Turkey (2) 20.33 (0.365) One very large cluster (J) at first detection,
subsequently split into two smaller clusters
(K and L)K Sept 2008 3 56.74 Sheep (1)

Turkey (2)
11.70 (0.518)

L Sept 2008 4 79.76 Pig (1)
Turkey (3)

13.14 (0.102)

SNP-5 group 1,163 M Sept 2003 2 3.53 Cattle (2) Infinity (0.103) A small cluster, persisting for three years, with a
maximum radius of 27.4 km, and a shift in
location of around 20 km

SNP-5 group 976 N Mar 2005 2 6.83 Sheep (2) 18.0 (0.072) Cluster N begins in mid-Wales but rapidly
expands when new cases appear in the
southwest of England. A cluster persists in
Wales until 2012, but periodically splits and
recombines as some cases are temporarily
reassigned into secondary smaller clusters
(O, P, and Q)

Cluster R first appears in the southeast of
England andmoves northwards with sudden
changes in size, eventually focusing on a
small area in East Anglia

O Mar 2008 4 23.13 Cattle (4) 7.13 (0.287)

P Dec 2010 4 36.58 Cattle (4) 4.72 (0.996)

Q Sept 2012 2 31.21 Cattle (2) 9.38 (0.924)

R June 2007 2 162.4 Horse (1)
Turkey (1)

2.77 (0.995)

SNP-10 group 450 S June 2006 2 66.57 Cattle (1)
Cat (1)

29.5 (0.051) Cluster S corresponds with cluster U, but
persists for longer and incorporates two
other related SNP-5 groups in cattle in the
same area and a case from retail premises in
West Yorkshire

Cluster T incorporates a SNP-5 1195 case from
Hampshire and two cases with a different
SNP-5 group in Essex

T Mar 2013 2 80.19 Pig (1)
Dog (1)

9.57 (0.885)

SNP-5 group 1,195 U June 2006 2 66.57 Cattle (1)
Cat (1)

29.5 (0.049) This cluster is dominated by cases in cattle in
the Cheshire and Staffordshire area, with
sporadic cases elsewhere in other species.
There is a transient split into two clusters in
June 2010

SNP-10 group 88 V Dec 2007 2 185.65 Pig (1)
Dog (1)

8.75 (0.189) This cluster was initially large, but subsequently
focused on a more limited area around the

(Continued)
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to be included in SaTScan clusters across model types, whilst
chickens, equids, and other avian species were less likely to be
included. Domestic carnivores did not show an association either
way, although they were included in 20% of the SNP clusters at the
cluster’s first appearance, despite forming only 6% of the sequenced
samples.

Discussion

In this study, we have applied, to S. Typhimurium isolates, a form of
strain differentiation that is relatively new to the field of veterinary
surveillance. Early detection of serovars, phage types, and AMR
patterns in veterinary isolates has been routinely carried out for
salmonella in Great Britain as part of passive surveillance activities,
but the transition towards molecular methods for differentiating
salmonellae in the laboratory now demands an adaptation of
epidemiological methods to incorporate the increased typing reso-
lution that WGS brings. The SNP address has proved its ready
accessibility to existing surveillance methods in the human sphere
[19, 21]; this study provides an initial investigation of its applic-
ability to the veterinary field using historical data sets.

Two methods of outbreak detection have been explored here,
and comparisons have been drawn between using single-linkage
SNP thresholds at the 5- and 10-SNP level and the traditional
phage-type method to define cases. Although we used only one
verified outbreak to explore the sensitivity and timeliness of the
methods prospectively, the exploration of further SNP addresses
has provided insights into how the methods are likely to behave
going forward, and potential problems and pitfalls that may be
encountered.

The Farrington models provided a robust, easy-to-implement
method of detecting a higher-than-expected number of cases and,
for the SNP addresses, detected an exceedance after a relatively
small number of cases. The weakness of exceedance methods is
when serovars or phage types are very common, as the models lack

the sensitivity to detect small increases in case numbers, but WGS
may provide a way of narrowing the resolution of the data and thus
making it easier to pick up a rapid increase in the detection of a
particular strain or group of strains. The level of resolution was easy
to adjust using different levels of the SNP address, although it was
not clear whether using either the 5- or 10-SNP level gave a
particular advantage. As single-linkage clustering is impacted by
population coverage, additional sampling could lead to the subse-
quent merging of SNP-5 groups, and therefore, surveillance at the
SNP-10 level may be easier to implement on a purely practical level.
The alarms raised by the different SNP addresses were temporally
limited, compared with the phage-type models that raised alarms
across the whole time period analysed. Alarms raised by the groups
with the largest number of incidents (SNP-10 group 5 and sub-
groups and SNP-5 group 7) appeared approximately correlated
with temporal clusters of the phage-type alarms, although the
missing data from the early years in the phage-type models pre-
cluded any formal analysis of this. The SNP models with fewer
incidents (SNP-10 groups 88 and 450 and corresponding sub-
groups) did not demonstrate corresponding alarms in the phage-
type models.

With respect to the t5:459 outbreak, the SNP address did not
raise alerts any earlier than the phage-type case definition. Both
models first identified an exceedance in August 2016 using the
default threshold, although at the lower threshold of three cases in
12 weeks, the SNP address detected the first exceedance in January.
However, for routine use, lowering the threshold would need to be
carefully trialled, as the decreased specificity may result in unneces-
sary investigations. Lowering the specificity of the model by adjust-
ing the default exceedance threshold identified more clusters, and
was necessary in this data set, due to the relatively low proportion of
sequenced isolates compared with overall salmonella submissions.
Where total case numbers were low, as withmany of the SNP group
models, the time interval between cases was generally too large for
the models to raise any alarms using the default threshold. The

Table 3. (Continued)

Case definition Cluster ID

Status at first detection

ObservationsDate
Number
of cases Radius (km) Species (n)

Relative riska

(P-value)

Devon/Cornwall border. Most cases
comprised the SNP-5 groups 221 and 1,223,
but three other related SNP-5 groups were
detected in cattle in the same area

SNP-5 group 221 W June 2009 2 6.52 Cattle (1)
Pig (1)

Infinity (0.017) The cluster was confined to west and south
Devon, with themajority of cases occurring in
cattle

SNP-5 group 1,223 X Dec 2009 2 2.29 Cattle (2) Infinity (0.010) This was a very localised cluster in north
Cornwall, with a maximum radius of less
than 5 km

SNP-5 group 424 Y June 2016 2 9.78 Cattle (2) Infinity (0.018) This was initially very localised in the
Oxfordshire/Warwickshire border, but the
cluster rapidly expanded to incorporate
three cases in Pembrokeshire

SNP-5 group 1,170 Z June 2014 2 112.94 Horses (2) Infinity (0.0047) This cluster contained only three cases, all in
horses, but from Staffordshire, Essex, and
North Yorkshire

Note: For each model, controls consisted of all other sequenced isolates.
aThe risk ratios are often infinite because all cases are included in the circle.
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effect of changing the threshold was much less in the phage-type
models as the number of phage-type cases was orders of magnitude
greater than the number of SNP cases. As thesemodels do appear to
be relatively sensitive to the number of cases, their future potential
for routine surveillance is likely to depend on the number of
sequenced isolates available. A further possibility that could be
explored using sequence typing would be cgMLST, which may give
sufficient numbers of related cases, but offer a better resolution than
phage typing.

The space–time models created using SaTScan appeared to give
a distinct advantage over the Farrington exceedance models for
more timely detection of clusters, in all cases detecting clusters
earlier than their Farrington counterparts, often after only two or
three cases. Interestingly, this was not only true for cases that were
very localised, such as the t5:459 (SNP-5 group 7) and SNP-5 group
1,223, but also when the cases were more spatially distant, such as
SNP-5 group 1,170, where the first three cases occurred in East
Yorkshire, Staffordshire, and Essex. For the t5:459 outbreak strain,
the SNP address models first detected a space–time cluster in June
2014, whereas the phage-type models’ first detection of a space–
time cluster in the same location did not occur until March 2016
(with the first p-value <0.05 not occurring until December 2016).
The SNP address models were also considerably easier to interpret,

with only one to three clusters appearing at any time point. Map-
ping the space–time clusters at sequential timepoints clearly indi-
cated which were persistent and which were new. Identification of
persistent space–time clusters, especially those spreading, either
locally or into new areas, may be the flag that would trigger an
investigation, as an indicator that a strain is successful, in the
evolutionary sense, in the veterinary sector and becoming prevalent
enough to pose risks to human health. The phage-type models, on
the other hand, were much more laborious to interpret, with many
more transient clusters, cluster splitting, recombining, or suddenly
shifting in size and location, making tracking of clusters over time a
labour-intensive process. There is a potential risk that, as more
isolates are routinely sequenced and the data sets get larger, this
could also apply to SNP addressmodels. However, from the data for
SNP-10 group 5, which was already in existence at the start of the
study period and had a more widespread distribution of incidents
around the country, this did not seem to be the case. A small
number of models were also trialled using SNP address as cases
and any other sequenced or non-sequenced incidents as controls, to
see whether the number of controls in the background population
affected the detection of the SNP clusters (data not shown). Neither
the identification of the clusters nor their relative risks or p-values
appeared dramatically altered, which suggests that the method

Figure 4. Examples of SaTScan space–time clusters detected for different SNP-5 groups for four quarters of 2010. Cases are shown as dots, and circles show themodel clusters. The
colour intensity of the circles is related to the P-value returned by the model, with darker circles having lower P-values.
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could work equally well with larger data sets of sequenced isolates
going forward. Furthermore, the data here indicate that the SNP
clusters were time-limited, in a way that phage-type data were not,
with strains arising and being superseded, making it easier to
distinguish between new and existing clusters. Some of the explan-
ations for the sudden shifts in the phage-type clusters may be due to
them incorporating more than one strain of unrelated salmonella
within the DT104 phage type that overlapped in time and space.

Although the SNP address appears to perform satisfactorily in
bothmethods for detecting an exceedance of cases retrospectively, a
fundamental issue for both methods is how to decide which SNP
addresses to run any models on. In a routine surveillance context,
the ‘outbreak’ strain in the currently used EDS model would have
been unlikely to have been run until there were at least five
sequenced isolates and thus an exceedance may not have been
detected as early as suggested by the models shown here. Deciding
what outcome to use for the EDS is fundamental and identifying
new strains for the EDS to look for requires much time and effort.
Using the 12-month rolling average to identify SNP groups with a
large or rapidly increasing share of the caseload was a straightfor-
ward way to identify SNP addresses to investigate here and would
be amenable to automation. One of themain drawbacks of SaTScan
was the requirement for manual upload of data, which would have

made it unfeasible to run many models for different SNP addresses
in SaTScan on a regular basis. A potential solution tried was the
multinomial SaTScan model, which avoids the issue of having a
priori knowledge of which strain to look for. However, this per-
formed poorly in early trials on our data set, which was thought to
be due to the large number of categories. Recently developed
packages allowing SaTScan to interface with R software may make
routine use of this programmemore feasible, and from the fact that
almost all the SNP clusters tended to show spatial, as well as
temporal clustering, it seems likely that incorporating a spatial
element into routine detection models would give an advantage
over relying on temporal clustering alone. This is perhaps more
important in veterinary surveillance, due to the expected substan-
tially lower coverage of animal diagnostic samples tested compared
with human samples.

The 2016 DT104 outbreak, on which this work was based,
defined livestock incidents as cases if their SNP address was within
the same single-linkage cluster at the 5-SNP level as the human
outbreak strain. In human cases, the 5-SNP threshold is used for
outbreak investigations due to the high likelihood that cases relate
to a common source, whilst analysis at the 10-SNP threshold is
undertaken to uncover deeper epidemiological links [21]. The same
SNP address levels appeared to work well here, and the fact that

Figure 5. SaTScan clusters detected for DT104 groupmodels for 2009 and 2010, with an example of a splitting cluster (δbecomes δ:1 and δ:2). The δ:1 cluster appears only transiently
in the first quarter of 2010.
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>75% of isolates fell within the same cluster at the next highest level
of SNP address makes it seem probable that analysing at any higher
level may lose the advantage of the greater resolution provided by
the SNP address over the phage type. This was born out by some of
our earlier trials with detectionmodels run on different levels of the
SNP address (not shown here). However, previous studies have
found that whilst the number of SNP differences between isolates
within outbreaks is usually small (2–12 SNP differences) larger
differences of up to 249 SNPs may exist and may be dependent
on the serovar [5]. The SNP differences between strains may also
depend on the SNP-based sub-typing workflows used [32]. Batch
effects, that is technical sources of variation in subsets of sequencing
data arising from DNA extraction, technician skills, library prep-
aration, sequencing lane differences affecting coverage, or bioinfor-
matics tools used for trimming and assemblage, are a potential issue
evenwhere all work is carried out within the same laboratory. These
have been noted as a particular source of bias in multi-year projects
[33] where samples are added incrementally and allocation to
different libraries and lanes cannot be fully randomised. Whilst
this work used three different sets of sequencing data generated at
APHA, and there was relatively little temporal overlap between the
samples selected for inclusion, we did note that there were eleven
5-SNP clusters that contained samples sequenced under different
projects. Although we cannot rule out false SNP differences in this
data set, it appears that the SNP address may be relatively robust to
these types of information bias, even at the 5-SNP threshold.
However, we would stress the need for thresholds at which to
include or exclude cases to be considered on an outbreak-by-
outbreak basis, especially if multiple laboratories with different
pipelines begin to contribute to sample testing. Where the single-
linkage threshold chosen is too discriminatory, cases may be
wrongly excluded; however, it is too inclusive and much time is
spent investigating cases that are not related.

Thus, for the definition of a strain using SNP address to be most
useful, studies looking at background strain diversity are required,
both between and within farms, in order to inform how many
samples need to be collected and sequenced to identify outbreak
incidents. If there is high diversity within a phage type, many more
samples might be needed per farm than if using serotype or phage
type as the classifier. The temporal aspect also needs to be con-
sidered, as a rapidly changing organismmay be misclassified by the
single-linkage clustering method as a new strain, especially if the
coverage of samples being sequenced is low, as intervening isolates
are more likely to be missed. This could potentially be countered by
progressively relaxing the cut-off chosen for classifying cases as part
of the same outbreak as time intervals between samples increase.
However, we also demonstrated isolates within the same SNP-5
cluster that were collected over two years apart. Leekitcharoenphon
et al. [5] were unable to find an association between time of isolation
and the number of SNP differences and suggested the existence of
groups of isolates that comprise single clonal haplotypes with
virtually no genetic change over time. Knowing more about
changes in strains over time will be particularly important, as it is
apparent that clusters and indeed outbreaks can span many years.

Animal host species would also appear to be an important
consideration for the application of the SNP address to early
detection. It was unsurprising that cattle and sheep had an above-
average chance of appearing in SaTScan SNP clusters for the
sequenced data, given that this data set was neither random nor
representative, but augmented by the outbreak investigation. It was
more surprising that cattle and sheep were considerably more likely
to be included in phage-type clusters, along with turkeys, whilst

pigs, chickens, horses, and other avian species were much less likely
to be included. The reasons for this could be multi-factorial,
including things such as uneven host population densities; different
movement and mixing patterns in different livestock species;
national salmonella control plans applied to poultry, thus lowering
S. Typhimurium risk in these, but not other species; or bacterial
factors, such as the predominance of monophasic S. Typhimurium
ST34 in pigs, and more competition or cross-protection from this
or other serovars. The effect of the host species on the bacterial
diversity will thus also need to be determined to develop effective
ways to use the SNP address.

The use of the SNP address in the case definition will also
depend on the strain in question, as a new or rare strain would be
valuable in defining cases, a more common strain that is present
over much of the population would be less so. The changes over
time could be most clearly seen for the SNP clusters that arose
during the study period, whilst it was more difficult to interpret
the clusters for SNP-10 group 5 and subgroups, which were
already the dominant strains in 2003, and more widely dispersed
over the country. This same caveat can be applied to serotype or
phage-type classification, as was evident from our models using
the phage type as the case definition. Prospectively, SNP clusters
detected from passive surveillance data will need to be verified
using epidemiological information and proven transmission links.
Using surveillance data at UKHSA for the seven most common
salmonella serovars (Enteritidis, Typhimurium, Typhi,
Paratyphi A, Java, Agona, and Newport), Waldram et al. [21]
only found a significant epidemiological link for 17 of 32 clusters
of isolates. However, Ågren et al. [34] have shown that cattle herds
with known epidemiological contacts generally showed smaller
SNP differences between S. Dublin isolates than where no known
links were found.

In conclusion, this work demonstrated that SNP addresses could
performwell for detecting outbreaks in a timelymanner, although a
large number of different strains will pose challenges and will only
be feasible if systems can be automated. As the SNP address
becomes integrated into routine typing methods for all salmonella
submitted to APHA laboratories, larger data sets are likely to soon
be available to start answering some of the questions about back-
ground diversity, although more targeted and systematic sampling
will be needed to answer some of the other questions posed about
the influence of time, space, and species on cluster detection. It is
also worth noting that there is an urgent need for international
consensus about how WGS data are used for typing. Currently, an
SNP address is run per institution using the same reference strain,
but each institutional database generates different values for SNP
addresses dependent on their unique content, making data com-
parisons between institutions more complex. A shared database
holding SNP information for sequenced human, animal, food, and
environmental isolates would enhance joint outbreak investiga-
tions by shortening the time it currently takes to share the data.
Collaboration between laboratories should be a future priority, to
agree on a method that can be used on a large scale, and is
internationally recognised in the same way as sero- and phage
typing, as WGS becomes a more routine part of surveillance and
epidemiological investigation of livestock disease outbreaks.
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found at http://doi.org/10.1017/S0950268823001723.
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published in two previous papers, as detailed in themanuscript. However, due to
the sensitive nature of the outbreak, the authors are currently unable to publish
the full list of isolates. Data can be provided on request to APHA.
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