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Abstract. An operator T on a Banach space is called ‘semi B-Fredholm’ if for
some n € N the range R(T") of T" is closed and the induced operator T, on R(T")
semi-Fredholm. Semi B-Fredholm operators are stable under finite rank perturba-
tion, and subject to the spectral mapping theorem; on Hilbert spaces they decom-
pose as sums of nilpotent and semi-Fredholm operators. In addition some recent
generalizations of the punctured neighborhood theorem turn out to be consequences
of Grabiner’s theory of ‘topological uniform descent’.

1991 Mathematics Subject Classification. 47A53, 47ASS.

1. Introduction. The first author [1] has studied B-Fredholm operators on
Banach spaces, defined as operators for which some power 7" has closed range
R(T™), on which the restriction 7}, is Fredholm, in the sense of having null space
N(T) of finite dimension «(7T) and range R(T) of finite codimension B(T); the dif-
ference ind(7) = a(T) — B(T) is known as the index. In this note we extend our
study to “semi B-Fredholm ** operators, for which T, is either upper or lower semi-
Fredholm, in the sense that either N(7) is finite dimensional and R(T) closed, or
R(T) is closed of finite codimension. We shall see that the semi B-Fredholm opera-
tors SBF(X) on a Banach space X in general properly contain the semi-Fredholm
operators SF(X) and we prove that each semi B-Fredholm operator is a quasi-
Fredholm operator in the sense defined by Mbekhta and Muller in [10], a definition
which coincides with the definition given in the case of operators acting on a Hilbert
space by Labrousse in [9] . Conversely a quasi-Fredholm operator for which there
exists an integer n such that N(T) N R(T") is of finite dimension or N(T") + R(T) is
of finite codimension is a semi B-Fredholm operator.

In Theorem 2.6 and in the case of operators acting on a Hilbert space H we
prove that T € L(H) is a semi B-Fredholm operator if and only if 7= Q @ F, where
O is a nilpotent operator and F'is a semi-Fredholm operator. But we do not know if
this characterization is still valid in the case of operators acting on a Banach space.
In Proposition 2.7, we prove that if T € L(X) is a semi B-Fredholm operator and if
Fe L(X) is a finite dimensional operator then T+ F is also a semi B-Fredholm
operator.
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In the third section we consider some recent generalizations of the “‘punctured
neighborhood theorem™ obtained by Schmoeger [12], Harte [4] and Harte and Lee
[5], and we show that those generalizations are a particular case of a result of Gra-
biner on operators of topological uniform descent [3, Theorem 4.7]. For definitions
and properties of operators of topological uniform descent we refer the reader to the
paper of Grabiner [3].

In the fourth section we prove a spectral mapping theorem for semi B-Fredholm
operators, more precisely in Theorem 4.5, for T € L(X) and f an analytic function
on the usual spectrum o(7") of 7T, which is non-constant on any connected compo-
nent of o(7T), we prove that f(ospr(T)) = osgr(f(T)), where ospr(T) = {L € C/T—
A ¢ SBE(X)}.

In the sequel if £ and F are two vector spaces, the notation £ ~ F will mean that
E and F are isomorphic. If E, F are vector subspaces of the same vector space H we
shall write E =, F if there exist two finite dimensional vector subspaces Gy, G, of H
such that EC F+ Gy and F C E + G>.

2. Properties of semi B-Fredholm operators

ProOPOSITION 2.1. Let T € L(X). If there exists an integer n € N such that R(T")
is closed and such that the operator T, is an upper semi-Fredholm (resp. a lower semi-
Fredholm) operator, then R(T™) is closed, T,, is an upper semi-Fredholm(resp. a lower
semi-Fredholm) operator, for each m > n. Moreover, if T, is a Fredholm operator,
then T,, is a Fredholm operator and ind(T,,) = ind(T,,) for each m > n.

Proof. As T,: R(T") — R(T") is a semi-Fredholm operator, then for each
m > n the operator 7,"~" : R(T") — R(T") is also a semi-Fredholm operator. Hence
R(T)"™")y = R(T™) is closed in R(T"). Since R(T") is also closed in X, then R(T™) is
closed in X. If T, is an upper semi-Fredholm operator then o(7,) < oco. Since
N(T,) = N(T)NR(T™) c N(T)N R(T") = N(T,), we have «(T,) < oo. Since
R(T"*1) is closed, T, is an upper semi-Fredholm operator. In the same way, if T, is
a lower semi-Fredholm operator, then B(7T,) < 0o. As R(T,) = R(T"*"), there exists
a finite dimensional subspace F of R(T") such that R(T") = F+ R(T"'). Then
R(T™) = T""(F) + R(T"*") and R(T,) = R(T"*') is of finite codimension in
R(T™). Consequently B(7,,) <oo and T,, is a lower semi-Fredholm operator.

Moreover if T, is a Fredholm operator, then T, is a Fredholm operator. From [6,
N(DNR(T™) . N(T"™)+R(T)
N(DNR(T™) — NITH+R(T)

Lemma 3.5] we have: and from [6, Lemma 3.2 ] we have

n n+1
o = weryava and R~ oy Hence oAT) — a(Toyr) = B(T,)—
B(T,+1) and so ind(7T,,1) = ind(7},). It follows then that ind(7},) = ind(7;,) for each
m > n.

DEerFINITION 2.2. Let T € L(X). If for some integer n, R(T") is closed and the
operator T, is an upper semi-Fredholm (resp. a lower semi-Fredholm) operator,
then T is called an upper semi B-Fredholm (resp. a lower semi B-Fredholm) operator.
A semi B-Fredholm operator is an upper or a lower semi B-Fredholm operator.

From the definition of semi B-Fredholm operators, it is easily seen that all nil-
potent operators and all bounded linear projections are semi B-Fredholm operators.
Hence the class SBF(X) of semi B-Fredholm operators contains the class of semi-
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Fredholm operators as a proper subclass. Note also that obviously every B-Fred-
holm operator is a semi B-Fredholm operator.

REMARK. Let 7 € L(X) be a semi B-Fredholm operator and » any integer such
that R(T") is closed and T, is a semi-Fredholm operator. Then we can define the
index ind(7") of T as the index of the semi-Fredholm operator 7),. From Proposition
2.1, this definition is independent of the choice of the integer n. Furthermore if 7'is a
Fredholm operator this reduces to the usual definition of the index.

DEerFINITION 2.3. [9] Let T € L(X) and let
AT)y={neN: VmeN, m>n= (R(T")YNN(T)) C (R(T™) N N(T))}.

Then the degree of stable iteration dis(7) of T is defined as dis(7") = inf A(T) (with
dis(T) = oo if A(T) = 0).

DEFINITION 2.4. Let T € L(X). Then T is called a quasi-Fredholm operator of
degree d if there is an integer d € N such that

(a) dis(T) =d,

(b) R(T") is a closed subspace of X for each integer n > d,

(¢) R(T)+ N(T?) is a closed subspace of X.

In the sequel QF(d) will denote the set of quasi-Fredholm operators of degree d.

REMARK. It is easily seen that this definition is equivalent to the definitions
given by Mbekhta and Muller in [10, p. 143], Poon in [11] and in the case of Hilbert
spaces it is equivalent to the definition given by Labrousse in [9, Definition 3.1.2].
From [3, Theorem 3.2] we see also that a quasi-Fredholm operator of degree d is an
operator of topological uniform descent for n > d.

PROPOSITION 2.5. Let T € L(X). Then T is an upper semi B-Fredholm (resp. a
lower semi B-Fredholm) operator if and only if there exists an integer d € N such that
T € QF(d) and such that N(T) N R(T?) is of finite dimension (resp. R(T) + N(T9) ) is
of finite codimension.

Proof. Suppose that T is a semi B-Fredholm operator, and let n € N be such
that R(T") is closed and the operator T, is a semi-Fredholm operator. If 7}, is an
upper semi-Fredholm operator, then

a(T,) = dimN(T,)) = dim(N(T) N R(T")) < oo.

If m >n, then N(T)N R(T™) Cc N(T)N R(T"). Since dim(N(T) N R(T")) < oo, the
sequence (N(T) N R(T7)), is a stationary sequence for p large enough. This shows
that d =dis(T) € N, and dim(N(T) N R(T%) < co. As R(T") is closed for each
integer m > n, using [10, Lemma 12] we deduce that R(7™) is closed, for each integer
m > d. Moreover we have R(T) + N(T%) = (T9)""(R(T%t")) is a closed subspace of
X. Consequently T € QF(d) with dim(N(T) N R(T9)) < oo.

In the same way if 7, is a lower semi-Fredholm operator, then B(7,) =
dimm < oo. Hence the sequence (R(T)+ N(T7)), is a stationary sequence
for p iarge enough. Since

https://doi.org/10.1017/50017089501030075 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089501030075

460 M. BERKANI AND M. SARIH

N(T)N R(T?) _ N(T"*) + R(T)
N(T)N R(TP*1) ~ N(T?) + R(T)

d = dis(T) € N and R(T)+ N(T) is of finite codimension. Moreover Proposition
2.1 shows that R(T"™) is closed, for each integer m > n. By [10, Lemma 12], R(T") is
closed for each integer m > d . Hence T € QF(d).

Conversely, since 7 € QF(d), R(T") is closed for each n > d . Moreover, as
a(T,;) = dim(N(T) N R(T?)) and B(T,) = dim rerawy i dim(N(T) N R(TY) < o0
(resp. codim(R(T) + N(T9)) < oo), the operator T, is an upper semi-Fredholm
(resp. a lower semi-Fredholm) operator. Hence T, is a semi-Fredholm operator and
T is a semi B-Fredholm operator.

As each semi B-Fredholm operator acting on a Hilbert space is a quasi-Fred-
holm operator in the sense of Labrousse [9], using the Kato decomposition defined
in [9], we give now a fundamental characterization of semi B-Fredholm operators in
the case of Hilbert spaces.

THEOREM 2.6. Let H be a Hilbert space and let T € L(H). Then T is a semi B-
Fredholm operator if and only if there exist two closed subspaces M and N of H such
that H= M & N and

(i) T(N) C N and T\y is a nilpotent operator,

(i) T(M) C M and (T)y) is a semi-Fredholm operator.

Proof. Suppose that T'is a semi B-Fredholm operator. From Proposition 2.5 it is
a quasi-Fredholm operator. Hence from [9, Théoréme 3.2.1] there exists two closed
subspaces M, N of H and an integer d € N such that H = M & N and

(i) T(N) C N and T}y is a nilpotent operator of degree d,

(ii) T(M) € M, R(T\y) is closed and N(T|y) C Ny R(T1p1)").

Moreover from formula (3.2.23) in [9, Théoréme 3.2.1] we have that N(T\y) =
N(T) N R(T9). We have also R(Tjsr) ® N = R(T) + N(T9). If T is an upper semi B-
Fredholm operator, then N(T)y) = N(T)N R(T% is of finite dimension. Since
R(T\p) 18 closed Ty is an upper semi-Fredholm operator.

If T is a lower semi B-Fredholm operator, then there exists a finite dimensional
subspace F of H such that H=F® R(T\y»r) ® N. Let Py, : H— M be the linear
projection along N onto M. Then M = Py/(F) + R(T ). This shows that R(T ) is
of finite codimension in M. Hence R(7T|y) is closed and T|y is a lower semi-Fred-
holm operator.

Conversely suppose that H = M & N with the conditions (i) and (ii) satisfied.
Since Ty is a semi-Fredholm operator, then R(T%) = R((T| )% is closed in M, and
so it is also closed in H and Ty = (T|u),. Using Propsition 2.1 and the fact that T}y
is a semi-Fredholm operator we see that T} is a semi-Fredholm operator and so T is
a B-Fredholm operator.

Setting T\y = Q, T)y = F, we see that T=Q @ F, where Q is a nilpotent
operator and F'is a semi-Fredholm operator.

ProroSITION 2.7. Let T € L(X) be a semi B-Fredholm operator and let F € L(X)
be a finite dimensional operator. Then T + F is also a semi B-Fredholm operator.

Proof. We know from [8] that T+ F'is a quasi-Fredholm operator. Let n € N be
such that n > max(dis7, dis(T'+ F)). If T is an upper semi B-Fredholm operator,
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then we have N(T)N R(T") is of finite dimension. As (NM(T + F) N R(T + F)")) =,
N(T)N R(T™), it follows that N(T + F) N R((T + F)") is of finite dimension. Hence
T+ Fis a semi B-Fredholm operator.

If Tis a lower semi B-Fredholm operator, then R(Tj':“) is of finite dimension. As
R(T+ F)")) =, R(T") and R(T + Fy"*")) =, R(T"*"), we see that % is of
finite dimension . Hence 7'+ F is a semi B-Fredholm operator.

REMARK. We mention that a result of Poon [[11], Theorem 10] shows that for a
semi B-Fredholm operator T, lin,_,«y(T™)"/" exists, where y(T) is the reduced
minimum modulus of T, and this limit is equal to the stability radius of 7. For more
details see [11].

3. On Grabiner’s punctured neighborhood theorem. In [3] Grabiner has defined
and studied a class of linear operators acting on a Banach space called operators of
topological uniform descent. Among other things Grabiner has proved the following
theorem [3, Theorem 4.7].

THEOREM 3.1. Suppose that T is a bounded operator with topological uniform
descent for n > d on the Banach space X, where n,d € N, and V is a bounded operator
that commutes with T. If V — T is sufficiently small and invertible, then

(1) V has closed range and uniform descent for p > 0,

(i1) dim X07°D — i M) , for each integer p > 0,

NOP) N(Td)
(ii1) dim

R(le/i)l = dim R(T(’“ , for each integer p > 0.

From this theorem we obtain easily the following Corollary.

COROLLARY 3.2. Suppose that T is a bounded operator with topological uniform
descent for n > d on the Banach space X, and that V is a bounded operator that com-
mutes with T. If V — T is sufficiently small and invertible, then the following hold.

() If N(T)N R(TY) is of finite dimension, then V is an upper semi-Fredholm
operator and a(V) = dim((N(T) N R(T?)).

(i) If R(T)+ N(T?) is of finite codimension, then V is a lower semi-Fredholm
operator and B(V) = dim W.

Proof. As T is an operator of topological uniform descent R(V) is closed by
Theorem 3.1. Since dim N(T")) = dim(N(T) N R(T?)) and dim -2 Rmﬂ) =dim
then from Theorem 3.1 we have a(V) = dim((N(T) N R(T9)), (V) = dim

This proves the Corollary.

R(T)+N(T")’
X
R(TDY+N(T7)"

As a semi B-Fredholm operator is an operator of topological uniform descent,
Corollary 3.1 gives a punctured neighborhood theorem for semi B-Fredholm opera-
tors. We see also that Corollary 3.1 generalizes the punctured neighborhood theo-
rem stated in the case of semi-Fredholm operators in [7, Theorem 3 and Theorem 5].

ProposITION 3.3. Let T € L(X).

(1) If there exists an integer n € N such that R(T") N N(T) is of finite dimension
and R(T™) + N(T) is closed, then T is an upper semi B-Fredholm operator.
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(1) If there exist an integer n € N such that R(T") + N(T) is of finite codimen-
sion, then T is an operator of topological uniform descent.

(iti) If there exist an integer n € N such that R(T")+ N(T) is closed and
R(T"YNN(T) = R(T"™YNN(T), for all m > n, then T is an operator of topological
uniform descent.

Proof. (1) Suppose that there is an integer n € N such that R(T")N N(T) is of
finite dimension and R(7") + N(T) is closed. To prove that T is an upper semi B-
Fredholm operator, it is enough to prove that R(T") and R(T"*') are closed. As
R(T™") N N(T) is of finite dimension, there exist a finite codimensional closed sub-
space E of N(T') such that N(T) = R(T") N N(T) & E. We know that R(T"), equip-
ped with the operator range topology, is a Banach space continuously imbedded in
X. Consider the map S: R(T") x E— R(T") + N(T), defined by S((x, y)) = x + y.
Since R(T")NE=R(T")NN(T)N E = {0}, S is injective. As S is continuous and
onto, from the open mapping theorem it is bicontinuous. Hence S(R(7T") x {0}) =
R(T") is closed in R(T") 4+ N(T), and so R(T") is closed in X. Moreover as R(T)+
N(T™) = (T"D)"Y(R(T") + N(T)), we see that R(T) + N(T") is a closed subspace of
X. Since R(T") is also a closed subspace of X, by [7, Lemma 331] it follows that
R(T"*") is a closed subspace of X.

(it) If m > n, then R(T")+ N(T) C R(T)+ N(T") C R(T)+ N(T™). Hence the
sequence (R(T) + N(T™)),, is a stationary sequence for m large enough. Hence T is
an operator of uniform descent. Moreover if m > n, then from [6, Lemma 3.2] we
have R’E(T,T,,'Zl)) ™ RTS fN(T,,,) so that R(T™*') is of finite codimension in R(7""). Hence
R(T"™* 1) is closed in R(T"™) when this last space is equipped with the operator range
topology. By [3, Theorem 3.2], T is an operator of topological uniform descent.

(ii1) Since R(T"™)N N(T) = R(T") N N(T), for all m > n, T is an operator of
uniform descent for m > n. Moreover as R(T) + N(T") = (T D)"Y (R(T") + N(T)),
it follow that R(T) 4+ N(T") is a closed subspace of X. By [3, Theorem 3.2], it follows
that T is an operator of topological uniform descent for m > n.

We show now that the generalizations of the punctured neighborhood theorem
obtained by Schmoeger [12, Theorem 1], Harte [4, Theorem 5], Harte and Lee [5,
Theorem 4] are all consequences of Grabiner’s theorem. We show also that
Grabiner’s theorem can be applied to answer a question of Harte and Lee [5,
p. 273].

(a) In [12, Theorem 1] Schmoeger considers an operator 7 in L(X) such that
R(T?) is closed and R(T)N N(T) is of finite dimension. Hence R(T)+ N(T) =
(T)""(R(T?)) is a closed subspace of X. By part (i) of Proposition 3.3, T is an upper
semi B-Fredholm operator.

(b) In [4, Theorem 5], Harte and in [5, Theorem 4], Harte and Lee consider an
operator 7 in L(X) satisfying condition (i) or conditions (i) and (ii) of Proposition
3.2. In the two cases the operator 7 is an operator of topological uniform descent.

We see then that in all those cases, the operator under consideration is an
operator of topological uniform descent. By Corollary 3.2 we obtain the desired
result.

(c) In [5, p. 273] Harte and Lee consider an operator 7 satisfying the conditions
of part (iii) in Proposition 3.3 and they ask what happens under these hypothesis. In
this case T is also an operator of topological uniform descent and Corollary 3.2
gives an answer to their question.
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4. A spectral mapping theorem for semi B-Fredholm operators. Let 7€ SBF(X)
and let pspr(T) = {» € C/(T — Al) € SBF(X)} be the semi B-Fredholm resolvent of
T and let ospp(T) = {A € C/T — Al ¢ SBF(X)} be the semi B-Fredholm spectrum of
T.

PROPOSITION 4.1. Let T € L(X). The B-Fredholm spectrum osge(T) of T is a
closed subset of C contained in the usual spectrum o(T) of T.

Proof. If L& o(T), then (T —Al) is invertible and A & ospr(T). Hence
ospr(T) C o(T). If @ € ospp(T), then S = T — al is a semi B-Fredholm operator. If
A is small and A is not equal to zero, by [10, Table 2, p. 144] S — Al is a quasi-Fred-
holm operator. Moreover from Theorem 3.1 we have that

n+1 "
dim(N(S — A1) N R((S — AI)") = dim st((fs_—)\fl):)) — dim stfsz;)
— dim(N(S) N R(S")),
| X o R(S=AD) RS
dlmN((S_ )"I)n) + R(S— )\.1) = dim R((S— )\.I)n-H) - lmR(SH-H)
—di X _
~ NS T RES)

and so S — Al is a semi B-Fredholm operator. Hence pspr(7T) is open in C or,
equivalently, osgr(T) is closed.

PROPOSITION 4.2. Let T € L(X). The following properties are equivalent.
(1) T is a semi B-Fredholm operator.

(1) T™ is a semi B-Fredholm operator, for each integer m > 0.

(ii1) T™ is a semi B-Fredholm operator, for some integer m > 0.

Proof. (1) = (ii). Suppose that T is a semi B-Fredholm operator, and let
d = dis(T), then Proposition 2.1 shows that R(T"%) is a closed subspace of X and the
operator T, is a semi-Fredholm operator. Hence (7"),; = (T}uqg)" is also a semi-
Fredholm operator, so that T'is a semi B-Fredholm operator.

(i1)=(iii). This is obvious.

(iii))=(i). Suppose that 7" is a semi B-Fredholm operator, for some integer
m > 0. Hence there exists an integer n such that R(7"") is closed and the operator
(T™), : R(T"™) — R(T™) is a semi-Fredholm operator. Since (T,,)" = (T™),, we
see that (7},,;)" is a semi-Fredholm operator. Hence T, is also a semi-Fredholm
operator and 7 is a semi B-Fredholm operator.

ProrosITION 4.3. Let S, T, A, B € L(X) be mutually commuting operators, satis-
fving TA+ BS = 1. Then TS € SBF(X) if and only if T, S € SBF(X).

Proof. Let n € N. From [10, Lemma 1] R((TS)") is closed if and only if R(T™)
and R(S") are closed. Moreover from [10, Lemmma 8] we have the following result.

R((TS)") N N(TS) = R(T™) N N(T) + R(S") N N(S).
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Hence R((TS)") N N(TS) is of finite dimension if and only if R(T")N N(T) and
R(S™) N N(S) are of finite dimension. We have also from [10, Lemma 4] that

R( T") dim R(SH)

R((TS)") . R(TM . R(S")
R(T”'H)’ R(S”'H) =d +dim

R(TSY™ = mR(Tn+l) R(S™1)

) < dim

sup(dim

Hence 7S is a semi B-Fredholm operator if and only if 7 and S are semi B-Fred-
holm operators.
From this proposition we have immediately the following result.

COROLLARY 4.4. Let P(X) =X —MD"™ ...(X =1, D)™ be a polynomial with
complex coefficients. Then P(T) = (T — D)™ ...(T — 1, 0)"™ is a semi B-Fredholm
operator if and only if Vi, 1 < i < n, (T — ;1) is a semi B-Fredholm operator.

THEOREM 4.5. Let T € L(X) and f be an analytic function in a neighborhood of the
usual spectrum o(T) of T, that is non-constant on any connected component of o(T).
Then f(ospr(T)) = ospr(f(T)).

Proof. Let u € osgp(T). Since o(T) is a compact subset of C, the function
f(z) — f{n) possesses at most a finite number of zeros in o(7"). Hence

@) = fiw) = (= W™ —r)™ ... (2= 2)"g(2),

where g(z) is a non-vanishing analytic function on o(7’). Using the functional cal-
culus (cf. [2]) we have

AT) = )] = (T — u)™ (T — mI)™ .. (T = rud)™g(T),

where g(T') is an invertible operator. Hence (g(7))"" is a semi B-Fredholm operator.
If AT)— f{w) is a semi B-Fredholm operator, by Proposition 4.3 applied to
AT) = fiw)I and (g(T))~", we have that (T — ul)™(T —aI)™ ... (T — A" =
(AT) — fliw)D)(g(T))~" is a semi B-Fredholm operator. By Corollary 4.4, T — ul is a
semi B-Fredholm operator, a fact which contradicts our assumption. Hence
) € ospr(AT)) and flospr(T)) C ospr(AT)).

Conversely let « € osgr(f(T)), so that « € o(f{T)). Hence there exists u € o(T)

such that f(u) =a. We have fl(z) —flu) =z —w) ™ —w)™...(z — w,)"g(2),
where g is a non-vanishing function analytic on o(7"). Hence

AT) = fun)] = (T = nI)"™ (T — i ™ .. T = pn )" g(T) = AT) — etl.

As f(T)—al is not a semi B-Fredholm operator, by Corollary 4.4 there exists
Be{u, ui, ..., uy} such that T — Bl is not a semi B-Fredholm operator. Hence
f(B) = a with B € oggr(T), so that flosgr(T)) = ospr(f{T)). This proves the theorem.
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