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We use well resolved numerical simulations with the lattice Boltzmann method to study
Rayleigh–Bénard convection in cells with a fractal boundary in two dimensions for
Pr = 1 and Ra ∈ [

107, 1010
]
, where Pr and Ra are the Prandtl and Rayleigh numbers.

The fractal boundaries are functions characterized by power spectral densities S(k) that
decay with wavenumber, k, as S(k) ∼ kp (p < 0). The degree of roughness is quantified
by the exponent p with p < −3 for smooth (differentiable) surfaces and −3 ≤ p < −1
for rough surfaces with Hausdorff dimension Df = 1

2( p + 5). By computing the exponent
β using power law fits of Nu ∼ Raβ , where Nu is the Nusselt number, we find that the
heat transport scaling increases with roughness through the top two decades of Ra ∈[
108, 1010

]
. For p = −3.0, −2.0 and −1.5 we find β = 0.288 ± 0.005, 0.329 ± 0.006

and 0.352 ± 0.011, respectively. We also find that the Reynolds number, Re, scales as
Re ∼ Raξ , where ξ ≈ 0.57 over Ra ∈ [

107, 1010
]
, for all p used in the study. For a given

value of p, the averaged Nu and Re are insensitive to the specific realization of the
roughness.

Key words: Bénard convection, turbulent convection, fractals

1. Introduction

Thermal convection refers to fluid flows that are driven by buoyancy forces due to
density variations, which in turn are caused by gradients in temperature (Chandrasekhar
2013). Such flows are ubiquitous in both the natural and engineering environments, and
are key to understanding transport phenomena in the atmospheric boundary layer, in the
outer core of Earth and in the outer layers of stars (Kadanoff 2001; Wettlaufer 2011) to
name a few examples. The simplest setting in which thermal convection can be studied
is classical Rayleigh–Bénard convection (RBC) in which a fluid is confined between two
flat horizontal plates with the under side maintained at a higher temperature than the top
(Rayleigh 1916). Applying the Boussinesq approximation to the Navier–Stokes equations,
the dynamics of RBC is governed by three non-dimensional parameters: the Rayleigh

† Email address for correspondence: john.wettlaufer@yale.edu
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number Ra, the ratio of buoyancy to viscous forces, the Prandtl number Pr, the ratio of
the fluid’s kinematic viscosity to its thermal diffusivity, and the aspect ratio Γ of the flow
domain.

Heat transport in a fluid at rest is due solely to thermal conduction and when convective
motions ensue this transport is enhanced. The Nusselt number Nu, the ratio of total heat
flux to conductive heat flux, is the quantitative measure of this enhancement. Determining
the dependence of Nu on Ra, Pr and Γ for asymptotically large values of Ra has been
a major goal of the studies of convection; see, e.g. Spiegel (1971), Kadanoff (2001),
Ahlers, Grossmann & Lohse (2009), Chillà & Schumacher (2012) and references therein.
Specifically, if Nu is sought in terms of a power law Nu = A(Pr, Γ )Raβ then the goal is to
determine the value of the exponent β for Ra � 1.

For planar geometries, if one assumes that the dimensional heat flux becomes
independent of the depth of the cell as Ra → ∞, then one obtains Nu ∼ Ra1/3. This
is the so-called classical theory of Priestley (1954), Malkus (1954) and Howard (1966).
However, if one assumes that the dimensional heat flux becomes independent of the
molecular properties of the fluid when Ra → ∞, then one obtains Nu ∼ (Pr Ra)1/2. This
‘mixing length’ theory is originally due to Spiegel (1963) and such scaling behaviour –
with possible logarithmic corrections (Kraichnan 1962; Chavanne et al. 1997) – is now
often referred to as the ultimate regime of thermal convection. The scaling Nu ∼ Ra1/2 is
also an upper limit (uniformly in Pr) to the asymptotic heat transport scaling as Ra → ∞
for no-slip fixed-temperature boundaries whether they are flat (Howard 1963; Doering &
Constantin 1996) or corrugated, i.e. textured but sufficiently smooth (Goluskin & Doering
2016). (For flat no-slip boundaries at infinite Prandtl number the best known upper bound
corresponds to the classical scaling Nu � Ra1/3 within logarithmic corrections (Constantin
& Doering 1999; Doering, Otto & Reznikoff 2006; Otto & Seis 2011). In a wide range of
studies at O(1) Prandtl number, the exponent β is found to vary between 2/7 (Verzicco
& Camussi 2003; Johnston & Doering 2009; Stevens, Verzicco & Lohse 2010; Urban,
Musilová & Skrbek 2011; Urban et al. 2012; Doering, Toppaladoddi & Wettlaufer 2019;
Iyer et al. 2020) and 1/3 (Niemela et al. 2000; Niemela & Sreenivasan 2003; Verzicco
& Camussi 2003; Niemela & Sreenivasan 2006; Stevens et al. 2010; Urban et al. 2011,
2012; Doering et al. 2019; Iyer et al. 2020). Several experiments have reported β > 1/3
(Chavanne et al. 1997; He et al. 2012); however, because of the diversity of scalings
reported for overlapping ranges of Ra, those findings await independent confirmation
(Urban et al. 2012; He et al. 2013; Urban et al. 2013; Skrbek & Urban 2015; He,
Bodenschatz & Ahlers 2016).

The key difference between the classical (β = 1/3) and the ultimate (β = 1/2) theories
principally lies in the role played by the thermal boundary layers. In the former regime,
thermal boundary layers presumably limit the rate of transport and hence control it
(Howard 1966). In the latter regime, the transport of heat is predominantly due to
convective motions (Kraichnan 1962; Spiegel 1963). Indeed, these regimes have been
observed in recent experiments on radiatively driven convection (Lepot, Aumaître & Gallet
2018; Bouillaut et al. 2019). Hence, it is necessary to investigate the role of thermal
boundary layers in turbulent convection to determine the asymptotic high Rayleigh number
heat transport.

Motivated by the studies that used surface roughness to probe the boundary layers in
turbulent shear flows, Shen, Tong & Xia (1996) studied turbulent thermal convection
experimentally in a cell whose top and bottom surfaces were covered with pyramidal
roughness elements of aspect ratio 2, where the aspect ratio is the element width to
height. They observed that roughness led to the emission of a larger number of plumes
compared to that in convection over smooth surfaces, and that when Ra was above
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a certain threshold, Nu increased by 20 % compared to its value for smooth surfaces.
However, the value of β ≈ 2/7 was found to be the same as that for planar surfaces for the
range of Ra considered. In later experiments, Du & Tong (1998, 2000) concluded similarly.
Several subsequent studies, however, report that roughness does lead to an increase in β
from its planar value (Roche et al. 2001; Qiu, Xia & Tong 2005; Stringano, Pascazio &
Verzicco 2006; Tisserand et al. 2011; Salort et al. 2014; Wei et al. 2014; Toppaladoddi,
Succi & Wettlaufer 2015a; Wagner & Shishkina 2015; Toppaladoddi, Succi & Wettlaufer
2017; Zhu et al. 2017).

The first study to use roughness to manipulate the interaction between the boundary
layers and the outer region to attain the ultimate regime was that of Roche et al. (2001)
who studied convection experimentally in a cylindrical cell covered by V-shaped grooves
on all sides. They observed that when the thickness of the thermal boundary layers
becomes smaller than the amplitude of roughness, β attains a value of 0.51 for Ra =
[2 × 1012, 5 × 1013]. Later, Toppaladoddi et al. (2015a, 2017) used DNS in two dimensions
to systematically manipulate this interaction by varying the wavelength of sinusoidal
upper and/or lower surfaces at a fixed amplitude. They discovered the existence of an
optimal wavelength at which β is maximized, and that for wavelengths much smaller and
much greater than the optimal wavelength β attains its planar value. They also found that
β = 0.483 for the optimal wavelength when both top and bottom surfaces are corrugated
(Toppaladoddi et al. 2017). Their findings that roughness wavelength modulation leads to
optimal heat transport and results in β ≈ 0.5 for a certain wavelength were subsequently
confirmed by experimental (Xie & Xia 2017) and numerical (Zhu et al. 2017) studies,
although it has been suggested that β can decrease again at even higher Ra (Zhu et al.
2017). More recently, Zhu et al. (2019) reported Nu ∼ Ra1/2 for Ra = [108, 1011] over
corrugated surfaces with just three characteristic length scales.

The central physical issue we are addressing here is as follows. As emphasized above,
the regimes of determining the exponent β centre around the interaction of the thermal
boundary layers and the core flow. As the Rayleigh number increases the thermal boundary
layers thin. Indeed, as first noted by Niemela & Sreenivasan (2006), one can understand
the results of Roche et al. (2001) as a transition between a regime where the groove depth is
less than the thermal boundary-layer thickness to a regime where the groove depth is larger
than the boundary thickness. Thus, as emphasized by Toppaladoddi et al. (2017), when a
given experiment or simulation has a fixed roughness geometry, the boundary-layer core
flow interaction may evolve as the Rayleigh number increases. It is for this reason that
surfaces with a spectrum of roughness length scales are of interest.

Although we have considerable understanding of the effects of periodic corrugation on
plume production and heat transport, it is still not clear a priori if these results can be used
to describe the effects of fractal roughness. Indeed, there have been far fewer studies on
turbulent convection over multi-scale surfaces, the earliest being that of Villermaux (1998)
who theoretically considered the effects of fractal surfaces with power-law distributed
amplitudes. Villermaux (1998) argued that given a regime where Nu ∼ Ra2/7 for smooth
boundaries, the effective exponent increased from 2/7 to 1/3 with increasing degree of
roughness. Ciliberto & Laroche (1999) studied the effects of power-law distributed fractal
surfaces on the heat transport experimentally and found larger β values of 0.35 and 0.45
depending on the distribution of roughness amplitudes. Those studies motivate our own.

In this work we consider the effects of one fractal boundary on the dynamics and bulk
transport properties of turbulent Rayleigh–Bénard convection and address the following
questions: (i) What are the effects of fractal surface roughness on the heat transport? (ii)
How sensitive is the heat transport to the details of the roughness realization? (iii) Can
one infer the characteristic length scale(s) of roughness from a study of its effects on
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the flow? We do this using well resolved two-dimensional (2-D) numerical simulations
using the lattice Boltzmann method. The choice of the domain and roughness properties
is motivated by our aim to understand the interactions between rough Arctic sea ice and
the underlying ocean.

2. Governing equations

The spatial domain in our study (in dimensional units) is (x, z) ∈ [0, L] × [0, h(x)]
where 0 < h(x) ≤ H is the vertical height of the layer at horizontal position x . We
model thermal convection via the Oberbeck–Boussinesq equations (Rayleigh 1916;
Chandrasekhar 2013), non-dimensionalizing the system using the length scale H, the
free-fall velocity scale u0 = √

gαΔTH, where g is acceleration of gravity, α is the
coefficient of thermal expansion, ΔT is the temperature difference between the bottom
and top boundaries and the free-fall time scale t0 = H/u0.

The equations and boundary conditions for the dimensionless velocity, temperature and
pressure fields, u(x, t) = [u(x, t), w(x, t)], T(x, t) and p(x, t), are

∇ · u = 0, (2.1)

∂u
∂t

+ u · ∇u = −∇p + Tk +
√

Pr
Ra

∇2u, (2.2)

∂T
∂t

+ u · ∇T =
√

1
Ra Pr

∇2T, (2.3)

u = 0 and T = 1 at z = 0, (2.4a,b)

u = 0 and T = 0 at z = h(x). (2.5a,b)

The Rayleigh number is Ra = αgΔTH3/κν, where ν is the kinematic viscosity and κ

is the thermal diffusivity of the fluid, and the Prandtl number is Pr = ν/κ . The fractal
boundaries are such that 0.9 ≤ h(x) ≤ 1. All variables are periodic in the horizontal x
direction, and the aspect ratio of the domain is Γ = L/H.

The bulk heat transport is measured by the Nusselt number,

Nu =
〈
w∗T∗〉 − κ

〈
∂T̄∗

∂z∗

〉
κΔT/H

, (2.6)

evaluated across horizontal layers in the cell. Here, the superscript ∗ indicates the variable
is dimensional, and (·) and 〈·〉 indicate horizontal and time averages, respectively. We
compute Nu at eight different heights in the cell and report the average value over these
locations.

We use the lattice Boltzmann method (Benzi, Succi & Vergassola 1992; Chen &
Doolen 1998; Succi 2001) to solve the governing equations numerically. The principal
reason for this choice of numerical method is the ease with which one can impose the
boundary conditions for the velocity and temperature fields on complicated domains
(Succi 2001). The code used here has been tested extensively in Toppaladoddi, Succi &
Wettlaufer (2015b) for different fluid flow problems (Clever & Busse 1974; Lipps 1976;
Rozhdestvensky & Simakin 1984) and was previously used to study turbulent convection
over planar and corrugated (i.e. smooth but non-flat) upper and lower boundaries
(Toppaladoddi et al. 2015a, 2017).
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Convection over fractal surfaces 907 A12-5

We performed extensive checks on spatio-temporal convergence with the fractal
boundaries used in the study. The spatial resolutions used in our simulations were such
that the Kolmogorov length scale was resolved with at least two grid points everywhere in
the domain (see table 1) and the boundary layer was resolved with at least eight grid points
(see table 2). The simulations were run for sufficiently long times to attain a stationary
state and the statistics were collected over the last 200 time units, except for the Ra = 1010

cases where the statistics were collected over the last 100 time units. Details of these tests
are provided in appendix A.

We should note here that the depth of the cell H is one of the many choices for
the characteristic length scale for this geometry. However, this choice only affects the
pre-factor in power-law scalings for Nusselt and Reynolds numbers with Rayleigh number,
and not the exponent. (See appendix B.)

3. Roughness profiles

Following Rothrock & Thorndike (1980), we consider upper boundary functions h(x)
to be ‘rough’ when they are continuous but not differentiable. The increments in h(x) are
given by the Hölder condition,

lim
Δx→0

|h(x + Δx) − h(x)|
(Δx)γ

= C, (3.1)

where C is an O(1) constant and 0 < γ ≤ 1 is the Hölder exponent. Functions are
Lipschitz continuous with a bounded derivative only when γ = 1. The power spectral
density (PSD) of h(x) for all non-zero wavenumbers k decays as ∼ kp, where p = −2γ − 1
(Rothrock & Thorndike 1980). This characteristic decay of the PSD is a common feature
shared by many natural and artificial surfaces, and thus can be used to classify different
classes of rough surfaces (Sayles & Thomas 1978; Rothrock & Thorndike 1980).

To generate roughness profiles for the upper surface with the desired spectral properties
for our simulations, we use the truncated Steinhaus series (Rothrock & Thorndike 1980):

h(x) = h0 + A
K∑

k=1

(−p − 1)1/2 kp/2 cos(kx + φk), (3.2)

where K is the maximum wavenumber and φk are independent random variables uniformly
distributed in [0, 2π]. It is clear that the PSD of h(x) in (3.2) scales as ∼ kp up to the cutoff
wavenumber K.

Figure 1 shows roughness functions for different values of p generated using (3.2).
As p is increased from −3.0 to −1.5, h(x) becomes rough on smaller scales. It is also
intuitively clear from figure 1 that with increasing roughness, as K → ∞, h(x) tends to be
more space filling than a 1-D curve but less space filling than a 2-D surface. Hence these
curves are fractals in the limit K → ∞, with fractal or Hausdorff dimension Df = 2 − γ

(Rothrock & Thorndike 1980).We use (3.2) to generate the rough upper surfaces h(x) for
the simulations. All the rough surfaces used in this study have K = 100 and the values
of h0 and A are chosen such that their maximum and minimum amplitudes, measured
from the top of the cell, are 0 % and 10 % of the depth of the cell, respectively. This
implies that the upper portion of the fractal boundary coincides with the top flat surface.
(See figure 2.)

From figure 1 it is clear that there is a distribution of amplitudes associated with the
fractal curves; hence, it is not a priori clear what choice of the characteristic length scale
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FIGURE 1. Functions used for the upper surface of the convecting domain generated using (3.2)
for different values of p and for K = 100. The degree of roughness increases as the value of p
increases. The curves are vertically displaced by 2 units to improve their visibility.

would be appropriate. The length scale chosen in our study is the depth of the cell H.
We present a detailed discussion of this point in appendix B, where we also show that a
different choice of length scale simply leads to a uniform rescaling of Nu and Ra values
for any given topography.

4. Results

The simulation results are for Pr = 1 and Γ = 2. The simulations, except for Ra = 1010,
ran to at least t = 330 to allow adequate spin up, and in all cases the statistics were obtained
for the last 200 time units. The simulations for Ra = 1010 were run for at least t = 180, and
the statistics were collected over the last 100 time units. See appendix A for details.

4.1. Temperature fields
Figure 2(a–c) shows the snapshots of the temperature fields for Ra = 2.15 × 109 and p =
−3,−2 and −1.5, respectively. Focusing on the region close to the rough upper surfaces,
for p = −3 (which is comparatively smooth) plumes are emitted only from a fraction of
the surface and the temperature field is qualitatively similar to that for convection over
flat walls (e.g. Johnston & Doering 2009). As seen in figures 2(b) and 2(c), however, as p
increases so too do the number of roughness elements triggering more plume generation:
roughness enhances the coupling between the boundary layer and the core flow. Moreover,
as seen in the case of a periodically corrugated upper surface (Toppaladoddi et al. 2015a),
the enhanced emission of cold plumes decreases the mean interior temperature relative to
the planar surface case.

4.2. Variation of heat flux with roughness properties
The Nu(Ra) data are shown in figure 3(a–c) for Ra ∈ [107, 1010] and (a) p = −3.0,
(b) p = −2.0 and (c) p = −1.5, respectively. In these figures, for a given value of p,
the simulations for the whole Ra range were performed using the same realization of
the fractal boundary. The scaling fits (i.e. linear least squares of the logarithms) are
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FIGURE 2. Temperature fields at t = 100 for Ra = 2.15 × 109 and (a) p = −3.0, (b) p = −2.0
and (c) p = −1.5. (See also the movies in the supplementary material available at https://doi.
org/10.1017/jfm.2020.826.)

for Ra ∈ [108, 1010] and are shown as dashed lines in these figures. When p increases
from −3.0 to −1.5, the scaling exponent increases from β = 0.288 to β = 0.352.
The power-law fit to the Nu(Ra) data for p = −3.0 gives Nu = 0.125 × Ra0.288±0.005,
which is remarkably close to Nu = 0.138 × Ra0.285 obtained for a similar Ra range for
flat boundaries in two dimensions (Johnston & Doering 2009). This suggests that, for this
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102

Nu

Nu

101

107 108 109 1010

102
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(a)

(b)

(c)

p = –3.0

β = 0.288 ± 0.005

p = –2.0

β = 0.329 ± 0.006

p = –1.5

β = 0.352 ± 0.011

Nu

Ra

102

101

107 108 109 1010

FIGURE 3. Plots of Nu(Ra) versus Ra ∈ [107, 1010] for (a) p = −3.0, (b) p = −2.0 and
(c) p = −1.5. Circles denote data from simulations and the dashed lines are the linear
least-squares fits of log Nu to log Ra over the range Ra ∈ [108, 1010]. The power laws are fit
for the range Ra ∈ [108, 1010]. For (a) p = −3.0, Nu = 0.125 × Ra0.288±0.005; (b) p = −2.0,
Nu = 0.055 × Ra0.329±0.006; and (c) p = −1.5, Nu = 0.037 × Ra0.352±0.011. The error bar on
each Nu data point represents the standard deviation of the averaged Nu calculated from eight
different horizontal sections, and the uncertainties in β are the 95 % confidence intervals.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

82
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.826


Convection over fractal surfaces 907 A12-9

–0.05

0

0.05

0.10

0.15

0.20

0.25

107 108 109 1010

Ra

N
u fi

t
N

u
1
–

Nufit = Nu

p = –3.0

p = –2.0

p = –1.5

FIGURE 4. Residuals of the power-law fits shown in figure 3 for p = −3.0, −2.0 and −1.5.
Here, Nufit are the values of the Nusselt number obtained from the power-law fits for the range
Ra ∈ [108, 1010].

range of Ra, the fractal boundary corresponding to p = −3.0 is hydrodynamically smooth
with respect to heat transport, even though it lies at the border between smooth and rough
boundaries (Rothrock & Thorndike 1980). For p = −2.0, the power-law fit gives Nu =
0.055 × Ra0.329±0.006, which is surprisingly close to Nu = (0.0525 ± 0.006) × Ra0.331±0.002

obtained for Ra ∈ [1010, 1015] for flat boundaries in a slender cylinder with Γ = 0.1 (Iyer
et al. 2020). And, lastly, for p = −1.5 the power law is Nu = 0.037 × Ra0.352±0.011, which
is remarkably close to Nu = 0.034 × Ra0.359 obtained for (scaled) wavelength, λ = 0.154
for a sinusoidally corrugated boundary in two dimensions over Ra ∈ [4 × 106, 2.5 × 109]
(Toppaladoddi et al. 2015a). In fact, Toppaladoddi et al. (2015a) found that λ = 0.154 was
the optimal wavelength that maximized heat transport for their geometry. Evidently, heat
transport increases with increasing degree of roughness, i.e. with p. This is in qualitative
agreement with the results of Villermaux (1998), who also found that the scaling exponent
increases with increasing roughness. However, the increase in β is due to a change in the
dynamics brought about by the introduction of surface roughness, principally the increase
in plume production (Stringano et al. 2006; Toppaladoddi et al. 2015a, 2017), and not due
to increased surface area. See appendix C for details. We also note that the power-law fits
to the whole range of Ra give: (a) p = −3.0: Nu = 0.197 × Ra0.267±0.015; (b) p = −2.0:
Nu = 0.111 × Ra0.30±0.02; and (c) p = −1.5: Nu = 0.069 × Ra0.321±0.023.

The goodness of power-law fits can be tested by computing the residuals of the actual
data from the fit data and examining them for any systematic curvature. These are shown in
figure 4. It is apparent that the residuals do not exhibit any curvature for Ra ∈ [108, 1010];
hence, it can be concluded that the power laws describe the data well and more general fits
are not required.

We can estimate an effective hydrodynamic length scale for the roughness amplitude
by examining where the Nu(Ra) curves for different values of p intersect. When boundary
variations are present, the flow is not influenced by the roughness until the boundary layers
become smaller than the amplitude of roughness (Roche et al. 2001). Once this is achieved,
as Ra increases further the direct effects of roughness are associated with the increased
number of plumes produced and the concomitant augmentation in Nu (Roche et al. 2001).
We use similar ideas to estimate the effective roughness of the fractal boundaries. As seen
in figures 1–3, the additional roughness structure introduced as p is increased is associated
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with the increase in β. If one takes the Nu − Ra curve for p = −3 as the benchmark
case, then the intersection of this curve with that for a larger value of p gives the value
of the effective amplitude at which the transition to enhanced heat transport occurs. The
choice of this reference is because p = −3 corresponds to γ = 1, representing the border
between ‘smooth’ and ‘rough’ surfaces (Rothrock & Thorndike 1980). Thus the effects
of any additional roughness (see figure 1) can be conveniently studied with respect to
the surface for p = −3. This transition happens at Ra ≈ 2.15 × 108, and the value of Nu
at this point is ≈ 31 (see the Nu values for the fourth realizations (r = 4) in tables 3–5).
Hence, the transition occurs when the effective amplitude of roughness hf over the surfaces
with p = −2 and p = −1.5 first exceeds the boundary layer thickness δT for the curve
with p = −3, so that the roughness elements protrude outside of the boundary layer and
interact with the interior of the flow. Using the planar-wall estimate of Nu, we estimate the
cross-over scaling as

δT = hf ≈ 1
2Nu

= 0.016. (4.1)

Thus, the effective amplitude of the roughness for surfaces with p = −2 and p = −1.5 is
approximately 2 % of the depth of the cell.

4.3. Sensitivity of Nu to details of roughness realization
To investigate the effects of a given roughness realization on heat transport, we computed
Nu(Ra) for four different realizations for each value of p. To generate each realization for
a fixed p, we have used different values of φk. However, the first realization for all p values
have the same set of φk. Similarly for second, third, and fourth realizations. The Nu(Ra)
curves from these simulations are shown in figure 5.

It is seen from figures 5(a)–5(c) that for a fixed p, the Nu depends primarily on the
Ra with very little dependence on the realization. Hence, to a good approximation, the
heat transport for the fractal surfaces used here depends only on the latter’s statistical
properties, i.e. p, and in turn on Df . Hence, this suggests that the scaling exponents in
§ 4.2 depend uniquely on p.

Furthermore, to compute higher-order moments, we have run simulations for Ra =
108 and t = 875 for all the roughness realizations. The maximum variations in the
means of Nu(t) measured at z = 0 between ensemble members for p = −3.0,−2.0 and
−1.5 are 3.3 %, 1 % and 0.2 %, respectively. Similarly, the maximum variations in the
standard deviations for p = −3,−2 and −1.5 are 5.4 %, 16 % and 9.1 %, respectively.
The variations in the higher-order moments (skewness and kurtosis) are relatively larger.
This shows that the mean of Nu(t) is less sensitive to the details of the roughness than its
higher-order moments.

4.4. Reynolds number and its sensitivity to the details of the roughness realization
In addition to considering the bulk heat transport, we also studied the behaviour of the
bulk Reynolds number (Re) with Ra and p to further characterize the response of the flow.
The Reynolds number is

Re = U0H
ν

, (4.2)

where U0 is a velocity scale, the choice of which is not unique. Previous studies over
smooth (Niemela et al. 2001; Qiu & Tong 2001; Sun & Xia 2005; Niemela & Sreenivasan
2006) and regular rough surfaces (Wei et al. 2014) have either constructed U0 based on the
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FIGURE 5. Plots of Nu(Ra) data for four different realizations for each p: (a) p = −3.0,
(b) p = −2.0 and (c) p = −1.5. The first realizations for the different values of p are generated
using the same set of φk (see (3.2)). The error bar on each Nu data point represents the standard
deviation of the averaged Nu calculated from eight different horizontal sections.

depth of the cell and the dominant frequency of oscillations of the large-scale circulation,
or used a root-mean-squared (r.m.s.) velocity deduced from single-point measurements.
We take U0 = Urms, where Urms is the bulk averaged r.m.s. velocity computed over all the
nodes in the domain.
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Ra

Re
p = –3.0

p = –2.0

p = –1.5

Re = 0.094 × Ra0.571±0.018

Re = 0.087 × Ra0.576±0.022

Re = 0.091 × Ra0.571±0.017

FIGURE 6. Plot of Re(Ra) versus Ra ∈ [107, 1010] for p = −3.0, p = −2.0 and p = −1.5.
Symbols denote data from simulations and the dashed lines are the linear least-squares fits of
log Re to log Ra for the whole Ra range. The power-law fits for the different values of p are:
p = −3.0, Re = 0.094 × Ra0.571±0.018; p = −2.0, Re = 0.087 × Ra0.576±0.022; and p = −1.5,
Nu = 0.091 × Ra0.571±0.017. The uncertainties in the values of ξ are the 95 % confidence
intervals.

Figure 6 shows Re(Ra) data along with power-law fits Re ∼ Raξ for the three different p.
Unlike β, the exponent ξ characterizes scaling behaviour of Re over three full decades of
Ra. Moreover, Re(Ra) is substantially less sensitive to details of the roughness: ξ ≈ 0.57
for all three values of p and the prefactor variation among the three values of p is less than
8 %. This suggests that the strength of the velocity variations in the cell is set by the large
scale properties of the boundary profile that are present for the smooth surface with p =
−3, and that smaller scale roughness does not appreciably affect ξ . Recent observation of
Re ∼ Ra0.617 scaling for turbulent convection over flat boundaries in two dimensions (Wan
et al. 2020) is consistent with this suggestion.

Note that ξ = 0.5 corresponds to the (dimensional) r.m.s. fluid speed being proportional
to the free-fall velocity across the cell, u0 = √

gαΔTH. Because the boundary
temperatures are fixed, gαΔT is the maximal buoyancy acceleration of any fluid element,
so suitably conspiratorial flow configurations would be required to sustain ξ > 0.5 as
Ra → ∞. Such is the case in coherent steady (albeit unstable) convection between
stress-free boundaries where ξ → 2/3 as Ra → ∞ (Chini & Cox 2009).

In order to understand the effects of details of roughness realization on the variation of
Re(Ra), we performed an analysis similar to that reported for Nu(Ra) in § 4.3. Figure 7
shows Re(Ra) data for all p and the different realizations. The realizations used here are
the same as those used in § 4.3. Figure 7 clearly suggests that Re(Ra) is independent of
the details of the roughness realizations and the value of p itself. This is further supported
by the fact that the power-law fits to Re(Ra) data for all four different realizations for each
p and Ra ∈ [107, 2.15 × 109] give: (a) p = −3.0: Re = 0.073 × Ra0.584; (b) p = −2.0:
Re = 0.069 × Ra0.588; and (c) p = −1.5: Re = 0.068 × Ra0.589. Hence, unlike β, ξ is
independent of the roughness geometries used in this study.

5. Conclusions

We have systematically studied turbulent thermal convection in two-dimensional
domains with a fractal upper boundary for Ra ∈ [107, 1010] using the lattice
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FIGURE 7. Plot of Re(Ra) data for all p and the different realizations denoted r1–r4. The
power-law fits shown here are those reported in figure 6 for Ra ∈ [107, 1010].

Boltzmann method. The fractal nature of the boundaries is characterized by their
spectral exponent p = 2Df − 5 representing the degree of roughness, where Df is the
Hausdorff dimension of the boundary function. Simulations with roughness exponents
p = −3.0,−2.0 and −1.5 revealed the following.

(i) With increasing roughness, the fractal boundaries provide an increasing number of
sites for the generation of plumes. Hence, at fixed Ra the plume production increases
with increasing p.

(ii) The Nu ∼ Raβ power-law fit exponent β for the range Ra ∈ [108, 1010] increased
from 0.288 to 0.352 as p increased from −3.0 to −1.5. Heat transport increased
with roughness for larger Ra, in qualitative agreement with Villermaux (1998). This
increase in β is due to a change in the dynamics that results from the enhanced
interactions between the rough boundary and the inner flow, through the increase
in plume production (Stringano et al. 2006; Toppaladoddi et al. 2015a, 2017). The
increased surface area over the boundaries also increases heat transport, but only by
increasing the pre-factor in the power law and not β. (See appendix C.)

(iii) The fractal surfaces used in the experiments of Ciliberto & Laroche (1999) were
built with glass spheres such that the amplitudes were power-law distributed, i.e.
P(h) ∼ hΛ. They reported β = 0.35 for Λ = −2 and β = 0.45 for Λ = −1. Hence,
β increased with increasing Λ, which represents the degree of roughness. Hence, our
findings are qualitatively consistent with the results of Ciliberto & Laroche (1999).

(iv) The following observations can be made based on the analysis of Nu − Ra data:
(a) the fractal boundary for p = −3.0 is hydrodynamically smooth for heat transfer,
as both the exponent and prefactor in the Nu − Ra power law are approximately
those observed in convection over flat boundaries (Johnston & Doering 2009);
(b) both the prefactor and exponent of the Nu − Ra power law for p = −2.0
correspond surprisingly well, albeit perhaps only fortuitously, to those reported for
convection over smooth surfaces in a small aspect ratio 3-D cylindrical geometry
(Iyer et al. 2020); and (c) the Nu − Ra power law for p = −1.5 is remarkably close
to the one obtained for the optimal wavelength of a corrugated sinusoidal boundary
that maximizes heat transport (Toppaladoddi et al. 2015a).
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(v) Using the roughness curve for p = −3 as the reference profile, we estimated the
effective amplitudes of the roughness curves for p = −2 and −1.5 that lead to
increased heat transport. This is about 2 % of the depth of the cell for p = −2 and
p = −1.5.

(vi) The averaged Nu values for a fixed p depend primarily on Ra and have a very weak
dependence on the roughness realization. However, the higher-order moments are
more sensitive to the details of roughness realizations.

(vii) The Reynolds numbers based on the r.m.s. velocity computed over all fluid nodes
scaled as Re ∼ Raξ , with ξ ≈ 0.57, for all three values of p studied here. Perhaps
surprisingly, the bulk intensity of the flow was substantially less sensitive to
small-scale details in the roughness profiles than the heat transfer.

(viii) Like the averaged Nu values, the averaged Re values for a fixed p depend primarily
on Ra, and have a weak dependence on the roughness realization.

(ix) To a good approximation, the exponent β is solely a function of p (and in turn Df ),
whereas ξ is independent of p.

These simulations demonstrate the feasibility of studying turbulent flows over fractal
walls using numerical simulations. Importantly, they provide a framework to study heat
transport in high Ra convection that can reveal the influence of interactions between the
boundary layers and core flow. Namely, we know that such interactions are important
for the Nu(Ra) behaviour and that as Ra increases, boundary layers thin and so too will
the size of roughness elements that trigger plume production. For a given fractal surface,
only a fraction of the roughness elements are driving boundary-layer instability and that
fraction changes with Ra. Therefore fractal surfaces that enhance plume production and
heat transport must also optimize the fraction of the ‘active’ surface roughness elements.
However, although a fractal surface reveals finer details with increasing resolution, all
numerical simulations are ultimately limited by finite resolution. Hence there will always
be details of the surface that the simulated flow would not be able to sense. This leads
naturally to the question of how one can represent the effects these unresolved details of
roughness on the turbulent flows, a perennial conundrum in all manner of flows adjacent
to surfaces.
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Ra Nu h η Nη = η/h NG = πη/h

2.15 × 108 30.70 1.25 × 10−3 3.51 × 10−3 3 9
4.64 × 108 40.62 10−3 2.70 × 10−3 3 9
109 52.53 10−3 2.10 × 10−3 2 6
2.15 × 109 70.89 8.33 × 10−4 1.60 × 10−3 2 6
4.64 × 109 91.79 7.14 × 10−4 1.24 × 10−3 2 6
1010 121.73 4.76 × 10−4 9.52 × 10−4 2 6

TABLE 1. Comparison of mesh size with the Kolmogorov length scale for the highest six Ra
and p = −1.5. The Kolmogorov length scale is calculated using (A 1).

Appendix A. Simulation details

A.1. Spatial resolution: comparison with the Kolmogorov length scale
Following Grötzbach (1983), the Kolmogorov length scale, η, in Rayleigh–Bénard
convection can be estimated as

η =
(

Pr2

Ra Nu

)1/4

. (A 1)

To obtain (A 1), we first take the dot product of the dimensional momentum equation with
u, giving

1
2

∂u2
i

∂t
+ 1

2
∂(uku2

i )

∂xk
= −∂(uip)

∂xi
+ αgwTδi2 + ν

[
1
2

∂2u2
i

∂x2
k

−
(

∂ui

∂xk

)2
]

. (A 2)

Taking the long time and area average of (A 2), we obtain

ε ≡ ν〈|∇u|2〉 = αg 〈wT〉 . (A 3)

Using 〈wT〉 = ε/(αg) ≈ κΔT/H × Nu in the expression for the dimensional Kolmogorov
length scale (η = (ν3/ε)1/4) and after some algebra and rearrangement, we obtain (A 1).

A criterion for a simulation to be well resolved is (Grötzbach 1983)

NG = πη

h
> 1, (A 4)

where h = √
ΔxΔz, where Δx and Δz are mesh sizes along the horizontal and vertical

directions. (All length scales are non-dimensionalized using the height of the cell.) We
use uniform grids in our simulations, so Δx = Δz and h = Δz. In table 1, we show the
computed values of η for the six highest Ra for p = −1.5. It is clear from table 1 that
the resolutions used by us are able to resolve the Kolmogorov length scale – both in the
interior and in the boundary layers. Note that we have used a more stringent criterion than
(A 4) as we show that Nη > 1 as well as NG > 1.
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Ra Nu Δz δT Nδ = δT/Δz

107 14.22 1.25 × 10−3 3.5 × 10−2 28
2.15 × 107 15.74 1.25 × 10−3 3.2 × 10−2 26
4.64 × 107 19.44 1.25 × 10−3 2.6 × 10−2 21
108 24.50 1.25 × 10−3 2.0 × 10−2 16
2.15 × 108 30.70 1.25 × 10−3 1.6 × 10−2 13
4.64 × 108 40.62 10−3 1.2 × 10−2 12
109 52.53 10−3 9.5 × 10−3 10
2.15 × 109 70.89 8.33 × 10−4 7.0 × 10−3 9
4.64 × 109 91.79 7.14 × 10−4 5.45 × 10−3 8
1010 121.73 4.76 × 10−4 4.12 × 10−3 9

TABLE 2. Comparison of boundary-layer thickness and the resolutions used.

0.5 0.6 0.7 0.8 0.9 1.0
0

0.005

0.010

0.015

z

〈T�〉

〈T 〉(z) : Ra = 1010

〈T 〉(z) : Ra = 2.15 × 109

δT (Ra = 1010) = 4.12 × 10–3

δT (Ra = 2.15 × 109) = 7 × 10–3

FIGURE 8. Horizontally and temporally averaged temperature profiles for Ra = 2.15 × 109

(circles) and Ra = 1010 (squares) and p = −1.5. The dotted and dashed lines show the
boundary-layer thicknesses for Ra = 2.15 × 109 and Ra = 1010, respectively. There are 9 grid
points in each boundary layer. The kinks at z = 0 are associated with the use of the mid-grid
bounceback condition to impose no-slip and no-penetration boundary conditions in the lattice
Boltzmann method. This version of the bounceback renders the effective wall to be between
the first and second grid points (Succi 2001). Hence, the no-slip boundary condition effectively
applies at a distance z = Δz/2, where Δz is the grid size, above z = 0 where the temperature
boundary condition is imposed. The calculation of Nu at the boundary takes this into account, and
has been tested by reproducing the Nu(Ra) results from spectral simulations for flat boundaries
(Toppaladoddi et al. 2015a).

A.2. Spatial resolution: boundary layers
We estimate the non-dimensional boundary-layer thickness, δT , using

δT = 1
2Nu

. (A 5)
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FIGURE 9. A 200 time-unit moving average of the Nu(t) data measured at z/H = 0.42 for two
simulations of different duration with the same roughness profile, p = −1.5 and Ra = 2.15 ×
109.

Ra Nu, r = 1 Nu, r = 2 Nu, r = 3 Nu, r = 4

107 14.96 ± 0.07 14.31 ± 0.04 15.13 ± 0.09 15.73 ± 0.04
2.15 × 107 17.91 ± 0.10 17.75 ± 0.10 17.85 ± 0.08 17.96 ± 0.12
4.64 × 107 21.10 ± 0.23 20.75 ± 0.15 21.01 ± 0.06 21.35 ± 0.03
108 25.33 ± 0.11 25.32 ± 0.16 25.37 ± 0.12 25.52 ± 0.05
2.15 × 108 30.50 ± 0.25 30.58 ± 0.33 30.38 ± 0.41 31.14 ± 0.15
4.64 × 108 37.98 ± 0.26 38.73 ± 0.24 38.84 ± 0.26 39.01 ± 0.15
109 48.36 ± 0.52 48.49 ± 0.22 48.75 ± 0.59 48.92 ± 0.29
2.15 × 109 61.74 ± 1.15 61.36 ± 0.73 60.30 ± 0.81 60.92 ± 0.86
4.64 × 109 — — — 76.92 ± 1.60
1010 — — — 94.85 ± 3.07

TABLE 3. The Nu(Ra) data for four different realizations of rough boundary for p = −3.0. The
different realizations are numbered as r = 1, . . . , 4.

Table 2 shows the boundary-layer thickness for all Ra for p = −1.5 and the number of grid
points within the boundary layer. It is clear from the table that in our simulations there are
at least 8 grid points within the boundary layer. To further demonstrate this point, we
show the time and horizontally averaged temperature profiles for Ra = 2.15 × 109 and
Ra = 1010 and p = −1.5 in figure 8. There are 9 grid points in each of the two boundary
layers, in agreement with the estimate in table 2.

A.3. Temporal convergence
To ascertain that a time window of 200 time units was sufficient to obtain converged
statistics, we ran simulations for Ra = 2.15 × 109 and p = −1.5 with the same spatial
resolution for two durations: (i) t ≈ 390 and (ii) t ≈ 830. In figure 9 we show a moving
average of the Nu(t) data measured at z/H = 0.42, where H is the height of the cell for
the two cases. The window for the moving average is 200 time units.It is seen that the
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Ra Nu, r = 1 Nu, r = 2 Nu, r = 3 Nu, r = 4

107 13.79 ± 0.06 13.76 ± 0.07 14.72 ± 0.06 14.88 ± 0.01
2.15 × 107 16.29 ± 0.11 16.68 ± 0.09 17.02 ± 0.05 17.47 ± 0.07
4.64 × 107 19.77 ± 0.05 19.92 ± 0.15 19.73 ± 0.12 20.12 ± 0.06
108 23.92 ± 0.23 24.52 ± 0.32 24.41 ± 0.34 24.53 ± 0.24
2.15 × 108 30.14 ± 0.12 30.05 ± 0.19 30.49 ± 0.48 30.64 ± 0.24
4.64 × 108 39.61 ± 0.18 39.24 ± 0.10 39.35 ± 0.10 39.63 ± 0.19
109 50.95 ± 0.56 50.61 ± 0.36 50.22 ± 0.63 51.13 ± 0.36
2.15 × 109 66.73 ± 1.16 67.72 ± 1.31 68.18 ± 1.26 66.60 ± 2.28
4.64 × 109 — — — 85.45 ± 2.43
1010 — — — 110.49 ± 10.67

TABLE 4. The Nu(Ra) data for four different realizations of rough boundary for p = −2.0. The
different realizations are numbered as r = 1, . . . , 4.

Ra Nu, r = 1 Nu, r = 2 Nu, r = 3 Nu, r = 4

107 14.34 ± 0.02 13.92 ± 0.04 14.14 ± 0.02 14.22 ± 0.02
2.15 × 107 15.74 ± 0.18 16.30 ± 0.09 15.74 ± 0.17 15.74 ± 0.04
4.64 × 107 19.31 ± 0.08 19.95 ± 0.15 19.42 ± 0.10 19.44 ± 0.08
108 24.34 ± 0.34 24.11 ± 0.34 24.22 ± 0.25 24.50 ± 0.14
2.15 × 108 29.95 ± 0.31 31.02 ± 0.32 30.85 ± 0.33 30.70 ± 0.42
4.64 × 108 40.17 ± 0.17 40.79 ± 0.16 40.94 ± 0.09 40.62 ± 0.30
109 53.05 ± 0.41 53.15 ± 0.32 54.78 ± 0.26 52.53 ± 0.37
2.15 × 109 69.77 ± 0.79 71.96 ± 1.60 71.28 ± 1.02 70.89 ± 1.52
4.64 × 109 — — — 91.79 ± 1.41
1010 — — — 121.73 ± 11.52

TABLE 5. The Nu(Ra) data for four different realizations of rough boundary for p = −1.5. The
different realizations are numbered as r = 1, . . . , 4.

Ra Re, r = 1 Re, r = 2 Re, r = 3 Re, r = 4

107 941 930 924 938
2.15 × 107 1421 1382 1397 1449
4.64 × 107 2133 2129 2147 2197
108 3307 3282 3296 3283
2.15 × 108 5336 5692 5551 5213
4.64 × 108 8743 9154 8710 9107
109 13 081 13 582 13 742 13 661
2.15 × 109 21 317 19 841 19 465 21 153
4.64 × 109 — — — 30 781
1010 — — — 44 723

TABLE 6. The Re(Ra) data for four different realizations of rough boundary for p = −3.0. The
different realizations are numbered as r = 1, . . . , 4.
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Ra Re, r = 1 Re, r = 2 Re, r = 3 Re, r = 4

107 927 937 889 909
2.15 × 107 1461 1421 1371 1385
4.64 × 107 2232 2154 2292 2162
108 3482 3503 3449 3551
2.15 × 108 5587 5618 5414 5633
4.64 × 108 9060 9001 8772 9317
109 13 478 13 149 13 492 14 369
2.15 × 109 20 794 21 062 21 169 20 735
4.64 × 109 — — — 31 900
1010 — — — 44 341

TABLE 7. The Re(Ra) data for four different realizations of rough boundary for p = −2.0. The
different realizations are numbered as r = 1, . . . , 4.

Ra Re, r = 1 Re, r = 2 Re, r = 3 Re, r = 4

107 893 881 874 892
2.15 × 107 1435 1340 1414 1451
4.64 × 107 2190 2201 2168 2253
108 3536 3573 3552 3458
2.15 × 108 5695 5786 5575 5772
4.64 × 108 9124 8819 8934 8845
109 13 302 13 273 13 097 13 857
2.15 × 109 20 178 20 849 20 765 20 628
4.64 × 109 — — — 32 237
1010 — — — 44 575

TABLE 8. The Re(Ra) data for four different realizations of rough boundary for p = −1.5. The
different realizations are numbered as r = 1, . . . , 4.

moving average value of Nu is approximately constant beginning at t ≈ 220. There are
fluctuations in the curves and the maximum and minimum variations in the fluctuations
are approximately 4 % of the mean. For the shorter duration run, which was averaged over
200 time units,

〈
Nu

〉 = 70.89, and for the longer duration run, which was averaged over
613 time units,

〈
Nu

〉 = 69.81. The difference between the two values is 1.5 %.

Appendix B. Characteristic length scale

Here we consider the impact of an alternative definition of the characteristic length
scale used in the non-dimensionalization. Let H1 be the characteristic length scale that
gives Nu1 = 1 at Ra = 0. The definition of Nu used above is

Nu = QH
kΔT

, (B 1)
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102

101

Nu
Nu(Ra) data

Nu1(Ra1) data

Nu = 0.037× Ra0.352±0.011

Nu1 = 0.037× Ra1
0.352±0.011

107 108 109 1010

Ra

FIGURE 10. The Nu1(Ra1) and Nu(Ra) data sets along with their power-law fits for p = −1.5.

where Q is the total heat flux, H is the depth of the cell, and ΔT is the temperature
difference between top and bottom boundaries. This can be written as

Nu = QH1

kΔT
H
H1

= Nu1
H
H1

. (B 2)

By design, Nu1 = 1 at Ra = 0, and hence

H1

H
= 1

Nu(Ra = 0)
. (B 3)

Performing simulations for Ra = 0 and all values of p used, we find that Nu = 1.06 for
p = −1.5 and −2 and Nu = 1.05 for p = −3. This implies that the effective length scale
(H1) from (B 3) is ≈95 % of the depth of the cell. We can now use this new scale, H1, to
calculate the re-scaled values of the Rayleigh and Nusselt numbers, which are given by

Ra1 =
(

H1

H

)3

Ra and Nu1 =
(

H1

H

)
Nu. (B 4a,b)

Figure 10 shows Nu1(Ra1), Nu(Ra), and the linear least-squares fits over the last seven data
points for the respective data sets for p = −1.5. The fit for the new data over the highest
seven Ra gives Nu1 = 0.037 × Ra0.352±0.011

1 , which is the same for the corresponding fit
Nu = 0.037 × Ra0.352±0.011 using the length scale H. This is easily seen in figure 10. Similar
analyses have been performed for data sets for other values of p, and these conclusions
remain the same for those data sets as well with H1/H = 0.95 for all values of p considered
here. Moreover, the pre-factor changes by less than 1 % because H1/H = 0.95, which is
close to unity.

Hence, although the choice of H1 is relevant if one requires that the Nusselt number
is 1 in the conductive state, choosing H as the length scale does not impact the scaling
results reported for the turbulent heat transport for any value of p used in this study in any
appreciable way.

Appendix C. Effect of increased area on heat transport

To understand the contribution of increased surface area to the transport of heat, we
compute the ratio Af /A0 (effective area) and Nu/Nu0 (effective heat transport). Here, Af is
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1.0

1.1

1.2

1.3

1.4

1.5

Af /A0

107 108 109 1010

Ra

FIGURE 11. Ratio Af /A0 of effective transfer area to that of flat boundary as a function of Ra
for different values of p: p = −3 (circles); p = −2 (squares); and p = −1.5 (diamonds).

the effective transfer area given by the surface area of min[h(x), 1 − δT], which increases
the effective area to account for regions where the fractal boundary at z = h(x) protrudes
beyond the boundary-layer thickness δT ; A0 is the area of the flat boundary; and Nu0 is the
value of the Nusselt number for a flat boundary. The boundary-layer thickness is estimated
using (A 5) and the values of Nu0 are obtained using the power law: Nu0 = 0.138 × Ra0.285

(Johnston & Doering 2009). The values of Af /A0 calculated in this way are monotonic
functions of Ra, so that as the thermal boundary layer thins, more of the fractal boundary
is exposed to the flow. This is shown in figure 11 for all values of p (i.e. as p increases from
−3 to −1.5).Note that the curves appear to saturate at the higher end of Ra because we
have computed the Steinhaus series (Rothrock & Thorndike 1980) only up to a large finite
wavenumber. For each Ra, the effective area increases for increasing value of p, showing
that the boundaries become more rough.

In figures 12(a)–12(c), we show Nu/Nu0 as a function of Af /A0 for all Ra and p. In each
of these figures the first point, with the lowest Af /A0, corresponds to Ra = 107, the second
to Ra = 2.15 × 107,. . . , and the last one, with the largest Af /A0 value, to Ra = 1010. (See
figure 11.) The following observations can be made from figures 12(a)–12(c): (a) Nu/Nu0
varies non-monotonically with Af /A0 showing the effect of the exposure of the fractal
boundary to the outer flow; and (b) the difference in Af /A0 values for the last three data
points for p = −2 and p = −1.5 is very small, but there is a relatively substantial increase
in Nu/Nu0 for these values.

To determine if the increase in the effective area can explain the augmentation in heat
flux, we plot the Nu(Ra) data for p = −3,−2 and −1.5 and the corresponding Nuf (Ra) =
Nu0(Ra) × Af (Ra)/A0 data for the same range of Ra in figures 13(a)–13(c). If the increase
in Nu(Ra) values were solely due to the enhanced area, such that

Nu = Nu0
Af

A0
= Nuf , (C 1)

then the Nu(Ra) and Nuf (Ra) curves would coincide. It is seen from figures 13(a)–13(c)
that: (a) the curves do not coincide; (b) the fractal boundary for p = −3 is
hydrodynamically smooth for heat transport as the Nu(Ra) and Nuf (Ra) curves are parallel
for Ra ≥ 108; (c) the curve for Nuf (Ra) does not explain the curvature that is seen at lower
Ra in the Nu(Ra) data for any p; and (d) while the values of β for the two simulated
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FIGURE 12. Plots of Nu/Nu0 versus Af /A0 for: (a) p = −3; (b) p = −2; and (c) p = −1.5.

Nu(Ra) curves are substantially different for p = −2 and p = −1.5, the corresponding
fitted β for Nuf (Ra) are independent of p, to within the uncertainty. Hence, we conclude
that the increase in β for convection over the fractal boundaries is because of a change in
the dynamics, which is consistent with increased plume production (Stringano et al. 2006;
Toppaladoddi et al. 2015a, 2017). This dynamics has been explicitly shown to be operative
in previous direct numerical simulations of turbulent convection over periodic roughness
of different wavelengths (Toppaladoddi et al. 2015a, 2017).
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102

101

(a)

Nu

107 108 109 1010

102

101

(b)

Nu

107 108 109 1010

102

101

(c)

Nu

107 108 109 1010

Ra

Nu – Ra data for p = –3 
Nuf  – Ra data for increased area

Nu = 0.125 × Ra0.288±0.006

Nuf  = 0.138 × Ra0.287±0.001

Nu – Ra data for p = –2 
Nuf  – Ra data for increased area

Nu = 0.055 × Ra0.329±0.006

Nuf  = 0.144 × Ra0.292±0.004

Nu – Ra data for p = –1.5
Nuf  – Ra data due to increased area

Nu = 0.037 × Ra0.352±0.011

Nuf  = 0.174 × Ra0.291±0.003

FIGURE 13. Heat flux data for the fractal boundaries (Nu) and theory that applies heat flux for
flat boundaries over an augmented area (Nuf ): (a) p = −3; (b) p = −2; and (c) p = −1.5. The
power-law fits are for the range Ra ∈ [108, 1010].

Appendix D. Simulation data

In tables 3–8 we have tabulated the Nu(Ra) and Re(Ra) data from the simulations. The
data shown in figures 3 and 6 correspond to Realization-4 for all values of p.
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